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Abstract This paper considers a two-stage production system with imperfect pro-
cesses. Shortages are allowed, and the unsatisfied demand is completely backlogged.
In addition, the capital investment in process quality improvement is adopted. Under
these assumptions, we first formulate the proposed problem as a cost minimization
model where the production run time and process quality are decision variables. Then
we develop the criterion for judging whether the optimal solution not only exists but
also is unique. If the criterion is not satisfied, the production system should not be
opened. An algorithm for the computations of the optimal solutions is also provided.
Finally, a numerical example and sensitivity analysis are carried out to illustrate the
model.

Keywords Inventory · Imperfect production process · Quality improvement ·
Shortages · Two-stage system

1 Introduction

In the classical economics manufacturing quantity (EMQ) models, one often assumed
that the production facility is perfect and all the finished products are good quality.
However, in the real world cases, the product quality is not always perfect and usually
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depends on the state of the production process. Recently, some studies have pointed
out that the unreliable production facility is subject to random deterioration from the
in-control state to the out-of-control state (Rosenblatt and Lee 1986; Porteus 1986) or
random failure (Groenevelt et al. 1992; Hong et al. 1992; Das and Sarkar 1999; Liu and
Cao 1999). Moreover, extending this unreliable production facility based on various
considerations. Kim and Hong (1999) extended Rosenblatt and Lee (1986) to incorpo-
rate a more generalized assumption that an elapsed time until process shift is arbitrarily
distributed. Lin and Hou (2005) took the restoration cost into account when the system
is an out-of-control at the end of a production run. Chung and Hou (2003) and Chen
and Lo (2006) determined the optimal production run time with imperfect production
process and allowable shortages. Lin and Lin (2007) assumed that the defective prod-
ucts can not be repaired and reworked and must be scraped with additional cost. Chiu
(2007) examined the production run time problem with random machine breakdowns
under abort/resume (AR) policy and reworking of defective products produced. Fur-
thermore, the effect of investment on quality improvement is often investigated. Keller
and Noori (1988), Hong and Hayya (1995), Hariga and Ben-Daya (1998) studied the
economic benefits of reducing setup cost and improving process quality by simulta-
neously investing in new technology. Ouyang et al. (2002) investigate the joint effects
of quality improvement and setup cost reduction in which the lot size, process qual-
ity, setup cost, and lead time are decision variables. Next, Chang and Ouyang (2002)
extended Porteus (1986) model with investment in quality improvement in the fuzzy
sense.

In the other hand, the present industrial settings, products are processed through
multi-stage production system. Several authors have developed various multi-stags
models in the literatures and pointed out that the two-stage models can be also used
to approximate more complex multi-stage systems. Szendrovits (1983) proposed sev-
eral two-stage production/inventory models in which smaller lots are produced at
one stage and one larger lot is produced at the other stage. Kim’s (1999) considered
two-stage lot sizing problems with various lot sizing depending on batch transfer and
production rates between stages. Hill (2000) extended Kim’s (1999) model provide an
alternative way of performing the analysis which is easier to understand. Darwish and
Ben-Daya (2007) investigated the effect of imperfect production processes involving
variable the frequency of preventive maintenance. Sarker et al. (2008) considered a
multi-stage serial production problem in an unreliable production environment for two
different operational policies. Besides, they also argued that the defective products are
produced during the production time. The defective products are then corrected during
the rework period.

The main purpose of this paper is to consider that the production system with imper-
fect processes is separated into two stages. The former stage (Stage 1; raw material
to semi-finished products), is an automatic process (forming, polish or cutting), and
this process is treated by machines. The latter stage (Stage 2; semi-finished products
to finished products) is a manual process (painting, assembly or packing), and this
process is treated by labors. It is well known that the production rate of Stage 1 is
always higher than Stage 2. Under this situation, the semi-finished products are going
to be accumulated between the Stage 1 and Stage 2. In addition, the capital investment
in process quality improvement is adopted. Then, we formulate the proposed problem
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Optimal production run time 535

as a cost minimization model where the production run time and process quality are
decision variables. We also prove that the optimal solution not only exists but also is
unique. Finally, a numerical example is presented to demonstrate the developed model
and the solution procedure, then the sensitivity analysis of the optimal solution with
respect to major parameters is carried out.

