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ABSTRACT   

In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of 
each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods 
relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, 
the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches 
for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 
2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the 
locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our 
proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. 
Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real 
video sequences even under serious occlusion.   
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1. INTRODUCTION  
Up to now, a lot of algorithms have already been proposed to solve the face detecting problem. The most popular 
approach is the training-based approach which collects lots of face data to construct a database for training. With the face 
database, a suitable classifier is learned to detect faces with high detection rate and low false alarm rate. For example, 
Viola and Jones1 proposed the Adaboosting detection algorithm which is fast, robust and reliable to detecting frontal 
faces in 2-D images. Nowadays, several algorithms with similar structures have been proposed to improve the accuracy 
of detection based on Adaboosting detection algorithm. However, there still exist many difficulties in face detection, one 
of which is the detection of non-frontal faces. For non-frontal face detection, there appear view-dependent deformation 
and variation. Hence, these frontal face classifiers usually cannot be directly applied to non-frontal face detection.  

In many applications, such as visual surveillance system, human faces in the captured images may not be upright 
and frontal. In these cases, the detection of faces becomes much more complicated. These non-frontal faces usually 
contain less information and present more diversity. This fact makes non-frontal detection a lot more sensitive to noise, 
background, illumination, and facial model. 

A few methods for multi-view face detection have been proposed in recent years. They could be roughly divided as 
single-camera systems and multi-camera systems. For single-camera systems, Huang et al.’s2 method provided an 
important reference. In their system, they proposed a method to construct a rotation invariant multi-view face detector. 
Their method was composed of a Width-First-Search tree detector structure, a Vector Boosting algorithm for learning 
strong classifiers, a domain-partition-based learning method, sparse features in granular space, and a heuristic search for 
sparse feature selection. Their system can detect multi-view faces with low computational complexity and high detection 
accuracy. However, the detection task may fail in some cases, such as low-resolution faces, inter-object occlusions, and 
incomplete human faces in images. It is also difficult for the method to detect the back side of human heads. Apparently, 
non-frontal face detection based on a single view of observation would be very difficult. The use of multiple cameras 
may somewhat relief the difficulties in non-frontal face detection. 
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Multi-camera systems could provide us more information about the scenarios we concern. For a multi-camera 
surveillance system, more than one camera is installed within a surveillance zone. These cameras are installed at 
different locations, capture more information of the targets, and help users to monitor the targets in a more precise and 
efficient way. Huang and Wang3 proposed an efficient way to fuse 2-D foreground detection result from multi-camera 
views. In their system, they adopted a probabilistic method to label multiple targets based on a Markov network. Zhang 
et al.4 presented a system that integrates temporal and spatial information to build a multi-camera multi-view face 
detection system inside a room. By integrating temporal and spatial information with the dynamic programming 
approach, they aimed to detect the face of the lecturer for a lecture scenario inside an appropriately equipped smart 
room. In their approach, the multi-view face detector was implemented based on the FloatBoost approach5. However, 
those methods usually detect the face regions on 2-D images and then project the regions back to 3-D space for locating 
the 3-D positions. The inevitable false face detection and rejection may degrade the system accuracy even under a multi-
camera surveillance environment.  

In our system, we aim to establish multi-view face detection for an intelligent multi-camera surveillance system. 
Here, we plan to accomplish a system that is capable of detecting all targets’ faces within the surveillance zone and is 
able to indicate the direction of each face inside a surveillance zone. Unlike most frameworks doing detection in 2-D 
images, our goal is to do this job in 3-D space since it would help us to well use the 3-D geometry knowledge such as the 
size of human face, the rough height of a human head above the ground plane, and etc. In detail, our system searches for 
the targets over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to 
determine the existence and direction of human faces. With the 3-D geometry prior, we could detect faces on 2-D images 
without trying different scales of patch sizes if comparing with many previous methods. Moreover, our approach can 
efficiently combine 2-D information from different camera views and suppress the ambiguity caused by 2-D detection 
errors. By fusing information form multi-camera views, we can infer the location of faces and their directions.  

The rest of this paper is organized as follows. In Sec. 2, we present the main idea of the proposed framework. In Sec. 
3, we explain how we estimate the locations of candidate targets on the 3-D ground plane. In Sec. 4, we detail our Multi-
view face detection framework for locating the head positions and extracting the face directions. Experimental results 
and discussions are presented in Sec. 5. Last, Sec. 6 concludes this paper. 

