2170

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

A Novel Test Flow for One-Time-Programming
Applications of NROM Technology

Mango C.-T. Chao, Ching-Yu Chin, Yao-Te Tsou, and Chi-Min Chang

Abstract—The NROM technology is an emerging non-volatile-
memory technology providing high data density with low fabrica-
tion cost. In this paper, we propose a novel test flow for the one-
time-programming (OTP) applications using the NROM bit cells.
Unlike the conventional test flow, the proposed flow applies the re-
pair analysis in its package test instead of in its wafer test, and
hence creates a chance for reusing the bit cells originally identified
as a defect to represent the value in the OTP application. Thus, the
proposed test flow can reduce the number of bit cells to be repaired
and further improve the yield. Also, we propose an efficient and ef-
fective estimation scheme to predict the probability of a part being
successfully repaired before packaged. This estimation can be used
to determine whether a part should be packaged, such that the total
profit of the proposed test flow can be optimized. A series of exper-
iments are conducted to demonstrate the effectiveness, efficiency,
and feasibility of the proposed test flow.

Index Terms—NROM, repair rate estimation, test flow.

1. INTRODUCTION

HROUGH several technology evolutions, the floating-
gate-based memory [1] has been the mainstream of the
non-volatile-memory market in the past. However, its lead-
ership is challenged by the emerging charge-trapping-based
memories, such as MNOS [2], SONOS [3]-[5], and NROM
[6]-[8], which can offer better value stability, simpler fabrica-
tion process, and less process adders to a logic process. Among
those charge-trapping-based memories, the NROM technology
provides two bits per device with a low fabrication cost and
overcomes the reliability issue by using thicker oxide cladding
layers. Those advantages make the NROM technology an
attractive solution in current non-volatile-memory market.
MXIC [9] applies the NROM technology to manufacture
stand-alone read-only-memory (ROM) applications, such as
video/audio code, storage chip, game console chip, and system
bias of 3C products. This NROM-based ROMs support the
storage up to 2 Gb with a 100 ns random-access time and a
3.0-3.6 V supply voltage, which can match the applications
of traditional mask ROMs. The NROM-based ROMs provided
by MXIC not only inherit the advantage of high density from
the NROM technology but also reduce its manufacturing
cost by lowering the process requirement from multiple-time

Manuscript received April 20, 2010; revised July 16, 2010; accepted
September 21, 2010. Date of publication December 23, 2010; date of current
version October 28, 2011.

M. C.-T. Chao, C.-Y. Chin, and C.-M. Chang are with the Electronics
Engineering Department, National Chiao Tung University, Hsinchu,
Taiwan 300 (e-mail: mango@faculty.nctu.edu.tw; lwaysrain.gr@gmail.com;
cmc.ee95g @nctu.edu.tw).

Y.-T. Tsou is with Macronix International Company, Application-Specific
Memory Division, Hsinchu, Taiwan, (e-mail: YTTsou@mxic.com.tw).

Digital Object Identifier 10.1109/TVLSI.2010.2087044

programmability to one-time programmability. Thus, the
NROM-based ROMs can provide higher data density with
economic price compared to the traditional mask ROMs. Also,
NROM-based ROMs need not to know the customer’s code
when manufactured, and hence no change on its photomasks
need to be made when the customer’s code changes. This
property can lower the cost for a small-volume order and
allow the customers to revise the code in their next-version
products without extra photomask charge. In addition, blank
NROM-based ROMs can be manufactured in advance. Once an
order is received, the code can be directly programmed to the
blank NROM-based ROMs, which can significantly shorten the
delivery time.

With all above advantages, however, the NROM-based ROMs
require a more complicated test flow compared to the traditional
ROM testing, in which the complete contents of all addresses
are simply read out and compared [11]-[13]. The conventional
test flow for NROM-based ROMs can be divided into two parts,
the wafer test followed by the package test. In the wafer test,
we test whether the default value of each word can be read out
correctly. If any failed word exists, we attempt to repair those
failed words with the spare rows and columns. The dies which
cannot be successfully repaired are identified as failed dies and
then discarded. The passing dies will then be packaged and wait
for the code from customers. After the code is programmed into
a packaged NROM-based ROM, the package test is applied to
check whether the programmed code can be read out correctly
at speed. The NROM-based ROMs passing the package test will
be delivered to customers.

In our previous work [10], a novel test flow has been pro-
posed for NROM-based ROMs. Its basic idea is to perform the
repair process in the package test instead of in the wafer test. An
NROM bit which fails to correctly represent the default value
may be able to correctly represent its opposite value, which may
probably be the value requested in the customer’s code. In other
words, the bit cell which is identified as a physical-level defect
in the conventional wafer test may not be a data-level defect
for customer’s code. Thus, by repairing the data-level defects in
the package test, the yield can be further improved. However,
we cannot pass and package all the dies in the wafer test since
each package costs. We can only pass the dies which have a de-
cent chance to be successfully repaired in the package test. To
estimate this successful-repaired probability in the wafer test is
a challenge since the customer’s code is not yet known at this
stage. In [10], a mathematical model has been proposed to effi-
ciently and effectively estimate the probability that the resulting
data-level defects can be successfully repaired based on only the
information of physical-level defects obtained from wafer test.

In this paper, we will first restate the new proposed test flow in
[10]. Next, we will provide the detailed derivation of the mathe-

1063-8210/$26.00 © 2010 IEEE

CHAO et al.: A NOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY

ONO

Bit line
oxide

BIT 1

BIT 2

Si substrate

(a) (b)

Fig. 1. Cross section view and top view of an NROM cell [6].

matical estimation to the above successful-repaired probability.
We will further analyze the complexity and the optimality of this
mathematical estimation and conduct additional experiments to
validate its accuracy. In addition, we will discuss the impact of
setting different threshold probabilities (p-th), used to deter-
mine whether a die should be packaged or discarded after wafer
test. A novel mathematical model will also be developed to effi-
ciently identify the optimal setting of this threshold probability
such that the overall packaging cost and yield can be balanced.
At last, the overhead of the test-application time, the extra ATE
expense imposed by the proposed test flow, and the reliability
issues will be further discussed. Overall, the experimental re-
sult, based on an industrial NROM-based ROM design, clearly
shows the yield improvement of the proposed test flow as well
as the high accuracy of the proposed mathematical models.

II. BACKGROUND

A. Characteristics of an NROM Cell

Fig. 1 shows the cross-section view of an NROM cell, which
is an n-channel MOSFET where the gate dielectric is replaced
by an oxide-nitride-oxide (ONO) stack used for trapping elec-
trons [6]. Each NROM cell stores two bits. The value of each bit
is determined by whether enough of electrons are trapped at one
end of the nitride layer adjacent to the n+ junctions, as indicated
by BIT1 and BIT?2 in Fig. 1(a). An NROM cell contains one
word-line (W L) and two bit lines (BL1, BL2). As shown in
Fig. 1(a), the word-line is the polysilicon and the two bit lines
are the two diffusions. Fig. 1(b) shows the top view of an NROM
memory array.

To read the data of BIT1 in our NROM-based ROMs, we
apply 3.3 Vat WL,0V at BL1, and 1.5 V at BL2. If more
electrons are trapped in BIT'1, the sensed current from B L2
to BL1 becomes smaller, meaning that the threshold voltage of
BIT1 becomes larger. A sensed current smaller than the refer-
ence current is defined as a value 0. A sensed current larger than
the reference current is defined as a value 1. Similarly, to read
the data stored in BIT2, we apply 3.3 Vat WL, 1.5V at BL1,
and O V at BL2 and then sense the current from BL1 to BL2.
Since the current directions for reading BIT'1 and BIT?2 are
different, we need one current-sense amplifier at each bit line.
The reference current ranges from 20 pA to 30 A depending
on products. Fig. 2 illustrates the read operations for BIT'1 and
BIT?2 with value 0 and value 1, respectively.

Note that the electrons trapped at one end of the ONO stack
will not affect the read mechanism for the other end. For the
NROM devices introduced in [8], read is preformed after a
polarity reversal, Reverse Read, interchanging the roles of the
source and the drain, relative to programming, with a typical

2171

No electrons

ov

Large current

© @

Fig. 2. Read mechanism for an NROM cell. (a) Read Bit 1 (data 0). (b) Read
Bit 1 (data 1). (c) Read Bit 2 (data 0). (d) Read Bit 2 (data 1).

Fig. 3. Program mechanism for an NROM cell. (a) Program Bit 1 to 0. (b) Pro-
gram Bit 2 to 0.

drain-source voltage of 1.6 V. This voltage punches through
the potential barrier induced by charges trapped over the drain
junction, thus the transistor current is only dictated by charges
trapped over the source junction and two-bit separation in read
is achieved. For more detailed device physics about NROM,
please refer to [8].