2 Notation and assumptions

2.1 Notation

To develop the mathematical model of inventory system, the notation adopted in this
paper is as below:

p1 = production rate of Stage 1 in units per unit time.
p2 = production rate of Stage 2 in units per unit time.
D = demand rate in units per unit time.
k = setup cost per cycle.

cp = purchasing and labor cost per unit.
cs = shortage cost per unit per unit time.

ch1 = holding cost for a semi-finished product per unit time.
ch2 = holding cost for a finished product per unit time.
cr1 = rework cost for a defective semi-finished product.
cr2 = rework cost for a defective finished product.
N1 = number of defective semi-finished products.
N2 = number of defective finished products.
θ1 = percentage of defective semi-finished products produced. (decision variable)
θ2 = percentage of defective finished products produced.
t1 = time period when there is no production and shortage occurs. (decision vari-

able)
t2 = production run time when backorder is replenished.
t3 = production run time of Stage 1 in a production cycle. (decision variable)
t4 = time period when inventory of semi-finished product depletes.
t5 = time period when inventory of finished product depletes.
T = cycle time, T = t1 + t3 + t4 + t5.

Z0 = maximum backorder level.
Z1 = maximum inventory level of semi-finished product.
Z2 = maximum inventory level of finished product.

2.2 Assumptions

In addition, the following assumptions are used throughout this paper:

(1) The production cycle repeats infinitely.
(2) The production system is imperfect, and the inspection time and rework time of

defective products are very short, which can be neglected.
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Fig. 1 Two-stage production system with imperfect processes

(3) The production system is separated into two stages. The former stage (Stage 1;
raw material to semi-finished products) is an automatic process; the latter stage
(Stage 2; semi-finished products to finished products) is a manual process, and
the production rates of the two stages satisfy the condition p1 > p2 > D. This
system is depicted in Fig. 1.

(4) Shortages are allowed and completely backlogged.
(5) As stated in the literature Porteus (1986): a logarithmic investment function is

assumed for investment in quality improvement. In this situation, the investment,
I Vi (θi ), to reduce the defective probability θi is described by

I Vi (θi ) = ai ln

(
θ0i

θi

)
for 0 < θi ≤ θ0i and i = 1, 2,

where θ0i is original percentage of defective products produced and ai = 1
δi

,
with δi denoting the percentage decrease in θi per dollar increase in I Vi (θi ).

(6) In our case, it is difficult to avoid the human negligence (i.e., δ2 → 0). Therefore,
the capital investment in process quality improvement should be only imple-
mented in Stage 1. Then we set θ2 = θ02.

(7) The process quality of two stages are independent, i.e., θ1 is independent of θ2.

3 Model formulation

Under the notation and assumptions in the previous section, the graphic representa-
tion of the two-stage production system with allowable shortages can be shown as
Fig. 2. Then, we formulate the objective function as a cost minimization problem.
The overall cost for our problem includes setup cost, inventory holding cost, shortage
cost, rework cost, production cost and investment cost. The formulations of these six
costs are described in detail as follows. Before building the objective function, we first
clarify the relationship between t1, t2, t3, t4, t5 and T . Referring to Fig. 2, we have the
following results:

t2 = Z0

p2 − D
= Dt1

p2 − D
, (1)
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Fig. 2 The graph of inventory level during time period [0, T ]

t4 = Z1

p2
= (p1 − p2)t3

p2
, (2)

t5 = Z2

D
= (p2 − D)(−t2 + t3 + t4)

D
=

(p2 − D)
(

p1t3
p2

− Dt1
p2−D

)
D

. (3)

From the Eqs. (1)–(3), the time duration of a cycle can be calculated as

T = t1 + t3 + t4 + t5 = p1t3
D

.

Based on t1, t2, t3, t4 and t5, the total cost per cycle consists of the following ele-
ments:

1. Setup cost per cycle = k.

2. Holding cost per cycle for semi-finished products = ch1 Z1(t3+t4)
2 = ch1(p1−p2)p1t2

3
2p2

.

3. Holding cost per cycle for finished products = ch2 Z2(−t2+t3+t4+t5)
2 =

ch2(p2−D)

(
p1√
Dp2

t3−
√

Dp2
p2−D t1

)2

2 .