2. OVERVIEW 
2.1 System Overview 

In this paper, the whole system operates on an environment where a surveillance zone is monitored by multiple cameras. 
The main goal of our face detection framework is to locate human heads and detect the face directions. As in Figure 1, 
our system includes two steps – (1) 3-D position estimation and (2) multi-view face detection framework. 

For the first step, we detect the locations of candidate targets. Here, we fused multi-view foreground detection 
results in order to identify the positions of candidate targets on the 3-D ground plane. The goal of this step is to filter out 
most impossible positions in the 3-D space and to speed up the searching process in the second step. For the second step, 
we aim to locate the optimal head position and determine the face direction of each target in the 3-D space. Here, we 
search the face with a 3-D cube within the possible subspaces, which is determined by the first step. Next, the 3-D cube 
at a possible face location is projected onto the 2-D camera views to get projected image regions. These image regions 
are verified by using eight pre-trained face detectors, which correspond to eight face views, in order to measure the 
probabilities for different face views. The measured probabilities from multiple images are finally fused in a systematic 
manner. Based on the fused probabilities, the finding of head positions and face directions are finally formulated as an 
optimization problem and solved in a unified way. In the following sections, we will explain the details of each 
functional block in our system flow.   

3. 3-D POSITION ESTIMATION 
3.1 Background Subtraction on a Single Camera 

To identify the location of candidate targets on the 3-D ground plane, we need to detect the foreground regions which is 
accomplished by taking the difference between the current image and the reference background in a pixel-wise manner. 
Here, we model the reference background based on the Gaussian mixture model (GMM) approach6. An example of the 
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foreground detection result is shown in Figure. 2. Note that the foreground regions are neither perfectly silhouetted nor 
well connected due to the influence of noise, variation of illuminations, and shadows. 

 
Figure. 1: Flow chart of the proposed multi-view face detection framework. 

 
Figure. 2: (a) The original image. (b) The result after background subtraction. 

 
Figure. 3: (a) The illustration of the model-driven approach for information fusion. (b) A pillar at a true location generates 
larger overlapped regions. (c) A pillar at a wrong location generates smaller overlapped regions. 

 

3.2 Information Fusion 

By fusing the foreground regions from multi-camera views, we could determine the 3-D ground positions of 
candidate targets in a probabilistic manner. Here, we apply the model-driven approach proposed by Huang and 
Wang3 to fuse 2-D information. By constructing a probability map named as Target Detection Probability 
(TDP), we could represent the probability of having a moving target at a ground location. In Figure. 3, we 
illustrate the concept of model-driven approach for information fusion. Here, as shown in Figure. 3(a), we use a 
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pillar model to represent a human standing at a location on the ground plane. By projecting the pillar model at a 
location onto all 2-D images and calculate the overlapped area of the foreground region and the projection 
region, we could estimate the value of TDP at that 3-D location. Basically, the larger the overlapped region is, 
the more likely a target is standing at that location in the 3-D space. If the assumed 3-D location is incorrect, 
then the overlapped regions would be small. Based on this concept, we calculate the probability at every 
position in this surveillance zone and establish the TDP map by formulating the TDP as 

1 1( ) ( | , , ) ~ ( ) ( , , | )                             (1)N NG X p X F F p X p F F X≡ L L  

In (1), X represents a location (x1,x2) on the ground plane. N is the number of static cameras in the multi-camera 
system. Fi denotes the foreground image   of the ith camera view. Assume the size of camera views is Ms x Ns . 
The point (m ,n), which is in the range of 0≤ m ≤(Ms-1) and 0≤n≤(Ns-1), denotes the coordinates of a pixel on 
the foreground image. Then Fi is defined as 

1     ( , )  
( , )   .                                (2)

0     ( , )  i

m n foreground regions
F m n

m n foreground regions
∈⎧

= ⎨ ∉⎩
 

Moreover, given the location X, we assume the foreground images are conditionally independent of each 
other. Also, we assume the prior p(X) is uniform distributed that indicates the equal possibility of finding a 
moving person at X. Therefore, (1) can be rewritten as 