When an NROM cell is fabricated, both BIT'1 and BIT2 do
not store electrons initially, representing a value 1. Electrons can
be injected into the ONO stack through the channel hot electron
injection (CHE) and trapped in the nitride layer of the ONO
stack, representing a value 0. Fig. 3 illustrates the operations to
write a value 0 to BIT'1 and BIT2 in our NROM-based ROMs,
respectively.

B. Conventional Test Flow for NROM-Based ROMs

A conventional test flow for NROM-based ROMs consists
of two main procedures: a wafer test followed by a package
test. The objective of the wafter test is to check whether each
bit cell in an NROM-based ROM can function correctly. The
objective of package test is to check whether the programmed
code in an NROM-based ROM can be correctly read out. An
NROM-based ROM passing the wafer test is then packaged and
considered as a blank ROM. After the code is received from
customers and programmed into blank ROMs, the package test
is applied before the programmed ROMs are sent to customers.
The repair mechanism is applied in the wafer test if defective
words are identified.

Fig. 4 first lists the steps of both the conventional wafer test
and package test for NROM-based ROMs. The detail of each
step is discussed as follows.

1) DC Parametric Test: The DC parametric test here includes
open/short test, leakage test, static current test, and operating
current test. The open/short test checks the connectivity between
pads in the wafer test (or pins in the packaged test). The leakage

2172

Wafer test

Package test

Blank ROM

«—

Package

To customer

Fig. 4. Conventional test flow for NROM-based ROMs.

test checks whether an unacceptably large current exists on each
pad or pin. The static current test and operating current test
check the power consumption at standby mode and operating
mode, respectively.

2) Stress Test: The stress test supplies a high voltage to each
word-line, which can speed up the failure of unhealthy memory
cells. Note that those induced defective cells are not identified
in this stress test but will be identified in the later tests.

3) Margin-Read-1 & Margin-Read-0 Test: The margin-
read-1 (or 0) test is to check whether an NROM bit can rep-
resent a “quality” value of 1 (or 0). Note that the value of
an NROM bit is determined by the threshold voltage of the
corresponding NROM MOSFET. A quality value of 1 (or 0)
means that its threshold voltage is smaller (or larger) than the
read voltage defined in the specification by an user-specific
margin, such that its sensed current can be easily differentiated
by the sense amplifier. Therefore, in the margin-read-1 test, we
read value 1 by applying the smallest read voltage defined in the
specification minus a voltage margin. In the margin-read-0 test,
we read value 0 by applying the largest read voltage defined in
the specification plus a voltage margin.

4) Repair: This repair step applies a repair algorithm to de-
termine whether and how the defective cells can be replaced
by the spare rows and columns. The redundancy design used
in our NROM-based ROMs is a two-dimensional architecture
containing both spare rows and spare columns. The repair algo-
rithm used in our test flow is a repair-most algorithm based on
a compressed defect map. Note that the address-folding tech-
nique used in our NROM-based ROMs is the adjacent folding
[14], meaning that the bit-cells in a word are serially placed to-
gether in the layout. As a result, the column repair is performed
in units of words (same as row repair), meaning that all bits in
a word will be replaced simultaneously once a bit in that word
fails. On the other hand, if the distributed folding [14] is used,
all the sth bit-cells of different words at the same word-line are
placed serially to one another in the layout, meaning that to re-
pair the sth bit of a word with a spare column will also replace

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

the sth bit-cell of the other words at the same word-line. But all
other bits in the same remain the original ones.

5) At-Speed Test: At-speed test is to check whether the
programmed code can be correctly read out at the defined
frequency.

As Fig. 4 shows that the conventional wafer test first performs
the DC parametric test, stress test, and the margin-read-1 test in
order. Note that the default value of all bits in a newly manufac-
tured NROM die is 1. Then we can obtain the defect map from
the result of margin-read-1 test, based on that the repair analysis
is applied. Last, another margin-read-1 test is applied on the re-
paired rows and columns.

In the conventional package test, the DC parametric test is
first performed and then the customer’s code is programmed
into a package NROM-based ROM. After the stress test, we
perform the margin-read-0 test and margin-read-1 tests to en-
sure that each programmed bit can represent a quality value 0O
or value 1. Last, the at-speed test is applied.

Note that in the conventional wafer test, we do not check
whether a bit cell can be programmed to a quality value 0. We
only check whether a bit can represent a quality value 1 and only
repair the bits which cannot represent a quality value 1, which
is the initial value of an NROM bit. The main reasons of only
checking value 1 are listed below.

First, the threshold voltage of a bit cell representing a value
1 is closer to the read voltage defined in the specification than
that representing a value 0 (as will be shown in Fig. 6). Thus,
it is more likely that a faulty bit cell fails to represent a value 1
rather than a value 0. Second, from the statistics of the collected
manufacturing data, most bits failing to represent a quality value
0 result from some abnormal leakage or open/short defects on
bit-lines or word-lines, not on the bit cells themselves. Those de-
fects can already be detected during the margin-read-1 test or the
DC parametric test. Third, a bit cell representing a quality value
1 can also represent a quality value 0 in our NROM process for
most cases. Also, it requires significant amount of time to pro-
gram all the bits to value 0 and apply another margin-read-0 test.
In addition, if more write operations (program or erase) are ap-
plied to a bit cell, the probability of its next write operation being
successful becomes smaller. Therefore, we attempt to avoid any
unnecessary write operations during the wafer test.

According to the internal statistics of MXIC’s mature product
lines of NROM-based ROMs, the packaged parts passing the
package test are usually more than 95%. Most yield loss in
the conventional test flow results from the wafer test, which
we would like to further reduce in this paper. In the conven-
tional test flow, the repair mechanism is applied in the wafer test,
which identifies the defective cells based on the margin-read-1
test. If the defective cells cannot be repaired by the spare rows
and columns, the NROM die is then discarded. However, an
NROM bit which cannot represent a quality value 1 may be able
to represent a quality value O, which may happen to be the value
required in the customer’s code. Since an NROM-based ROM
is going to be programmed once, a physical-level defect identi-
fied during the wafer test may no longer be a data-level defect
after the customer’s code is programmed. Thus, if those phys-
ical-level defects identified in the conventional wafer test can
be reused to represent a value O in the programmed code, we

CHAO et al.: A NOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY

Wafer test Package test

_,(Data-level
defect
fail

Repair Analysis |7
[pass

Program code on
repaired address

Margin-read-1 test | ¢
Margin-read-0 test |7 1
on repaired address !

—E

DC test
pass

Margin-read-1 [P
test

fail

Margin-read-1 test
&
Margin-read-0 test

Repair rate
Estimation

Fig. 5. Proposed test flow for NROM-based ROMs.

can reduce the number of defective cells which really need to
be repaired, and in turn improve the yield of the NROM-based
ROMs. Section III will introduce a novel test flow for NROM-
based ROMs improved from this conventional test flow.

III. PROPOSED TEST FLOW FOR NROM-BASED ROMS

A. Overall Flow

Fig. 5 shows the proposed test flow for NROM-based ROMs.
The key idea of the proposed test flow is to apply the repair
analysis after the code is programmed into an NROM-based
ROM, such that the repair analysis can be performed based on
data-level defects instead of physical-level defects. In the pro-
posed package test, we program the customer’s code to a blank
ROM and then apply margin-read-0 and margin-read-1 tests to
identify the data-level defects, i.e., the words which cannot suc-
cessfully represent the corresponding value of the code. Based
on those collected data-level defects, the repair analysis is then
applied. After an NROM-based ROM is successfully repaired,
we program the corresponding code to the replaced rows and
columns and check their correctness with another margin-read-0
and margin-read-1 tests.

In the proposed wafer test, we only apply a margin-read-1
test to identify the physical-level defects, i.e., the words which
cannot successfully represent the initial value of 1. Based on
the collected physical-level defects, we apply a quick estima-
tion scheme to predict the probability that the tested part can be
successfully repaired after the code is programmed into it in the
package test. If the predicted successful-repaired probability is
higher than the user-specified threshold, denoted as p_th, then
we package the part. Otherwise, we discard it.

Compared to the conventional test flow, the advantage of the
proposed flow is that we could represent a value O in the cus-
tomer’s code by using the cells which cannot represent a quality
value 1 in the wafer test. It can reduce the number of words re-
quired to be repaired and hence increase the yield. However, to
make the proposed flow practical and effective, the following
three premises need to sustain.

1) An NROM bit which cannot successfully represent a

quality value 1 can indeed represent a quality value 0.

2173

2) Most defects are random single defects and the number of
defective bits in a word is small.

3) An effective and efficient estimation to the successful-re-
paired probability can be developed.

If the first premise does not hold, the number of data-level
defects will be the same as the number of physical-level de-
fects, meaning that our proposed test flow cannot gain any yield
compared to the conventional one. If the second premise does
not hold, it becomes more likely that a physical-level defective
word still need to be replaced since the repair scheme is per-
formed based on the unit of words. As long as one bit in a word
cannot correctly represent the code’s value, the whole word still
need to be replaced. If the third premise does not hold, either too
many non-repairable dies are packaged or too many repairable
dies are discarded. Both cases may damage the overall profit of
the proposed test flow.