4. Shortage cost per cycle = cs (t1+t2)Z0
2 = cs p2 Dt2

1
2(p2−D)

.
5. Rework cost per cycle = cr1 N1 + cr2 N2 = (cr1θ1 + cr2θ02)p1t3.
6. Production cost per cycle = cp p1t3.

7. Investment cost per cycle = a1 ln
(

θ01
θ1

)
.

Then, our problem is to minimize the total cost per unit time by simultaneously
optimizing t1, t3 and θ1, constrained on 0 < θ1 ≤ θ01. That is:
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Min AC(t1, t3, θ1) = 1

T
{Setup cost + Holding cost + Shortage cost

+ Rework cost + Production cost + Investment cost}

= D

p1t3

⎧⎪⎨
⎪⎩k + cs p2 Dt2

1

2(p2 − D)
+ (cr1θ1 + cr2θ02 + cp)p1t3

+ a1 ln

(
θ01

θ1

)
+ ch1(p1 − p2)p1t2

3

2p2

+
ch2(p2 − D)

(
p1t3√
Dp2

−
√

Dp2t1
p2−D

)2

2

⎫⎪⎬
⎪⎭ ,

Subject to 0 < θ1 ≤ θ01. (4)

In order to solve this nonlinear programming problem, we first ignore the restriction
0 < θ1 ≤ θ01, and take the first-order derivative of AC(t1, t3, θ1) with respect to t1, t3
and θ1, respectively. We obtain

∂ AC(t1, t3, θ1)

∂t1
= D

p1t3(p2 − D)
{(ch2 + cs)Dp2t1 − ch2(p2 − D)p1t3} , (5)

∂ AC(t1, t3, θ1)

∂t3
= D

p1t2
3

{
−k − cs p2 Dt2

1

2(p2 − D)
− a1 ln

(
θ01

θ1

)

+ch1(p1 − p2)p1t2
3

2p2
+ ch2(p2 − D)

2

(
p2

1 t2
3

Dp2
− Dp2t2

1

(p2 − D)2

)}
,

(6)

and

∂ AC(t1, t3, θ1)

∂θ1
= D

{
− a1

θ1 p1t3
+ cr1

}
. (7)

It is well known that the necessary condition for (t1, t3, θ1) to be optimal must satisfy
the equations ∂ AC(t1,t3,θ1)

∂t1
= 0,

∂ AC(t1,t3,θ1)
∂t3

= 0 and ∂ AC(t1,t3,θ1)
∂θ1

= 0, simultaneously,
which implies

t1 = ch2(p2 − D)p1

(cs + ch2) p2 D
t3, (8)

k + cs p2 Dt2
1

2(p2 − D)
+ a1 ln

(
θ01

θ1

)
= ch1(p1 − p2)p1t2

3

2p2

+ch2(p2 − D)

2

(
p2

1 t2
3

Dp2
− Dp2t2

1

(p2 − D)2

)
, (9)
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and

θ1 = a1

cr1 p1
t−1
3 . (10)

From Eqs. (8) and (10), it is clear that t1 and θ1 can be uniquely determined as functions
of t3. For finding the optimal solution of (t1, t3, θ1), we substitute t1 and θ1 given by
Eqs. (8) and (10) into Eq. (9), and then obtain

G

2
t2
3 − a1 ln

(
cr1θ01 p1

a1
t3

)
− k = 0, (11)

where

G = ch1(p1 − p2)p1

p2
+ csch2(p2 − D)p2

1

Dp2(cs + ch2)
> 0.

Therefore, the optimal solution t∗3 can be obtain by solving the Eq. (11). Now, we let
f (t3) denote the left hand side of Eq. (11). Taking the first-order derivative of f (t3)
with respect to t3, it yields Gt3 − a1t−1

3 . Hence f (t3) is a continuous function which
decreases strictly in t3 ∈ [0, t̃3] and increases strictly in t3 ∈ [t̃3,∞), respectively,
where t̃3 = √

a1/G. As a result, f (t3) has a minimum at the point t3 = t̃3, and is

f (t̃3) = a1

2
− a1 ln

(
cr1θ01 p1

a1

√
a1

G

)
− k. (12)

Then we have the following result.