1
1

( ) ( , , | ) ( ) ( | ).                                          (3)
N

N i
i

p X p F F X p X p F X
=

= ∏L  

On the other hand, to formulate p(Fi|X), we approximate a moving target at the ground position X as a 
rectangular pillar. The height H and radius R of the pillar are modeled as independent Gaussian random 
variables, with their Gaussian priors p(H) and p(R) being pre-trained via training samples. Based on the pre-
calibrated projection matrix of the ith camera and a sample pair (H,R), we project the pillar onto the ith camera 
view to get the projected image Mi. Here we define Mi on the ith camera view as  

1   ( , )  
( , | , , )  .                               (4)

0   ( , )  i

if m n projected regions
M m n H R X

if m n projected regions
∈⎧

= ⎨ ∉⎩
 

The expectation of the overlapped region of Mi and Fi with perspective normalization offers a reasonable 
estimate about p(Fi|X). That is, we define p(Fi|X) as 

( | ) ( , , ) ( ) ( ) ,                                        (5)i i
p F X H R X p H p R dHdR= Ω∫∫  

where the normalized overlap correlation, iΩ , is defined as 

( , ) ( , | , , )
( , , )                                       (6)

( , | , , )
i i

i
i

F m n M m n H R X dmdn
H R X

M m n H R X dmdn
Ω ≡ ∫∫

∫∫
 

Based on (3) and (5), the TDP distribution could be calculated. An example of TDP distribution is shown in 
Figure. 4. Here, we may find the TDP is composed of many clusters; each cluster indicates a candidate target on 
the ground. Therefore, the candidate targets can be identified by some clustering algorithms, such as Mean-Shift 
clustering. After clustering, we can extract the number of candidate targets NT inside the current surveillance 
zone and estimate the ground location Xi for the ith target by finding its corresponding cluster centers. Please 
refer to the paper3 for more details. 

4. MULTI-VIEW FACE DETECTION FRAMEWORK 
After the position estimation, we identify the ground locations X of detected candidate targets on the 3-D ground. 
However, the head location of each candidate is still unknown. Even so, the extracted locations are useful for speeding 
up head finding. In next subsections, we aim to search head positions and determine the face directions. We will 
formulate the problem and explain our multi-view face detection framework. 
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Figure. 4: (a) Input images. (b) The TDP of four moving targets in the surveillance zone. 

 

 
Figure. 5: The sliding cube in 3-D space. 

 

4.1 Finding Target Heads and Face Directions 

Many detection algorithms are already proposed for multi-view face detection. Most of these methods based on some 
learning approaches to train suitable detectors. After the training process, the trained detectors are able to detect specific 
object based on the sliding window approach in the image. However, because of some reasons, this sliding window 
approach in 2-D image may not be suitable for our application. First, it would not be easy to train a high accuracy 
detector for all face views. Second, from time to time, we need to search all scales to detect faces with different sizes 
including very small faces in the image. These small faces are usually too small to correctly identify. Also, the heavy 
searching time is unwelcome. Third, there could be some occlusions in the scene. Sometimes, we may need to detect 
faces that are incompletely observed in the image view. Due to the above reasons, detecting face directly in 2-D images 
usually generates many inevitable false detection and false rejection.  

A multi-camera system may provide us more information about the scene and could theoretically decrease the false 
positive rate and increase the detection rate. However, the performance of the multi-camera system depends heavily on 
the way we utilize the 3-D geometric information. A conventional way is to detect faces in each 2-D image and then the 
2-D detection results are projected back to the 3-D space for the final decision. Strictly speaking, this intuitive way is too 
ideal to be used in practical applications. This approach could work only when the detection rate of the 2-D face detector 
is high enough and the false alarm is low. Otherwise, the presence of plentiful false positives and false negatives would 
make the inference in the 3-D space very complicated and mistake-prone. The wrong information comes from 2-D 
images would accumulate and generate a lot of ambiguous results in the 3-D space.  