In the following two subsections, we first conduct exper-
iments on real NROM-based ROMs to validate the first and
second premises, respectively. We will then detail our math-
ematical estimation used in the wafer test to predict the suc-
cessful-repaired probability in the package test in Section IV.
The accuracy of this estimation will be demonstrated by the
experiments in Section V.

B. Representing Value 0 With Physical-Level Defective Bits

As discussed in Section II-A, the value of an NROM bit de-
pends on the threshold voltage for the corresponding current
direction. For value 1, its threshold voltage is low and hence
the sensed current is large. For value 0, its threshold voltage is
high and hence the sensed current is low. In the following ex-
periment, we measure the threshold voltage of each NROM bit
over different dies collected from different lots. We first apply
different word-line (W L) voltages from 1.5 to 5.5 V using a
sweeping step of 0.1 V, and collect their sensed logic values.
The threshold voltage of an NROM bit is then obtained as the
lowest word-line voltage that can sense a value 1.

The left-hand side of Fig. 6 first shows the probability dis-
tribution of the threshold voltages measured from the NROM
bits with the initial value 1. Group 1 and Group 2 in Fig. 6 in-
dicate the probabilities of NROM bits passing and failing the
margin-read-1 test, respectively. We further program the NROM
bits failing the margin-read-1 test to the value 0 and then mea-
sure their threshold voltages, whose distribution is indicated by
Group 3. The specification for the read voltage is from 3.0 to
3.6 V. The cutting word-line voltages for margin-read-1 test and
margin-read-0 test are 2.85 and 3.65 V, respectively. As Group
3 in Fig. 6 shows, all the NROM bits initially failing to repre-
sent a quality value 1 have a threshold voltage ranging from 4.8
to 5.4 V after programmed to value 0, which can all pass the
margin-read-0 test.

Table I lists the mean and variance of the threshold voltages
measured from the NROM bits passing the margin-read-1 test
(Column 2) and failing the margin-read-1 test (Column 3) after
they are all programmed to value 0. As the result shows, the
value O represented by the NROM bits failing the margin-read-1
test actually have a higher mean of their threshold voltages than
those passing the margin-read-1 test. Also, the variation of their
threshold voltages is smaller. This result shows that the NROM

2174

WL voltage of WL voltage of
margin-read-1 margin-read-0
Group 1 l l
\ 2.85V 3.65V
1.00E+00 \ } } i
1.00E-01 —&— Group1: Bits passing margin-read-1 test
1.00E-02
1.00E-03 —o— Group2: Bits failing margin-read-1 test
1.00E-04 —a— Group3: Bits in group?2 after programmed to 0
1.00E-05 - T
1.00E-06 & \‘ o= Gi 3
: (- P S roup
1.00E-07 N /I \ [ﬂ \l /
1.00E-08 Group 2 - \ ”
1.00E-09 ') —
Vt 1.7 2 23 262932 3538414447 5 535659
(Voltage)

Fig. 6. 'V, distribution before and after programmed a physical-level defective
bit to value 0.

TABLE I
Vr COMPARISON AFTER THE NROM BITS ARE PROGRAMMED TO VALUE 0

NROM bits passing
margin-read-1 test
4.98
0.0297

NROM bits failing
margin-read-1 test
5.25
0.0203

Vi mean
V4 variance

bits failing the margin-read-1 test can even represent a better
value O than those passing the margin-read-1 test. Thus, a phys-
ical-level defective bit identified in the wafer test can indeed be
used to represent a quality value 0, and hence may not be a data-
level defective bit after the customer’s code is programmed.

C. Statistics for Single Defects

When we replace a defective bit, the whole word containing
that bit will be replaced by a spare row or column. Given n phys-
ical-level defective bits in a word, the probability that this word
needs to be replaced for the customer’s code is (1 —1/2"), since
there is a 50% chance that this bit in the customer’s code just
happens to be a value 0. If more physical-level defective bits
exist in a word, it is less likely that all these defective bits in the
customer’s code happen to be a value 0. As a result, this phys-
ical-level defective word may still need to be replaced. In addi-
tion, it is extremely difficult for a physical-level column defect
or row defect to be reused in the customer’s code since matching
all defective bits of a column or row defect with customer’s code
is very unlikely. Therefore, we hope that most physical-level de-
fects in our NROM process could be random single defects, not
clustered, row, or column defects, such that less data-level de-
fective words would exist for the repair analysis.

Fig. 7 shows the probability distribution for the number of the
physical-level defective bits in a physical-level defective word.
This probability distribution is collected from the same sources
as used in the experiments presented in Section III-B. As the
result shows, more than half of physical-level defective words
contain exact one defective bit. Majority of the defective words
contain less or equal to 4 defective bits, and thus can be po-
tentially reused in the programmed code. In average, this reuse
probability for a defective word is more than 30% based on
the distribution in Fig. 7, meaning that the number of defective

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

60
50
40
30 [
20
10 | 7I
= = o
1 23 45 6 7 8 9101112131415 16

of defective bits per word

Percentage (%)

Fig. 7. Number of defective bits per word.

TABLE II
THE NUMBER OF WORDS FAILING THE MARGIN-READ-1
TEST ON A DEFECTIVE ROW

4 to 4096
2.08%

of defective words in a defective row 1 2 3
probability distribution 96.04% | 1.46% | 0.42%

words to be repaired in the proposed test flow can be in average
30% less than that in the conventional flow.

Next, we further count the number of physical-level defective
words in a row (for only the rows with at least one defective
word). Its probability distribution is listed in Table II, showing
that more than 96% of the defective rows contains exact one
defective word. Therefore, 96% defective rows can be reused in
the customer’s code as long as their single defective word can
be reused. A similar statistic can be obtained for the defective
columns.

The results shown in Fig. 7 and Table II demonstrate that
majority of the defects are random single defects. Thus, there
exist a significant chance that a row (or column) required to be
replaced in the conventional wafer test may not necessarily need
to be replaced in our proposed test flow.

IV. MATHEMATICAL ESTIMATION TO SUCCESSFUL-REPAIR
RATE

The most challenging task in the proposed test flow is to
mathematically estimate the successful-repaired probability
resulting from the repair analysis in the package test based on
only the defect information collected in the wafer test. The
accuracy and efficiency of this estimation scheme directly
affect the cost of the proposed test flow. Also, its computation
and space complexities determine the requirement of the ATE’s
computational capability. In the mathematical derivation shown
in Section IV-A-IV-C, we first focus on the estimation of
the successful-repaired probability targeting only the single
defects. In Section IV-F, the estimation incorporating column
and row defects can be obtained by slightly modifying the
estimation considering only the single defects.

A. Derivation Overview for Successful-Repair Probability

After the margin-read-1 test in the wafer test, we can obtain
the following three numbers about the physical-level defects
from a tested part. These three numbers are the input parame-
ters for estimating the probability of the part being successfully
repaired in the package test.

CHAO et al.: A NOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY

e row_d: the number of row defects, which are the defect
only repairable by a spare row.

¢ col_d: the number of column defects, which are the defect
only repairable by a spare column.

e k: the number of physical-level defective words not lo-
cating on the row_d defective rows and col_d defective
columns.

The estimation scheme also requires the following parame-

ters, which can be computed before the wafer test is applied:

total number of rows;
total number of columns;
total number of spare rows;

total number of spare columns;

T 2z Q3

the average probability that a physical-level defective
word is also a data-level defective word.

The following three random variable are defined for deriving
the successful-repaired probability:

DD number of data-level defective words;
PD number of physical-level defective words;
DB number of physical-level defective bits in a defective

word.

Since we first focus on the analysis considering only single
random defective words, the successful-repaired probability
based on k physical-level defective words in a tested part,
denoted as PSR(k), can be expressed by (1).

k
PSR(k) =Y P{DD =2|PD = k} x DSR(x), (1)
=0

where P{DD = xz|PD = k} is the probability that the
number of data-level defective words existing after the code
is programmed is equal to z given k data-level defective
words in the part, and DSR(x) is the probability that the
part can be successfully repaired given x data-level defective
words. Because the customer’s code is not yet known in the
wafer test, the number of the resulting data-level defective
words may range from O to k. Thus, we need to sum the term
DSR(z) x P{DD = z|PD =k} fromz =0 to z = k.

The following two subsections introduce how P{DD =
xz|PD = k} and DSR(x) can be calculated, respectively.