Theorem 1 For any t3 ≥ 0, we have

(a) If f (t̃3) < 0, then the solution (t∗1 , t∗3 , θ∗
1 ) which minimizes AC(t1, t3, θ1) not

only exists but also is unique, and t∗3 ∈ (t̃3,∞).
(b) If f (t̃3) ≥ 0, then the optimal value of t3 is t∗3 → 0. The production system

should not be opened.

Proof (a) First, we consider the interval t3 ∈ [t̃3,∞). Because limt3→∞ f (t3) = ∞
and f (t3) is strictly increasing in the interval t3 ∈ [t̃3,∞), and on condition that
f (t̃3) < 0, from the Intermediate Value Theorem, we can find a unique solution
t∗3 ∈ (t̃3,∞) such that f (t∗3 ) = 0. Substituting t∗3 into Eqs. (8) and (10), the cor-
responding t∗1 and θ∗

1 can be determined. Furthermore, in order to examine the
second-order sufficient conditions (SOSC) for a minimum value, we first obtain
the Hessian matrix H as follows:

H =

⎡
⎢⎢⎢⎣

∂2 AC(t1,t3,θ1)

∂t2
1

∂2 AC(t1,t3,θ1)
∂t1∂t3

∂2 AC(t1,t3,θ1)
∂t1∂θ1

∂2 AC(t1,t3,θ1)
∂t3∂t1

∂2 AC(t1,t3,θ1)

∂t2
3

∂2 AC(t1,t3,θ1)
∂t3∂θ1

∂2 AC(t1,t3,θ1)
∂θ1∂t1

∂2 AC(t1,t3,θ1)
∂θ1∂t3

∂2 AC(t1,t3,θ1)

∂θ2
1

⎤
⎥⎥⎥⎦ .
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Then we proceed by evaluating the principal minor determinants of H at station-
ary point

(
t∗1 , t∗3 , θ∗

1

)
. The first, second and third principal minor determinant of

H are calculated as follows, respectively.

|H11| = (ch2 + cs) D2 p2

p1t∗3 (p2 − D)
> 0,

|H22| = D2

t∗2
3

{
ch1(ch2 + cs)(p1 − p2)D

p1
+ ch2cs

}
> 0,

and

|H33| = a1 D4(ch2 + cs)p2G

p2
1(p2 − D)t∗2

3

(
t∗2
3 − t̃3

2
)

> 0.

According to the above results, it is clear that the Hessian matrix H is positive
definite. Next, we consider the interval t3 ∈ [0, t̃3]. Since f (0) = ∞ and f (t3)
is strictly decreasing in the interval t3 ∈ [0, t̃3], and on condition that f (t̃3) < 0,
there also exists a unique solution t∗∗

3 ∈ (0, t̃3) such that f (t∗∗
3 ) = 0, then the

corresponding t∗∗
1 and θ∗∗

1 can be obtained. However, the third principal minor
determinant of H at the stationary point (t∗∗

1 , t∗∗
3 , θ∗∗

1 ) is negative (|H33| < 0),
the Hessian matrix H is not positive definite. Therefore, we conclude that the
solution (t∗1 , t∗3 , θ∗

1 ) which minimizes AC(t1, t3, θ1) not only exists but also is
unique, and t∗3 ∈ (t̃3,∞). This completes the proof.

(b) Since f (t3) has a global minimum at t̃3, if f (t̃3) > 0, then f (t3) > f (t̃3) > 0 for
all t3 	= t̃3. From Eq. (6) and f (t3), we obtain that ∂ AC(t1,t3,θ1)

∂t3
= D

p1t2
3

f (t3) > 0,

which implies that a small value of t3 causes a lower value of AC(t1, t3, θ1).
Hence the minimum value of AC(t1, t3, θ1) occurs at the point t∗3 → 0. Con-
sequently, the production system should not be opened. For the another case
f (t̃3) = 0, since ∂ AC(t1,t3,θ1)

∂t3
= 0 and the AC(t1, t3, θ1) is strictly increasing in

(0, t̃3) and (t̃3,∞), respectively. As a result, t3 = t̃3 is an inflection point and the
minimum value of AC(t1, t3, θ1) occurs at the point t∗3 → 0. This completes the
proof. 
�

We now consider the constraint 0 < θ1 ≤ θ01. If θ∗
1 < θ01 then (t∗1 , t∗3 , θ∗

1 ) is
an interior optimal solution. However, if θ∗

1 ≥ θ01, then it is unrealistic to invest in
improving process quality; in this case, the optimal θ∗

1 = θ01. Summarize the above
results, we establish the following algorithm to obtain the optimal solution of our
problem.