Instead of searching and detecting the targets in 2-D images and then combining the outcome of each camera view 
in the 3-D space, in our system, we try to search and detect the targets in the 3-D space. This approach is like an 
extension from the 2-D sliding window approach to a 3-D sliding cube approach. In Figure. 5, we illustrate this concept. 
We now slide a cube in the 3-D space and determine 3-D head locations and face directions. However, we do not have 
the reconstructed 3-D scene for the 3-D based detection. In practical situations, what we have are the observations of 2-D 
images. Also, the reconstruction of the 3-D scene from all 2-D images is not reliable due to the limited number of 
cameras and the insufficient information from 2-D images. Hence, in our approach, we directly look for supports in the 
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2-D images. Here, we well utilize the geometric connection between 3-D space and 2D images according to the process 
of camera calibration beforehand. Based on the prior knowledge of 3-D geometric space, we generate hypotheses of head 
locations and face directions in the 3-D domain and base on the observed data from multiple 2-D images to make the 
final decisions. In each hypothesis, we assume the target face is at a specific location and direction in the 3-D space and 
confirm this hypothesis in its corresponding 2-D image regions. Figure. 6 shows an example of this process. In this 
example, a person is assumed to walk in a 3-D surveillance zone and a cube is sliding in the 3-D space to find where the 
head and what face direction of this person are. If the cube is slid to a suitable location that contains the human’s head, 
the corresponding regions in 2-D images will fit the face portion with a proper face view. On the contrary, if the cube is 
at a place without any person’s head, then the corresponding region will map to the background region and will not fit 
the face portion in each camera view. 

 
Figure. 6: A 3-D sliding cube approach for the finding of human heads and face directions. 

 

4.2 Problem Formulation 

Based on all the discussion in the previous sections, we now formulate our system goal as an optimization problem in a 
unified manner. Until now, we have detected NT candidate targets and their ground locations {Xi}i=1~ TN . Here, we use Ti 
to represent the ID of the ith target. For each target, we still need to determine its head location and face orientation. As 
mentioned before, we use a sliding cube approach to find the optimal location (l*) and orientation (h*) of the target Ti. 
Here, we define the optimal solution as  

  |
( , ) arg max ( , | , , , ).                                                                   (7)

i i
Ti

T T ih H l L
h l p h l D I X C∗ ∗

∈ ∈
=  

To numerically analyze this optimization problem in (7), we uniformly quantize the solution spaces of 3-D head 
positions and face orientations and denote the spaces as L and H respectively. In our system, the interesting 3-D space L, 
bounded by the surveillance zone and a user-defined height 200cm, is divided into 100x100x50 cubes. The orientation 
space H, ranging from zero to 360 degree, is divided into eight face directions. We also define other notations in (7) as 
below: 

(D): The set of eight image-based face classifiers pre-trained for different face orientations.  

(I): The set of multi-camera image views. 

( iX ): The ground location of the candidate target Ti. 

(C): Camera layout and geometry information.  

( |
iTL ): The possible 3-D head positions of candidate target Ti.  

Here, |
iTL  needs to be detailed. In our system, TNX  indicates the set of estimated ground positions of the NT detected 

targets in the 3-D space and could be utilized to reduce the solution space of the head locations. We Assume Xi = {xi, yi, 
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0}, where (xi, yi) is the ground position of the ith detected target. If we know the mean of human height is z0 beforehand, 
we can reduce the interesting 3-D head positions of the target Ti, and define the reduced space |

iTL  as 

0 0

2 2
| ( , , )  .                                                                  (8)2 2

2 2

i

i i

T i i

s sx x x

s sL x y z y y y

s sz z z

⎧ ⎫− ≤ ≤ +
⎪ ⎪
⎪ ⎪= − ≤ ≤ +⎨ ⎬
⎪ ⎪

− ≤ ≤ +⎪ ⎪⎩ ⎭

 

In (8), s defines a search range and is determined by the average size of a 3-D head. In our system, we set s as three 
times of the average size in order to account for the uncertainty. Also in (8), the average 3-D human height z0 is obtained 
through statistical training. In Figure. 7, we illustrate the reduced position space given the plane location (x0, y0, 0) of the 
first detected target. 

 
Figure. 7 : The reduced position space given a detected target location (x0, y0, 0). 

 

To solve (7), we still need to define the calculation of p(h,l|D,I,Xi,C). In detail, for each hypothesis (h,l) in the 3-D 
space, we project a cube at 3-D location l onto 2-D images to locate the focused patches and also generate the expected 
face orientations in different camera views based on h, I, and C. Here, we use Equation (9) to expresses the 3-D to 2-D 
projection process, where the function B(.) projects the 3-D cube and generates the expected face direction; In,ED,l 
indicates the projected image patch with the expected face direction EDn in the nth camera views of our four-camera 
system.  