B. Computation of P{DD = z|PD = k}

In our margin-read-1 test, we read out one word at each read
operation and check whether the data of that word equals to the
expected initial value (value 1 for all bits). It implies that we
can only know which word address fails the margin-read-1 test.
The number of defective bits in a word cannot be obtained by
the ATE operations of the current margin-read-1 test. However,
the probability of a physical-level defective word remaining a
data-level defective word depends on the number of defective
bits in a word. One solution to estimate this probability is to de-
sign a new margin-read-1 test which is able to obtain the number

2175

spare column

. ==
7 using spare unis }

ds| @
T
ds @
.’ ds @ : adefect
spare row <+—| @ (] : cells replaced by a spare row
di|g@[d2 or a spare column
da

Fig. 8. An example of using spare units.

of defective bits in a word, but this new margin-read-1 test re-
quires significantly longer test application time to count the de-
fective bits and may not be cost-effective. Thus, we decide to
use the statistics of the defective bits per word collected in our
past products to predict the P{DD = z|PD = k}.

Even though the probability that a physical-level defective
word remains a data-level defective word is different for each
defective word, which violates the premise of using a binomial
distribution, we found out that the following binomial distribu-
tion can be used to approximate the distribution of P{DD =
z|PD = k}.

P{DD =2|PD =k} =C¥ x (1 —)*™ x p*, (2
where . is the average probability that a physical-level defective
word remains a data-level defective word and can be calculated
based on the probability distribution of D B (the number of the
defective bits per word) as follows.

16
p=> P{DB =y} x (1-05Y), 3)

y=0

where 1 — 0.5Y is the probability that a physical-level defective
word remains a data-level defective word given y defective bits
in a word. The distribution of P{DB = y} is shown in Fig. 7.

C. Computation of DSR(z)

DS R(x) is the probability that & random defective words can
be successfully repaired by M spare rows and N spare columns
in an R x C memory array. The past research works relied
on the random simulations to estimate the DSR(x) [15], [16],
which is too time-consuming to be used during the wafer test.
In our estimation scheme, we use a four-dimension probability
array, S [m][n][z], to estimate the DS R(x). The array element
S [m][n][] represents the probability that i defects can be re-
paired by using m spare rows, n spare columns, and z spare
units. A spare unit here represents that a defect can be repaired
by either a spare row or a spare column but which one of them is
not determined yet. For example, the six defects shown in Fig. 8
are repaired by one spare row, one spare column, and two spare
units (4 = 6, m = 1, n = 1, and z = 2), where each of d5 and
dg can be repaired by a spare row or spare column.

Our estimation scheme uses an induction-based approach
to calculate the elements of S when the number of defects is
i 4+ 1 (SCTY[m][n][2]) based on the elements of S when the
number of defects is i (S®[m][n][z]). The computation of
S®[m][n][z] starts from i = 1 and each iteration increases i
by 1 until « = z. The ranges of m, n, and z are 0 < m < M,

2176

@ : original defects Q : new added defects

[J [J
([J :> ()
(J [J (] (] (©)
[J [J
i=5, m=1, n=1, z=1 i=6, m=1, n=1, z=1

Fig. 9. An instance of the probability event associated with py.

@ : original defects Q : new added defects

ST = el

i=5, m=0, n=1, z=2 i=6, m=1, n=1, z=1

Fig. 10. An instance of the probability event associated with ps.

0<n<N,and0 < z < M + N, respectively. The induction
equation is shown as follows:

ST [m][n][2]
= S@fml[n][z] x p1(i;m.n, 2)
+5Om —1)[n][z + 1] X p2(i,m = L,z +1)
+ SO[mln = 1[z + 1] X pa(i,m,n = 1,2+ 1)
+ SO [m[n][z = 1] X pa(i,m,n,z = 1).)

The probability SU+V)[m][n][z] is contributed from four
probability events. The probabilities of these four events are
denoted by p1, p2, ps, and py4, respectively. Each of pi, po,
ps3, and p4 is a function of ¢, m, n, and z. The first event
(associated with pl) occurs when the extra (¢ + 1)th defect
falls in a location covered by the m spare rows or the n spare
columns repairing the original ¢ defects. Hence no extra spare
row, column, or unit needs to be used to repair this (i + 1)
defect. Fig. 9 shows an instance of this probability event.

The second event (associated with p2) occurs when the extra
(74 1)th defect falls in a location where we need to fix the usage
of a spare unit as a spare row to repair this defect. Hence, the
number of used spare rows m is increased by 1 and the number
of spare units z is decreased by 1. Fig. 10 shows an instance of
this probability event.

Third, the extra (7 + 1)th defect may fall in a location where
we need to fix the usage of a spare unit as a spare column to
repair this defect. Hence, the number of used spare column 7 is
increased by 1 and the number of spare units z is decreased by
1. Fig. 11 shows an instance of this probability event.

Last, the extra (7 + 1)th defect may fall in a location where
we can use another spare unit to repair this defect. Hence, the
number of spare units z is increased by 1. Fig. 12 shows an
instance of this probability event.

Equation (5) shows the initial condition of S)[m][n][z]
when 7 = 1, where one single defect is always repaired by
using a spare unit, which is the cheapest way of repairing

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

@ : original defects O : new added defect

S = el

i=5, m=1, n=0, z=2 i=6, m=1, n=1, z=1

Fig. 11. An instance of the probability event associated with ps.

@ : original defects Q : new added defects

S oy [

i=5, m=1, n=1, z=0 i=6, m=1, n=1, z=1

Fig. 12. An instance of the probability event associated with py4.

a single defect. Thus, S(M[0][0][1] is set to 1 and all other
elements for 7 = 1 are set to 0.

sWo)[o][1] =1
SM[m][n][z] =0, otherwise. 5)
Then, DSR(z) can be obtained by summing the probability
of each S(*)[m][n][z], whose m and . are not larger than M and
N, respectively, and whose z is not larger than M + N —m —n.
The calculation of DSR(z) is listed in (6).

N MA4+N-m—n

ZZZ

m=0n=0

DSR(z S@mln][z]. (©6)

D. Computation of p1, pa, ps, and py

In this subsection, we will show the detailed computation of
P1, P2, P3,and py, which are all functions of m, n, z, and ¢. In the
following illustrations of these four probabilities, we consider
the case of adding one extra defect into the situation where the
original + defects are already repaired by m spare row, n spare
columns, and z spare unit. In other words, we are computing the
probability py (i,m,n, z), pa (i,m,n,z), ps (i,m,n,z), and
pa (i,m,m, 2).

An event of py (4,m,n,z) occurs when the extra (7 + 1)th
defect falls in the area covered by the original m spare row and
n spare columns, which is illustrated in Fig. 13. Equation (7)
lists the computation of p; (i,m,n, z), where the denominator
(R x C' — 1) represents the total number of cell locations that
the extra defect may fall. For the numerator of p1, the term (R x
n+ C X m —m x n) represents the locations repaired by the m
spare rows and n spare columns. Then we need to exclude the
number of defects falling already inside the repaired area, i.e.,
the term (7 — z). Note that, after adding the extra defect for the
event of py (i, m,n, z), the i + 1 defects can still be repaired by
m, spare rows, n spare columns, and z spare units.

Rxn+Cxm—-—mxn—(i—z)
RxC—i ’

p1= (N

CHAO et al.: A NOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY

» R*n+C'm-m*n

Locations repaired by spare rows
and columns

@ Defects requiring a spare unit to repair

n

Fig. 13. Tllustration for the computation of p; (¢, m, n, 2).

: > 0.5%2%(z-1)
o[Al A[Rlo[o]oof0|—> #(C-n-2)
OIS e Locations repaired by spare rows
Alalelloloo[O0[¢ and columns

@ Defects requiring a spare unit to repair

Locations where the (i+1)th defect will
cause an event of p,

A Locations where the (i+1)th defect will
cause an event of p, with a 50% chance

Fig. 14. Tlustration for the computation of p, (i, m, n, z).

An event of py (7,m,n, z) occurs when the extra (7 + 1)th
defect falls in the area where we need to turn a spare unit into
a spare row to repair the extra defect. Fig. 14 illustrates such
area. Equation (8) lists the computation of ps (i,m,n, z). For
the numerator of po, the term (C' — n — z) X z represents the
locations where the extra defect will for sure cause an event of p
(labeled as a diamond in Fig. 14). The term z X (z — 1) represents
the locations where the extra defect will cause an event of po
with a 50% chance (labeled as a triangle in Fig. 14) since we
can turn a spare unit into either a spare row or spare column to
repair the extra defect. Note that, after adding the extra defect
for the event of py (4, m, n, 2), the ¢ + 1 defects are repaired by
m + 1 spare rows, n spare columns, and z — 1 spare units.