Algorithm

Step 1 Calculate t̃3 = √
a1/G, and then from Eq. (12) to obtain f (t̃3).
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Step 2 If f (t̃3) < 0, go to Step 3. Otherwise, set the optimal solutions t∗1 = 0, t∗3 = 0
and θ∗

1 = θ01 (i.e., the production system should not be opened), then stop the
Algorithm.

Step 3 Find the optimal value t ′3 such that f (t ′3) = 0.
Step 4 Set t ′′3 = t ′3 > t̃3, and then put t ′′3 into Eqs. (8) and (10) to obtain the corre-

sponding value of t1 and θ1, i.e., t ′′1 and θ ′′
1 .

Step 5 Compare θ ′′
1 and θ01. If θ ′′

1 < θ01, let t∗1 = t ′′1 , t∗3 = t ′′3 and θ∗
1 = θ ′′

1 , go to Step
7. Otherwise, go to Step 6.

Step 6 Set θ∗
1 = θ01 (no capital investment for process quality improvement is made),

and utilize Eqs. (8) and (9) (replace θ1 by θ01) to solve the optimal solution
(t∗1 , t∗3 ). Then go to Step 7.

Step 7 The minimum total cost per unit time AC(t∗1 , t∗3 , θ∗
1 ) can be obtain by substi-

tuting t∗1 , t∗3 and θ∗
1 into Eq. (4).

4 Numerical example and sensitivity analysis

To illustrate the results, we consider an inventory situation proposed by Chen and Lo
(2006): k = $100/cycle, p1 = 600/unit time, D = 400/unit time, ch1 = $0.1/unit/unit
time, cs = $0.5/unit/unit time, cp = $10/unit and cr1 = $0.1/unit. Besides, we take
p2 = 500/unit time, ch2 = $0.2/unit/unit time, cr2 = $0.2/unit, a1 = 20 (i.e.,
δ1 = 0.05), θ01 = 0.25 and θ02 = 0.2. Applying the proposed algorithm, we find
t∗1 = 0.20896, t∗3 = 2.43783, T ∗ = 3.65675, θ∗

1 = 0.13673, the variation of original
and treated process quality � = θ01 − θ∗

1 = 0.11327, the optimal production lot size
for each cycle Q = p1t∗3 = 1462.70 and AC(t∗1 , t∗3 , θ∗

1 ) = 4082.76.
Now, this numerical example is considered to study the effects of changes in the

system parameters a1, θ01, θ02, k, cp, cs, ch1, ch2, cr1 and cr2 on the optimal values of
t∗1 , t∗3 , T ∗, θ∗

1 ,�, Q, AC(t∗1 , t∗3 , θ∗
1 ). The sensitivity analysis is performed by chang-

ing each of the parameters by +50, +25, −25 and −50%; taking one parameter at
a time and keeping the remaining parameters unchanged. The results are shown in
Table 1.

On the basis of the results of Table 1, the following observations can be made:

(1) When the values of parameters θ02, cp and cr2 increase, t∗1 , t∗3 , T ∗, θ∗
1 ,� and Q

are still fixed but the minimum total cost per unit time AC(t∗1 , t∗3 , θ∗
1 ) increases.

It implies that if these costs and the defective rate of finished products could be
reduced effectively, the total cost per unit time could be improved.

(2) With increase in the value of parameter a1, AC(t∗1 , t∗3 , θ∗
1 ) and θ∗

1 increase, but
� decreases. Therefore, in order to decrease the minimum total cost per unit
time and the defective rate of semi-finished products, simultaneously, one should
select an effective investment strategy in process quality improvement (i.e., the
lower value of a1). In addition, the investment is not implemented when the value
of a1 exceeds some limit value. Table 2 displays the upper limit value of a1 for
θ01 = 0.1(0.05)0.4 and cr1 = 0.1(0.05)0.4.

(3) When the value of parameters θ01 increases, AC(t∗1 , t∗3 , θ∗
1 ) and � increase.