, , ( , | , )  |   1,2,3,4                           (9)
in ED l TI B l h I C l L n= ∀ ∈ =  

For each camera view, we based on the expected face direction ED to select the corresponding face classifier from the 
classifier set D. By feeding the image patch In,ED,l into the selected classifier, we could evaluate the likelihood pn,l,h of the 
hypothesis (h,l) based on information form this camera view. This process could be defined as  

, , , ,( ; )     1,2,3,4.                                      (10)n l h n ED l np D I ED n= =  

Note that EDn determines one of the eight pre-trained face classifiers from the classifier set D. By combining the 
likelihoods from all camera views, we then define p(h,l|D,I,Xi,C) as 

4

, ,
1

( , | , , , )                                                  (11)i n l h
n

p h l D I X C p
=

=∏  

Finally, we exhaustively search the solution spaces H and |
iTL  in order to determine the optimal head location (l*) 

and face orientation (h*) for target Ti in (7). Thanks for the pre-process of 3-D position estimation step introduced in Sec. 
3, the solution space |

iTL  is greatly reduced and the searching process is speeded up. Moreover, based on the 
automatically extracted target number NT, we know the number of targets we need to search. Unlike many conventional 
face detection methods, no more lots of detected windows around a face region but only NT face window with suitable 
scales are detected. In the next subsection, we would like to introduce how we train the classifier set D. 
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4.3 Modified Face Detection Algorithm 

In our system, we train our 2-D face classifiers based on the procedure of Adaboosting training algorithm7. Here, we 
select Viola and Jones’s face detection method8-9 with modification because of its robustness and efficiency. In detail, we 
use the Adaboost algorithm to train a set of classifiers based on Haar-like features. Also, we apply the “integral image” 
for faster and easier computations. Finally, the cascade structure used in 8-9 is also applied in our system. In Figure. 8(a), 
we show the cascade structure. This cascade structure can quickly discard most non-face regions of a tested image at the 
earlier stages so that more efforts can be spent on face-like regions in the later stages.  

The major difference between Viola and Jones’s method and ours is that we modified the exclusion strategy of the 
cascade structure. In Figure. 8, we show the distinction between our structure and the original one. In our system, our 
goal is to design classifiers to output multi-level likelihood values instead of a false-true decision. Here, we found that if 
a tested image patch could pass more stages in the cascade structure, the patch is more likely to be a face region. Based 
on the finding, we proposed a modified cascade structure as shown in Figure. 8(b) to fulfill our system objective. 
Comparing the two structures, the original one excludes all rejected sub-windows into one class. However, in the 
modified structure, we further classify these rejected sub-windows into several subgroups, depending on the number of 
passed classifiers before rejection. As shown in Figure. 8(a), the original structure dumps all the rejected sub-windows to 
one rejection class. Hence, there are only two possible outcomes: face or non-face. There is no distinction between the 
sub-windows rejected by the first classifier and the sub-windows rejected by the last classifier. In contrast, in the 
modified structure, we separate sub-windows into several classes, with each class assigned a likelihood value depending 
on the number of classifiers the sub-window has passed through. As a sub-window has passed through more classifiers, 
it is more likely to contain a face-like region. If a sub-window passes through all classifiers, it gets the largest value of 
likelihood, as shown in Figure. 8(b). Finally, we independently train eight detectors for eight different viewing angles. 
Figure. 9(a) illustrates an example of the eight different viewpoints. For each viewpoint, we use the modified structure to 
train a face detector. 

(a) 

 

(b) 

 

Figure. 8: (a) Original cascade structure of Viola and Jones’s training algorithm. (b) Our modified structure. 
 