(C—n—2)x2z4+05x2zX(z—1)
RxC—i

p2 = - (®)
An event of p3 (i, m,n, z) occurs when the extra (i + 1)th
defect falls in the area where we need to turn a spare unit into a
spare column to repair the extra defect. Fig. 15 illustrates such
area. Equation (9) lists the computation of p3 (i,m,n,z). In
a similar manner as ps, the term (R — m — z) X z and the
term z X (z — 1) in (9) represent the locations where the extra
defect will cause an event of p3 for sure (Iabeled as a diamond in
Fig. 15) and with a 50% chance (labeled as a triangle in Fig. 15),
respectively. Note that, after adding the extra defect for the event
of ps (i,m,n, z), the i+ 1 defects are repaired by m spare rows,
n + 1 spare columns, and z — 1 spare units.
(R—m—2)Xxz+05xzx(z-1)

ps = RxC—i) ©)

An event of py (i, m,n,z) occurs when the extra (i + 1)th
defect falls in the cell locations where we need an extra spare
unit to repair the defect. Those cells are labeled as a diamond in
Fig. 16. Equation (10) lists the computation of p4 (i, m,n, z),
in which the term (R — m — 2z) X (C' — n — z) represents the
number of those diamond cells in Fig. 16. Note that, after adding

2177

0.5*z*(z-1)

Locations repaired by spare rows
and columns

|
A
[
A

>[>|®
o> >

@ Defects requiring a spare unit to repair

o Locations where the (i+1)th defect will
cause an event of p3

O10[©

<
<&
<&
I—b z*(R-m-2)

Fig. 15. Tlustration for the computation of p3 (z, m, n, z).

OO0

A Locations where the (i+1)th defect will
cause an event of p; with a 50% chance

Locations repaired by spare rows

° and columns
L @ Defects requiring a spare unit to repair
Locations where the (i+1)th defect will
O[O[O1001O cause an event of p,
O [O101010
O[O0 b (C-n-z)*(R-m-z)
O[O0

Fig. 16. Tlustration for the computation of p4 (i, m, n, z).

the extra defect for the event of py (7, m, n, z), the i + 1 defects
are repaired by m spare rows, n spare columns, and z + 1 spare
units.

(R—m—z)x(C—n—z)'

RxC—i (10)

Pa =

E. Optimality of Computed DSR(x)

The above estimation is actually a lower bound of the real
DSR(z) since we consider the successful-repaired combina-
tions of using spare rows, spare columns, and spare units by
adding one more defect to the defect map at a time. In reality,
the repair analysis is applied after all « defects are added to the
defect map. However, by using the concept of “spare units”, our
estimation scheme can cover a wide range of the successful-
repaired combinations. Also, the applied repair algorithm in
the repair analysis is only a heuristic and cannot cover all the
combinations of using spare rows and spare columns as well.
Thus, our estimation scheme can provide a close approxima-
tion to DSR(z), which will be shown in our experiments in
Section V-A.

F. Complexity of Computing DSR(x)

The complexity of computing DS R(x) are determined by the
size of the 4-dimensional array S®) [m][n][z], which is (M N %
(M + N) %). To compute each array element of S [m][n][z]
(including the computation of p; to py and (6)) requires 14
times of multiplication, 29 times of addition, and 4 times of divi-
sion. Thus, the computation complexity and space complexity
of computing DSR(z) are both O(M * N *« (M + N) * x).
Note that this complexity is proportional to the number of spare
rows and spare columns instead of the size of the memory array
R x C, and hence can be properly controlled. Also, the value
of §(*)[m][n][z] drops quickly when = exceeds a certain point.
We can stop the computation of S®)[m][n][z] when its value
becomes negligible. The real computation effort will be not as
high as shown in above. In addition, the array of S®)[m][n][z]

2178

TABLE III
DSR(x) ACCURACY GIVEN DIFFERENT NUMBERS OF SINGLE DEFECTS

of single DSR(x) in %

defects (z) | estimation (a) [simulation (b) [Ja — b]
21 98.88 98.88 0
22 94.15 93.79 0.36
23 83.79 83.15 0.64
24 68.34 67.91 0.43
25 50.67 50.49 0.18
26 34.15 34.18 0.03
27 21.00 20.82 0.18
28 11.86 11.78 0.08
29 6.20 6.16 0.04
30 3.01 3.08 0.07

| Average | - | - [020 |

can be reused for estimating the successful-repaired probability
of the next tested part. Therefore, the computation complexity
of DS R(x) is tractable for testing large industrial NROM-based
ROMs.

G. Considering Row and Column Defects

As discussed in Section III-C, a physical-level row defect (or
column defect) is hard to be reused since it is unlikely that the
customer’s code on all the defective bits in that row (or column)
represents a value 0. Thus, once a physical-level row defect (or
column defect) is identified, a spare row (or spare column) must
be spent for that defect. In other words, the effective number
of spare rows (or spare columns) used for repairing the random
single defective words is M —row_d (N — col_)d, instead of the
M (N) as shown in the previous subsection. Therefore, when
computing PSR(z) (and DSR(x)), we only need to substi-
tute the parameter M by M — row.d and N by N — col_d
to consider the impact of row defects and column defects. The
other computations remain the same. It also means that the func-
tion PSR should actually be denoted as PS R(x, row_d, col _d),
i.e., a function of the number of random single defects (), the
number of row defects (row_d), and the number of column de-
fects (col_d). Note that in our estimation scheme, a row (or
column) containing more than 4 physical-level defective words
is defined as a row (or column) defect.

V. EXPERIMENTS AND DISCUSSION

A. Accuracy of DSR(x)

The most difficult and challenging task in our estimation
scheme is the analysis of DSR(xz). We first validate the ac-
curacy of DSR(x) by comparing its results with the results
obtained from a random simulation using 1-million samples.
In each sample, we randomly select = defects on an R x C
memory array and then apply the repair-most algorithm to
check whether these x defects can be repaired by M spare rows
and N spare columns.

Table III reports the results of DS R(x) for different numbers
of single defects x when R = C' = 100 and M = N = 10.
Column 2 and Column 3 of Table III list the value of DSR(z)
obtained by our estimation scheme and the random simulation,
respectively. Column 4 lists the difference between the estima-
tion scheme and the simulation. As the result shows, our esti-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

TABLE 1V
DS R(x) ACCURACY GIVEN DIFFERENT NUMBERS OF SPARE COLUMNS
of spare DSR(z) in %
columns (V) | estimation (a) | simulation (b) [[a — b]

7 2.84 2.96 0.12

8 10.18 10.46 0.28

9 26.34 26.40 0.06

10 50.67 50.49 0.18

11 75.31 74.99 0.32

12 91.63 91.22 0.41

13 98.32 98.16 0.16

14 99.85 99.85 0

[Average | - | - [019]

TABLE V

DSR(x) ACCURACY GIVEN DIFFERENT NUMBERS OF COLUMNS

#of DSR(z) in %
columns (C') | estimation (a) | simulation (b) | [a — B]
50 86.87 86.18 0.69
100 50.67 50.49 0.18
150 35.32 34.66 0.06
200 28.13 28.24 0.11
400 18.74 18.72 0.02
[Average | - | - | 021 |

mation scheme can match the simulation result closely. The av-
erage difference is 0.20% and the largest difference is 0.64%.

Similar experiments are conducted for Tables IV and V to
report the results of DSR(z) for different numbers of spare
columns (/N) and different total numbers of columns (C), re-
spectively. The other parameters are fixed as shown in the tables.
The same trend can be observed as in Table III. The difference
of the reported DSR(x) between our estimation scheme and
the random simulation is limited, only 0.19% for Table IV and
0.21% for Table V in average. All above results demonstrate the
accuracy of DSR(x) computed by our estimation scheme over
different combinations of parameters.

B. Accuracy of PSR(k)

In this subsection, we compare the P.SR(k) computed by our
estimation scheme with that obtained from random simulation
based on an 8192x4096 memory array with 16 spare rows and
6 spare columns, which is the configuration used by a 512 Mb
NROM-based ROM on a current production line. Each word
contains 16 bits. Each spare row and spare column can repair 8
consecutive row addresses and 4 consecutive column addresses,
respectively. The specifications of this NROM-based ROM are
listed in Table VI.