Therefore, one should select a process with lower defective rate (i.e., the lower
value of θ01) to decrease the minimum total cost per unit time. In addition, the
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Table 1 Effect of changes in various parameters of the inventory model

Parameter % Change Optimal solutions

t∗1 t∗3 T ∗ θ∗
1 � Q AC(t∗1 , t∗3 , θ∗

1 )

a1 +50% 0.2022 2.3592 3.5388 0.2119 0.0381 1415.52 4083.79

+25% 0.2062 2.4062 3.6093 0.1732 0.0768 1443.73 4083.43

−25% 0.2103 2.4529 3.6794 0.1019 0.1481 1471.15 4081.75

−50% 0.2098 2.4480 3.6720 0.0681 0.1819 1468.81 4080.27

θ01 +50% 0.2171 2.5325 3.7987 0.1316 0.2434 1519.49 4084.94

+25% 0.2135 2.4905 3.7357 0.1338 0.1787 1494.27 4083.97

−25% 0.2030 2.3679 3.5519 0.1408 0.0467 1420.75 4081.17

−50% 0.1974 2.3028 3.4543 0.1250 0.0000 1381.70 4078.90

θ02 +50% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4090.76

+25% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4086.76

−25% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4078.76

−50% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4074.76

k +50% 0.2543 2.9670 4.4505 0.1123 0.1377 1780.18 4095.09

+25% 0.2329 2.7173 4.0760 0.1227 0.1273 1630.40 4089.23

−25% 0.1811 2.1132 3.1698 0.1577 0.0923 1267.93 4075.44

−50% 0.1463 1.7069 2.5603 0.1953 0.0547 1024.13 4066.73

cp +50% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 6082.76

+25% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 5082.76

−25% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 3082.76

−50% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 2082.76

cs +50% 0.1482 2.3468 3.5202 0.1420 0.1080 1408.07 4084.92

+25% 0.1734 2.3842 3.5763 0.1398 0.1102 1430.54 4084.02

−25% 0.2631 2.5210 3.7815 0.1322 0.1178 1512.60 4080.92

−50% 0.3557 2.6678 4.0016 0.1249 0.1251 1600.66 4077.91

ch1 +50% 0.1927 2.2479 3.3719 0.1483 0.1017 1348.75 4087.44

+25% 0.2004 2.3375 3.5062 0.1426 0.1074 1402.49 4085.15

−25% 0.2187 2.5513 3.8269 0.1307 0.1193 1530.77 4080.27

−50% 0.2298 2.6809 4.0214 0.1243 0.1257 1608.54 4077.66

ch2 +50% 0.2466 2.1923 3.2885 0.1520 0.0980 1315.41 4088.95

+25% 0.2298 2.2979 3.4468 0.1451 0.1049 1378.73 4086.14

−25% 0.1823 2.6333 3.9499 0.1266 0.1234 1579.95 4078.59

−50% 0.1464 2.9279 4.3919 0.1138 0.1362 1756.76 4073.26

cr1 +50% 0.2171 2.5325 3.7987 0.0877 0.1623 1519.49 4084.94

+25% 0.2135 2.4905 3.7357 0.1071 0.1429 1494.27 4083.97

−25% 0.2030 2.3679 3.5519 0.1887 0.0623 1420.75 4081.17

−50% 0.1974 2.3028 3.4543 0.2500 0.0000 1381.70 4078.90

cr2 +50% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4090.76

+25% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4086.76

−25% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4078.76

−50% 0.2090 2.4378 3.6568 0.1367 0.1133 1462.70 4074.76
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Table 2 The criterion of a1 for judging whether the investment is implemented

Upper limit value of a1 θ01

cr1 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 13.817 20.725 27.634 34.542 41.451 48.359 55.268