 (a) 
 

(b) 

 

Figure. 9: (a) Eight views of the same person. (b) An illustration of an image patch verified by eight face classifiers for eight views. 
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5. EXPERIMENTS RESULTS 
5.1 Environment Setup 

In this subsection, we define the input and the output of our system. We also clearly define our scenario and experiment 
setup. In our experiments, the surveillance room is an indoor rectangular space with four cameras mounted at the four 
corners of the room. Each camera was calibrated beforehand and was set up with an appropriate viewing angle to clearly 
monitor the people in the room. In Figure. 10, we clearly illustrate our system setup. Figure. 10(a) shows the image 
views of four cameras and Figure. 10(b) shows the stereogram of the environment. In Figure. 10(c), we show a bird-eye 
view of the experiment environment. Also, we partition the orientation space of the scene into eight directions as 
illustrated in Figure. 10(d). This definition will help us to distinguish face directions in an easier way.  

 
Figure.10: (a) Image views of four cameras. (b) 3-D stereogram of the surveillance zone. (c) Bird-eye view of the surveillance zone. 
(d) Eight face directions. 

Our system aims to find the face positions in all camera views and to indicate the direction of the detected faces in a 
bird-eye-view style. For example, in Figure. 10, there is a person walking in the surveillance room with his head 
approximately facing toward 315 degrees. According to our eight-orientation diagram in Figure. 10(d), the direction of 
his face approximately belongs to Outcome 8. In Figure. 10(c), we show the position of this man on the ground plane 
and the direction of his face in a bird-eye view style. 

In our system, the geometry layout of four cameras is well learned and utilized for our system inference. As we can 
see in Figure. 11, there exists a coherence relationship among different camera views. For example, if a camera has 
captured a frontal face view, then the opposite camera must have captured the back side of the head, as illustrated in 
Figure. 11. 

(a) 

 

(b) 

 
Figure.11: (a) Coherence of different views (b) The learned relationships of the face directions among four cameras in our 
experiment environment. 

SPIE-IS&T Vol. 8304  830411-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



4
x 103

3.5

3

E

2 2.5---

2

50 100 150 200 250 300 350
degree

aw6ap
C6E OOE 09E OOZ 091. OOL 05

°1766.0

91766'0

966'0

9966'0

966'0 K-

a
9966'0

L66'0

9L66'0

866'0

9866'0

0° 45° 90° 135° 180° 225° 270° 315°

,ez l s e ip, it e r
f, 1 1 11 11 11t r1 2 100 .111 ,17211111trr:
T. It03-9011.0

 

 

5.2 Multi-view Face Dataset 

In our method, we trained eight classifiers for eight different views around the head. The eight classifiers for different 
face views are 0˚, 45˚, 90˚, 135˚, 180˚, 225˚, 270˚, 315˚. For each direction, 400 training images are collected. These 400 
images were captured from 50 students in NCTU, with 42 male students and 8 female students. For each student, we 
took pictures under two different backgrounds. For each background, 4 images are collected for each direction. Hence, 
there are totally 3200 (3200=50*4*8*2) images in our database. Figure. 12 shows some example images for each view. 

We also evaluated the performance of our eight face detectors. Figure. 13(a) shows the detection rate of the eight 
different detectors. Figure. 13(b) shows the false alarm of the eight detectors. As we can, all these detectors achieve 
reasonable performance. Moreover, as expected, the front-view detector has better performance than the others. 

 
Figure.12: Examples of the multi-view face dataset 

  

(a) (b) 

Figure. 13: (a) Detection rate of 8 classifiers. (b) False alarm rate of 8 classifiers. 

 

5.3 Head Localization and Multi-view Face Detection 

To understand the process of head localization and multi-view face detection in our system, we show the projected 
windows under different 3-D location hypotheses in the four camera views. In Figure. 14(a), owing to a correct 3-D 
location hypothesis, the projected windows match the face regions well, while in Figure 14(b), the projected windows 
shift away from the correct face regions due to the wrong 3-D location hypothesis. To quantitative compare, we draw the 
calculated likelihood values under both the correct 3-D location and the wrong 3-D location over eight hypotheses of 
face orientations as shown in Figure. 14(c). Please note the blue curve, indicating the values under the correct location, is 
always higher than the green curve, representing the values under the wrong location. Also, the largest likelihood value 
over the blue curve indicates the optimal hypothesis of face orientation.  
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We tested our system over the video sequence provided by Fleuret’s work [10]. Note the sequence contains more 
than 2000 frames. To quantitatively evaluate the detection and correspondence performance, false positive rate (FPR) 
and false negative rate (FNR) are used. In our system, the target detection and correspondence are defined as “correct” 
when the projected regions of the detected target in all camera views intersect the same individual and the detected face 
directions match the ground truth. Based on this definition, the calculated FPR and FNR of all tested sequence are 0.065 
and 0.023.  