In the random simulation, we sample the physical-level single
defects, row defects, and column defects for a tested part based
on the Poisson distributions with A\sp, Arp, and Acp, respec-
tively. The number of sampled defective bits in a physical-level
defective word follows the probability distribution shown in
Fig. 7. For each sampled part, we compute its corresponding
PSR(k) and package it if the computed PSR(k) is larger than
the given threshold, p_th = 0.5, in this experiment. Then we
program a random customer’s code to each packaged part, iden-
tify its data-level defects, and apply the repair algorithm to de-
termine whether this part can pass the package test. We average

CHAO et al.: A NOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY

TABLE VI
CONFIGURATION OF NROMS IN THE EXPERIMENTS

Density 32M x 16 = 512M bits
Access time 100ns (10MH)
Operating current 50mA
Supply voltage 3.0-3.6V
Temperature 0-70 C
Input Hi/Lo 2.4V/0.4V
Output Hi/Lo 2.4V/0.4V

Package dimension 28.5 mm x 16.0 mm

TABLE VII
PSR(k) ACCURACY GIVEN DIFFERENT Acp OF
SINGLE-DEFECT DISTRIBUTION

parameters:
R=8192, C=4096, M=16, N=6, Arp=6, A\c p=2
single-defect PSR(k) in %
distribution (Agp) | estimation (a) [simulation (b) | [a — b]

97.27 97.09 0.18

12 94.31 94.04 0.27

14 89.52 89.14 0.38

16 82.59 81.08 0.51

18 73.41 72.78 0.63

20 63.12 62.25 0.87

22 52.10 51.33 0.77

[Average [- [= [051]

TABLE VIII

PSR(k) ACCURACY GIVEN DIFFERENT Acp OF
COLUMN-DEFECT DISTRIBUTION

parameters:
R=8192, C=4096, M =16, N=6, Asp=12, Arp=6
column-defect PSR(k) in %
distribution (Acp) | estimation (a) | simulation (b) | Ja — b]
1 96.85 96.75 0.10
2 94.31 94.04 0.27
3 89.19 88.93 0.26
4 80.53 80.25 0.28
5 68.29 68.32 0.03
6 54.30 54.37 0.07
| Average | - | - [017 |

the P.S R(k) estimated for each packaged part and compare this
average PSR(k) with the percentage of the packaged parts ac-
tually passing the package test. The number of sampled parts is
100 k in the random simulation.

Table VII gives different numbers of Agp for the single defect
distribution and reports the comparison of the average PSR(k)
between our estimation scheme and the simulation. The other
parameters are fixed as listed in Table VII. As the result shows,
the average PSR(k) computed by our estimation scheme can
closely match the simulation result for different given distribu-
tions of single defects. The average and maximum differences
between the estimation results and the simulation results are
0.51% and 0.87%, respectively.

Similar to Tables VII-X compare the average PSR(k) for
different distributions of column defects, different numbers of
spare columns, and different array sizes, respectively. Their av-
erage differences are 0.17%, 0.24%, and 0.37%, respectively.
The results shown on Tables VII-X demonstrate that our pro-
posed test flow can effectively predict the probability of a part
being successfully repaired in the package test based on only the
defect information collected from the wafer test.

2179

TABLE IX
PSR(k) ACCURACY GIVEN DIFFERENT SPARE COLUMNS

parameters:

R=8192, C'=4096, M=16, Asp=12, Arp=6, Acp=2

of spare PSR(k) in %

column (N) | estimation (a) | simulation (b) | Ja — b]
2 57.23 56.71 0.48
3 74.11 74.48 0.37
4 84.49 84.32 0.17
5 90.55 90.37 0.18
6 94.21 93.95 0.26
7 96.48 96.37 0.11
8 97.91 97.80 0.11

[Average | - | — [024]
TABLE X

PSR(k) ACCURACY GIVEN DIFFERENT ARRAY SIZES

parameters: M =16, N=6, A\sp=12, Arp=6, A\c p=2
array size PSR(k) in %

(RxC) estimation (a) | simulation (D) | [a — b]
8192 x 4096 94.21 93.95 0.26
8192 x 2048 94.51 94.22 0.29
8192 x 1024 94.89 94.31 0.58
4096 x 4096 94.47 94.18 0.29
2048 x 2048 97.89 97.53 0.36
1024 x 1024 98.07 97.64 0.43

[Average | - | - [037]
TABLE XI

PSR(k) SIMULATION USING RANDOM CODES (A) VERSUS
PSR(k) SIMULATION USING A SINGLE CODE

parameters:
R=8192, C=4096, M=16, N=6, Arp=6, Ac p=2
single-defect PSR(k) in %
distribution | random-code single-code | [a — b]
(AsD) simulation (a) | simulation (b)
10 97.09 97.19 0.10
12 94.04 94.32 0.28
14 89.14 88.89 0.25
16 82.08 82.15 0.07
18 72.78 73.01 0.23
20 62.25 62.34 0.09
22 51.33 51.04 0.29
| Average | - | - | 019 |

From Tables VII-X, the PSR(k) simulation sampled a dif-
ferent customer code for each time. However, when we receive
a customer code, we will program the same customer code for
multiple times. Table XI compares the P.S R(k) obtained by dif-
ferent random codes with that obtained by a single random code.
The parameter setting used in Table XI is the same as Table VII.
As the result shows, the PSR(k) obtained by different random
codes is also close to that obtained by a single random code. The
average difference is 0.19%.

C. Proposed Flow vs. Conventional Flow

In Tables XII-XV, we perform the conventional test flow to
those parts sampled in Tables VII-X, respectively. Then we
compare the resulting yield of the conventional test flow with
that of the proposed test flow. Column 2 of these four tables

2180

TABLE XII
COMPARISON BETWEEN THE PROPOSED AND CONVENTIONAL TEST FLOWS
GIVEN DIFFERENT SINGLE-DEFECT DISTRIBUTIONS

parameters: R=8192, C=4096, M=16, N=6, Arp=6, A\cp=2

single-defect proposed flow conventional flow yield

distribution | % of packaged yield yield difference

(Asp) parts in % (a) in % (b) |a — b]
10 97.97 96.78 86.42 10.36
12 95.37 93.95 72.85 21.10
14 91.08 87.08 57.09 29.99
16 84.70 78.91 40.44 38.47
18 75.19 68.01 26.55 41.46
20 64.24 56.12 16.03 40.09
22 52.36 44.27 8.83 35.44
TABLE XIII

COMPARISON BETWEEN THE PROPOSED AND CONVENTIONAL TEST FLOWS
GIVEN DIFFERENT A p OF COLUMN-DEFECT DISTRIBUTION

parameters: R=8192, C'=4096, M=16, N=6, Asp=12, Arp=0
column-defect proposed flow conventional flow yield
distribution % of packaged yield yield difference

(Acp) parts in % (a) in % (b) |a — b|

1 97.77 96.20 80.23 15.97

2 95.37 93.95 72.85 21.10

3 90.56 87.27 64.56 22.71

4 81.70 77.93 54.50 23.43

5 69.27 65.56 43.33 22.23

6 54.88 51.40 32.83 18.57

TABLE XIV

COMPARISON BETWEEN THE PROPOSED AND CONVENTIONAL TEST FLOWS
GIVEN DIFFERENT NUMBER OF SPARE COLUMNS

parameters: R=8192, C'=4096, M =16, Asp=12, Arp=6, Ac p=2
of spare proposed flow conventional flow yield
columns | % of packaged yield yield difference

(N) parts in % (a) in % (b) la — b|
2 58.09 54.09 31.71 22.38

3 75.47 71.11 44.34 26.77

4 85.97 81.88 56.21 25.67

5 91.92 88.72 65.02 23.70

6 95.37 93.95 72.85 21.10

7 97.40 95.71 80.65 15.06

8 98.59 97.46 85.37 12.09

lists the percentage of parts passing the wafer test in our pro-
posed test flow. Column 3 lists the yield of the proposed test
flow, which is the total percentage of parts passing both the pro-
posed wafer test and package test. Column 4 lists the yield of the
conventional test flow, which is actually the percentage of parts
passing the conventional wafer test. Column 5 lists the yield
difference between the two test flows. As the result shows, the
proposed test flow can always generate a higher yield than the
conventional test flow. It shows the advantage of postponing the
repair analysis after the customer’s code is programmed, such
that the bits failing to represent a value 1 can be used to repre-
sent a value 0.

Note that in our simulation we omit the probability that a part
passing the conventional wafer test may fail the conventional
package test. Those failed parts may result from the defects
generated in packaging or the timing-related defects captured
during at-speed-testing. In the current product lines, this proba-
bility is lower than 5%. Most yield loss in the conventional test
flow occurs in the wafter test. If adding this probability into con-
sideration, the yield of both the conventional and the proposed
test flows would be slightly lowered.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

TABLE XV
COMPARISON BETWEEN THE PROPOSED AND CONVENTIONAL TEST FLOWS
GIVEN DIFFERENT MEMORY SIZES

parameters: M =16, N=6, Asp=12, Arpp=6, A\c p=2
proposed flow conventional flow yield
array size % of packaged yield yield difference
(RxC) parts in % (a) in % (b) la — b|
8192 x 4096 95.37 93.95 72.85 21.10
8192 x 2048 96.30 94.28 73.51 20.77
8192 x 1024 97.13 94.80 75.99 18.81
4096 x 4096 96.81 94.69 74.29 20.40
2048 x 2048 98.69 97.53 87.59 9.94
1024 x 1024 98.75 97.64 89.41 8.23

As the result shows in the above tables, the yield of the pro-
posed test flow varies with a lot parameters, such as the defect
distributions, spare resources, and the array sizes. In order to de-
sign the most cost-effective repair architecture, designers need
to evaluate the yield of each memory configuration and its cor-
responding overhead in advance. With the proposed estimation
scheme, we can efficiently and effectively estimate the yield of
different memory configurations, which allows us to avoid the
time-consuming random simulations. Sampling 100 k parts in
the above experiment takes more than one day to obtain the
yield for one configuration. It shows another advantage of the
proposed estimation scheme during the architecture design of
NROM-based ROMs.