0.15 20.725 31.088 41.451 51.814 62.176 72.539 82.902

0.20 27.634 41.451 55.268 69.085 82.902 96.719 104.41

0.25 34.542 51.814 69.085 86.356 100.72 109.87 118.79

0.30 41.451 62.176 82.902 100.72 111.67 122.31 132.70

0.35 48.359 72.539 96.719 109.87 122.31 134.42 146.28

0.40 55.268 82.902 104.41 118.79 132.70 146.28 159.61

Table 3 The criterion of θ01 for judging whether the investment is implemented

Lower limit value of θ01 a1

cr1 10 15 20 25 30 35 40

0.10 0.0724 0.1086 0.1448 0.1810 0.2172 0.2534 0.2895

0.15 0.0482 0.0724 0.0965 0.1206 0.1447 0.1689 0.1930

0.20 0.0362 0.0543 0.0724 0.0905 0.1086 0.1267 0.1447

0.25 0.0289 0.0434 0.0579 0.0724 0.0868 0.1013 0.1158

0.30 0.0241 0.0362 0.0482 0.0604 0.0724 0.0844 0.0965

0.35 0.0207 0.0310 0.0414 0.0517 0.0620 0.0724 0.0827

0.40 0.0181 0.0271 0.0362 0.0452 0.0543 0.0633 0.0724

capital investment in process quality improvement is unnecessarily implemented
when the value of θ01 is below some limit value. Table 3 displays the lower limit
value of θ01 for a1 = 10(5)40 and cr1 = 0.1(0.05)0.4. Besides, t∗1 , t∗3 , T ∗ and
Q increase as θ01 increases. It implies that the cycle time should be lengthened
to retard the growth of the investment cost per unit.

(4) The minimum total cost per unit time AC(t∗1 , t∗3 , θ∗
1 ) increases as k increases. If

the setup cost per cycle could be reduced effectively, the total cost per unit time
could be improved. Besides, t∗1 , t∗3 , T ∗ and Q increase as k increases. It implies
that the cycle time is lengthened to retard the growth of the setup cost per unit.

(5) t∗1 and � decrease while AC(t∗1 , t∗3 , θ∗
1 ) and θ∗

1 increase with increase in the value
of parameter cs . It implies that if the shortage cost per unit per unit time increases,
one should decrease the capital investment in process quality improvement, and
focus on the length of the period during which shortages are allowed for reducing
the shortage quantity.

(6) t∗3 , Q and � decrease while AC(t∗1 , t∗3 , θ∗
1 ) and θ∗

1 increase with increase in the
value of parameter ch1 (or ch2). It implies that if the holding cost per unit per
unit time increases, one should decrease the capital investment in process quality
improvement, and focus on the production run time for reducing the production
(inventory) quantity.
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Table 4 The criterion of cr1 for judging whether the investment is implemented

Lower limit value of cr1 θ01

a1 0.10 0.15 0.20 0.25 0.30 0.35 0.40

10 0.0724 0.0482 0.0362 0.0289 0.0241 0.0207 0.0181

15 0.1086 0.0724 0.0543 0.0434 0.0362 0.0310 0.0271

20 0.1447 0.0965 0.0724 0.0579 0.0482 0.0414 0.0362

25 0.1809 0.1206 0.0905 0.0724 0.0603 0.0517 0.0452

30 0.2171 0.1447 0.1086 0.0868 0.0724 0.0620 0.0543

35 0.2533 0.1689 0.1267 0.1013 0.0844 0.0724 0.0633

40 0.2895 0.1930 0.1447 0.1158 0.0965 0.0827 0.0724

(7) With increase in the value of parameter cr1, θ
∗
1 decreases but t∗1 , t∗3 , T ∗, Q,� and

AC(t∗1 , t∗3 , θ∗
1 ) increase. It implies that if the rework cost of a defective semi-fin-

ished product increases, one should focus on process quantity improvement for
reducing the rework quantity, and increase the cycle time to retard the growth of
the investment cost per unit. In addition, the capital investment in process quality
improvement is unnecessarily implemented when the value of cr1 is below some
limit value. Table 4 displays the lower limit value of cr1 for θ01 = 0.1(0.05)0.4
and a1 = 10(5)40.

5 Conclusion

In this paper, we develop a two-stage production system with imperfect processes
and allowable shortages. The necessary and sufficient conditions of the existence and
uniqueness of the optimal solution are shown in Theorems 1. Next, we provide a
simple algorithm to find the optimal solution of (t1, t3, θ1) for minimizing the total
cost per unit time. The proposed model can be used in inventory control of two-stage
(automatic stage and manual stage) production system such as Automotive industry,
Glass industry, Food industry, and others. The results of the present study suggest
three dimensions that might profitably be addressed by future researchers in the area.
One is to investigate the effects of variable deterioration rate and stochastic nature
of demand. The Second is to investigate the imprecise production by combining the
statistical techniques and fuzzy set concepts. The last is to relax the Assumption (6),
and determine what stage is profitable to implement the capital investment in process
quality improvement.
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