Since we assume that all packaged parts in the conventional
test flow can pass its package test, the reported yields of the
conventional test flow are actually equal to the percentages of
parts being packaged. As the result shows, the proposed test
flow needs to package more parts than the conventional test flow.
While more extra packaged parts may more likely increase the
overall yield for the proposed test flow, more packaged parts
may be discarded as well. Thus, we need to set a proper value
of the threshold probability, p_th, to optimize the overall profit
of the proposed test flow.

D. Finding a Proper p_th

Table XVI lists the percentage of the packaged parts, the
overall yield, and the percentage of the packaged parts being
discarded for different values of p_th. When p_th decreases,
the yield increases but the number of discarded packaged parts
also increases. By substituting Table XVI’s numbers into the
cost/profit function of a given product line, we can find out the
setting of p_th achieving maximal profit.

Equation (11) first lists a simplified computation of the profit
of fabricating a die. In Equation (11), Y,, denotes the yield of
parts passing the wafer test. Y&, denotes the yield of parts
passing both the wafer test and the package test. C'tqp and Cpqcr
denote the cost of fabricating a die and packaging a die, respec-
tively, and sp denotes the sale price of an NROM-based ROM.
Yuwep X sp represents expectation of the income, i.e., the sale
price of an NROM-based ROM times the probability that a fab-
ricated die can be sold. C4p and Yy, X Cpqecr, represent the ex-
pectation of the cost of fabricating a die and packaging a die,
respectively, where Y,, means the probability that a fabricated
die will be packaged.

Profit = Yy&p X sp — Crap — Y X Chack- (11)

CHAO et al.: A NOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY

TABLE XVI
COMPARISON BETWEEN USING DIFFERENT VALUES OF p_th

parameters:
R=8192, C=4096, M=16, N=6, Asp=20, Arp=0, Acp=2
p_th | % of packaged | overall yield % of discarded
parts in % packaged parts
0 100 67.93 32.07
0.1 88.15 67.35 20.80
0.2 82.95 66.68 16.27
0.3 78.59 65.49 13.10
0.4 73.90 63.95 9.95
0.5 69.74 61.93 7.81
0.6 65.48 59.63 5.85
0.7 59.46 55.73 3.73
0.8 53.66 51.41 2.25
0.9 45.89 44.88 1.01
1.0 13.33 13.33 0

In the above profit function, the value of Y, and Y&, is actu-
ally determined by the specified value of p_th. Assume that the
Poisson distribution of the number of single defects (denoted
as SD), row defects (denoted as RD), and column defects (de-
noted as C'D) can be extracted from the current manufacturing
technology. Then the value of Y,,, can be obtained by using (12),
which sums the joint probabilities of SD, RD, and C'D that re-
sultin a PSR(i, j, k) larger than p_th, i.e., our criteria passing
the wafer test. In our computation, we assume that the random
variables SD, RD, and C'D are all independent, and hence the
joint probability of SD, RD, and C'D can be quickly obtained
by multiplying their probability mass functions. In addition, the
increase of the index ¢ (the number of single defects) in the sum-
mation stops when the resulting point probability is negligible.

M N
Vo=Y_> 3 P{SD=i,RD =},

i=0 j=0 k=0
CD = k|PSR(i,j,k) > pen}. (12)
Next, since PSR(%, j, k) represents the probability that a part
can pass the package test, the value of ¢, can be obtained by
using (13), which multiplies the joint probability of SD, RD,
and C'D shown in (12) by its PSR(i, j, k) to calculate the ex-
pectation of the part passing the package test.

M N
Yusp=»_ Y Y P{SD=1i,RD =,

i=0 j=0 k=0
CD = k|PSR(i,j,k) > p-th}. (13)
Table XVII compares the profit functions obtained by our
mathematical model (12) and (13) with the results obtained by a
500 K-sample random simulation. In our profit function, we set
sp = 10, Cqp = 2, and Cpqcr, = 4. The lambda value of each
defect distribution is also listed at the top of Table XVII. Note
that this experimental setting is randomly chosen for demon-
strating the process of finding a proper p_th and does not relate
to any product line. As the result shows, the peak of the profit
function (2.498) occurs when p_th = 0.4. Also, our mathe-
matical model closely matches the simulation result with an av-
erage 0.0243 difference, which is just under one percent of the

2181

TABLE XVII
PROFIT PER DIE COMPUTED BY MATHEMATICAL MODEL
AND SIMULATION FOR DIFFERENT VALUES OF p_th

parameters:

R=8192, C=4096, M=16, N=6, As p=16, Arp=6, A\c p=2
p_th | Estimation(a) | Simulation(b) la — b
0.1 2.412 2.371 0.041
0.15 2.451 2411 0.040
0.2 2.480 2.441 0.039
0.25 2.503 2.466 0.037
0.3 2.517 2.482 0.035
0.35 2.526 2.493 0.033
0.4* 2.530 2.498 0.032
0.45 2.527 2.491 0.036
0.5 2.514 2.488 0.026
0.55 2.503 2.479 0.024
0.6 2.476 2.456 0.020
0.65 2.428 2.411 0.017
0.7 2.361 2.352 0.009
0.75 2.292 2.287 0.005
0.8 2.204 2.202 0.002
0.85 2.105 2.108 0.003
0.9 1.933 1.919 0.014

[avg. | [I 0.0243 |

peak profit. In addition, using (12) and (13) to compute Y,, and
Y.&p is quite efficient since the computation of PSR(, j, k)
is fast. With a modern PC, it takes less than one second to ob-
tain all the profits shown in Table XVII with our mathematical
model. However, it takes around 800 minutes to perform one
500 K-sample random simulation.

E. Computing PSR(k) on ATE

The computation of PSR(k) includes two steps: (1) com-
puting the four-dimensional array S*)[m][n][z], and (2) com-
puting PSR(k) based on (1). To compute the first step takes
much longer than the second step. Take the above 512 MB
NROM-based ROM (8192x4096x16) as an example. The run-
time of computing S®)[m][n][2] and the remaining (1) is 5.5
ms and 7.3 us, respectively, on a PC with 2.4 GHz Intel Pentium
Dual CPU and 3.5 GB DDR SDRAM. The memory requirement
for S(*)[m][n][2] is about 844.8KB (100x16x6x22x4B).

However, the computational power of an ATE is not as strong
as that of a modern PC. Take the wafer tester, Credence Kalos,
as an example. This wafer tester can support 16 test sites and its
test controller utilizes a Intel 1960 Processer along with 64 MB
DRAM. The runtime of computing the first and second steps
on this tester is 12 s and 0.012 s, respectively. In fact, we can
compute the four-dimension S(*) [m][n][2] with a large number
of z for one time and repeatedly use the same S®)[m][n][z]
for each tested part, which can further reduce the test-applica-
tion time. Note that the test application time of the conventional
wafer test for a 512 MB NROM-based ROM is about several
minutes. The test application time of the conventional package
test is about twice more as that of the conventional wafer test.
The runtime overhead of computing PSR(k) on a wafer tester
is hence relatively small.

2182

FE. Overhead of the Proposed Test Flow

Unlike the conventional package test, which only needs to
program the customer’s code and then read out the programmed
code for comparison, the proposed package test needs to apply
the repair analysis to each tested part and then program the cus-
tomer’s code to the spare rows and columns. Because the ATEs
used in our conventional package test cannot support the par-
allel computation of repair analysis, these extra tasks of repair
analysis may increase the test application time of the package
test. In addition, the time-to-delivery for NROM-based ROMs
is usually determined by the throughput of its package test,
not its wafer test, since a blank packaged NROM-based ROM
can be manufactured in advance and waits for the order from
customers. Therefore, the test-time overhead in the proposed
package test may directly affect the overall time-to-delivery.

Take the package tester AdvanTest T5377S, which has been
used in the conventional package test for a NROM-based ROM
product line, as an example. This package tester can test 64
DUTs in parallel but can only perform repair analysis in se-
rial. The test application time for the conventional package test
is around 90 seconds (without programming the code). Per-
forming a single repair analysis on this package tester takes
around 200 ms in average. The time for performing 64 repair
analysis serially is around 12.8 seconds. To enable the capa-
bility of parallel repair analysis, we can add 8 Advantest FMRA
(Failure Memory Repair Analyzer) boards onto the package
testers, where each FMRA board can perform repair analysis
for 8§ DUTs simultaneously and costs around 90 K USD. In
other words, if we want to remove the 12.8 sec test-time over-
head from the proposed test flow, we need to spend another
720 K USD on enabling the parallel repair analysis. Note that a
package tester, AdvanTest T5377S, costs around 1.25 M USD
and a hander, AdvanTest M6542, costs around 320 K USD.

G. Reliability Issues of Using a Bad NROM Bit to Represent
Value 0

For the experiment conducted for Fig. 6, we actually baked
each chip at 80°C for 24 hours after we program all NROM bits
to 0. Thus, the result shown in Fig. 6 shows certain degree of re-
liability for using the bad NROM bits to represent a good value
1. However, such an experiment is still far away from enough
to prove the reliability since we only baked the chips but didn’t
operate them at the high temperature like general burn-in test.
Also, even with burn-in test, the result can only reflect the in-
fant-mortality rate of the chips but cannot reflect the product
lifetime. To foresee the product’s failure rate occurring after
certain months or years of usage, we need to apply reliability
test, such as THB (temperature, humidity, bias) test [17], HAST
(highly-accelerated temperature and humidity stress) test [18],
and HTOL (high temperature operating life) test [19], which are
all very expensive in the current industry and time-consuming
(may take even weeks such as THB test). So far we don’t have
any experimental result from a reliability test.

However, the reliability issue of using a bad NROM bit to
represent value 0 is not like placing a wear-out defect in a chip,
such as a thin wire which may turn into an open defect up after
a certain period of time due to the electron migration. A bad
NROM bit here is just a NROM bit whose V7, is too high to rep-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 12, DECEMBER 2011

resent a good value 1, so that we only use a bad NROM bit rep-
resent value 0. Also, the reliability issue mentioned in [8] only
occurs after multiple program and erase operations, which is not
the case for the one-time-programming application as used in
this paper. Furthermore, from the result shown in Table I, a bad
NROM bit can actually be programmed to a higher V;;, in av-
erage than a good NROM bit, meaning that a bad NROM bit can
represent a better value 0 than a good NROM bit even though
a bad NROM bit cannot represent a quality value 1. Based on
this fact, the reliability of using a bad NROM bit to represent a
value 0 should be higher than using a good NROM bit to rep-
resent a value O since it is more difficult to wear out a value 0
with a higher V}; and lower its V}, to a value 1. In addition,
for a potential reliability fault induced by positive bias temper-
ature instability (NROM device is a n-MOSFET structure), the
Vi1, of an NROM bit will be further increased and even help the
NROM bit to represent a better value 0. Thus, we should in fact
worry more about the reliability of the good NROM bits used to
represent value 1 rather than that of the bad NROM bits used to
represent value 0, which is a problem irrelative to the use of our
proposed test flow.

VI. CONCLUSION

In this paper, we first introduced the basic operations of an
NROM cell and the conventional test flow of NROM-based
ROMs. Secondly, we introduced the proposed test flow for
NROM-based ROMs, which applies the repair analysis after
the customer’s code is programmed such that the repair anal-
ysis is performed based on the data-level defects instead
of physical-level defects. The statistics collected from real
NROM-based ROMs then demonstrated the feasibility of the
proposed test flow. Next, we developed an estimation scheme to
predict the probability that a packaged part can be successfully
repaired in the package test based on only the defect informa-
tion obtained in the wafer test. Also, a series of experiments
based on different parameter combinations were conducted to
validate the accuracy of the estimation scheme and the superi-
ority of the proposed test flow over the conventional one. Last,
we discussed the computational complexity of the estimation
scheme and the overhead of the proposed test flow.

REFERENCES

[1] D.KahngandS. M. Sze, “A floating gate and its application to memory
devices,” Bell Syst. Tech. J., vol. 46, p. 1288, 1967.

[2] D. Frohman-Bentchkowsky, “The metal-nitride-oxide-silicon
(MNOS) transistor—characteristics and applications,” Proc. IEEE.,
vol. 58, no. 8, pp. 1207-1219, Aug. 1970.

[3] Y.L. Yang and M. H. White, “Charge retention of scaled SONOS non-
volatile memory devices at elevated temperatures,” Solid-State Elec-
tron., vol. 44, pp. 949-958, 2000.

[4] C.T.Swift, G. L. Chindalore, K. Harber, T. S. Harp, A. Hoefler, C. M.

Hong, P. A. Ingersoll, C. B. Li, E. J. Prinz, and J. A. Yater, “An em-

bedded 90 nm SONOS nonvolatile memory utilizing hot electron pro-

gramming and uniform tunnel erase,” IEDM Tech. Dig., pp. 927-930,

2002.

S. Habermehl, R. D. Nasby, M. Rightley, and P. R. Mahl, “Endurance

of SONOS NVM stacks prepared with nitrided Si(100)/SiO interfaces,”

in IEEE Non-Volatile Semiconductor Memory Workshop, Monterey,

CA, 1998, vol. 66.

B. Eitan, P. Pavan, 1. Bloom, E. Aloni, A. Frommer, and D. Finzi,

“NROM: A novel localized trapping 2 bit nonvolatile memory cell,” in

IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA,

1998, vol. 66.

[5

—

[6

—_

CHAQO et al.: ANOVEL TEST FLOW FOR ONE-TIME-PROGRAMMING APPLICATIONS OF NROM TECHNOLOGY 2183

(71

(8]
(91
[10]

[11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

M.Y.I Liu, Y. W. Chang, N. K. Zous, I. Yang, T. C. Lu, T. Wang, W.
T.J. Ku, and C. Y. Lu, “Temperature effect on read current in a two-bit
nitride-based trapping storage flash eeprom cell,” IEEE Electron De-
vice Lett., vol. 25, pp. 495-497, 2004.

A. Shappir, E. Lusky, G. Cohen, I. Bloom, M. Janai, and B. Eitan, “The
two-bit NROM reliability,” in Proc. IEEE., 2004, vol. 4.

[Online]. Available: http://www.mxic.com.tw/

C.-Y. Chin, Y.-T. Tsou, C.-M. M. Chang, and C.-T. Chao, “A novel test
flow for one-time-programming applications of NROM technology,” in
IEEE Int. Test Conf., 2009.

Y. Zorian and A. Ivanov, “An effective BIST scheme for ROM’s,”
IEEE Trans. Computers, vol. 41, pp. 646-653, 1992.

A.J. van de Goor, Testing Semiconductor Memories, Theory and Prac-
tice. Gouda, The Netherlands: ComTex, 1998.

T. M. Schwair and H. C. Ritter, “Complete self-test architecture for a
coprocessor,” in [EEE Int.Test Conf., 1990, pp. 886—890.

A. J. van de Goor and I. Schanstra, “Address and data scrambling:
Causes and impact on memory tests,” in Proc. Ist IEEE Int. Workshop
on Electron. Design, Test, Appl. (DELTA 02), 2002, pp. 128-136.
R.-F. Huang, C.-H. Chen, and C.-W. Wu, “Economic aspects of
memory built-in self-repair,” IEEE Des. Test Comput., vol. 24, no. 2,
pp. 164-172, Mar./Apr. 2007.

R.-F. Huang, J.-F.-Li, J.-C. Yeh, and C.-W. Wu, “Raisin: Redundancy
analysis algorithm simulation,” IEEE Des. Test Computers, vol. 24, no.
3, pp. 386-396, May/Jun. 2007.

Electronic Industries Assoc. and JEDEC Solid State Technol. Assoc.,
“Steady state temperature humidity bias life test,” EIA/JESD22-
A101-B, 1997.

Electronic Industries Assoc. and JEDEC Solid State Technol.
Assoc., “Highly-accelerated temperature and humidity stress test,”
EIA/JESD22-A110-B, 2008.

JEDEC Solid State Technol. Assoc., “Temperature, bias, and operating
life,” JESD22-A108C, 2005.

Mango C.-T. Chao received the B.S. and M.S.
degrees from the Department of Computer and In-
formation Science, National Chiao Tung University,
Hsinchu, Taiwan, in 1998 and 2000, respectively, and
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of California,
Santa Barbara, in 2006.

[,;

- Since 2006, he has been with the Department
i of Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, as an assistant pro-

testing,

fessor. His research interests include memory
on-chip test compression/decompression, WAT test-structure design,

power-related testing, and physical design automation.

Ching-Yu Chin received the B.S. degree from the
Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 2008,
and is currently working towards the Ph.D. degree in
Institute of Electronics Engineering, National Chiao
Tung University, Hsinchu, Taiwan.

Her research interests include physical design au-
tomation and VLSI testing.

Yao-Te Tsou received the M.S. degree from the
Department of Institute of Electrical Control Engi-
neering, National Chiao Tung University, Hsinchu,
Taiwan, in 2008.

He is currently with Macronix International Co.,
Ltd., Taiwan. His research interests include the de-
sign and testing of non-volatile memories.

Chi-Min Chang received the B.S. degree from the
Department of Electrical Engineering at National
Central University, Taoyuan, Taiwan, in 2006, and
the M.S. degree from the Department of Electronics
Engineering at National Chiao Tung University,
Hsinchu, Taiwan, in 2008.

Since 2008, he has been with Taiwan Semicon-
ductor Manufacturing Company, and has worked on
test-structure design and WAT testing.