(a) 

 

(b) 

 

(c) 

 
Figure. 14: (a) Detection result at a correct 3-D position. (b) Detection result at an incorrect 3-D position. (c) The blue line 
corresponds to the likelihood values of eight hypotheses of face orientations at the correct position, and the green line corresponds to 
he likelihood values of eight hypotheses at the incorrect position. 

 

We also show some detection results in Figure. 15. To clearly present our outputs, we use bounding boxes with 
different colors to indicate different targets. We also mark the detected face direction onto the bird-eye view of the 
surveillance zone. In this example, there are two persons in the scene. As shown in the figure, our system can detect 
faces and identify the face directions even if some serious occlusion occurs or someone is out of image view. In Figure. 
15(a), there is an occlusion case in the top-left image and there is a missing person in the lower-right image. For this 
example, our system can still find the approximate locations of the faces and the face directions, as shown in Figure. 
15(b). Another experimental result is illustrated in Figure. 15(c-d). 

6. CONCLUSION 
In this paper, we present a multi-view face detection system over a multi-camera surveillance system. Through this 
system, we can detect all target faces in the given images and identify the direction of each face in the 3-D space. Unlike 
existing approaches whose performance are usually degraded by inter-object occlusion, the proposed system does not 
directly detect targets over the 2-D image domain nor project the 2-D detection results back to the 3-D space for 
correspondence. In our system, we search for the targets over small cubes in the 3-D space. Each searched 3-D cube is 
projected onto the 2-D camera views to determine the existence and the direction of a human face. With this approach, 
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we can efficiently combine 2-D information from different camera views to make a more reliable and robust inference 
even under the inevitable false face detection and rejection of our 2-D classifiers. 

(a) 

 

(c) 

 

(b) 

 

(d) 

 
Figure. 15: (a) Multi-view face detection results with inter-object occlusion. (b) The bird-eye view of detected face directions of (a). 
(c) Another Multi-view face detection results. (d) Detected face directions of (c). Note white arrows indicate the ground truth. Colored 
arrows indicate our detection results. 

ACKNOWLEDGEMENTS 

This work was supported by the National Science Council, Taiwan, under the Grants No. NSC100-2218-E-151-007. 

REFERENCES 

[1] P. Viola and M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features,” IEEE Conference on 
Computer Vision and Pattern Recognition, 511-518 (2001). 

[2] C. Huang, H. Ai, Y. Li, and S. Lao, “Vector Boosting for Rotation Invariant Multi-View Face Detection,” IEEE 
International Conference on Computer Vision, 446-453 (2005). 

[3] Ching-Chun Huang and Sheng-Jyh Wang, “Moving Targets Labeling and Correspondence over Multi-Camera 
Surveillance System Based on Markov Network,” IEEE International Conference on Multimedia and Expo, 1258-
1261 (2009). 

[4] Z. Zhang, G. Potamianos, A.W. Senior, and T.S. Huang, “Joint Face and Head tracking inside Multi-camera Smart 
Rooms,” Signal Image and Video Processing. 1(2), 163-178 (2007). 

[5] S. Li, Z. Zhang, L. Zhu, H.-Y. Shum, and H. Zhang, “Floatboost Learning for Classification,” International 
Conference on Neural Information Processing Systems, 993-100 (2002). 

[6] P. KaewTraKulPong and  R. Bowden, “An Improved Adaptive Background Mixture Model for Real-time Tracking 
with Shadow Detection,” European Workshop on Advanced Video-based Surveillance Systems, 1-5 (2001). 

[7] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee, “Boosting the Margin: A New Explanation for the Effectiveness 
of Voting Methods,” International Conference on Machine Learning, 322-330 (1997). 

[8] M. Jones and P. Viola, “Fast Multi-view Face Detection,” Technical Report, Mitsubishi Electric Research 
Laboratories, 1-11 (2003). 

[9] P. Viola and M. Jones, “Robust Real-Time Face Detection,”International Journal of Computer Vision. 57(2), 137-
154 (2004). 

[10] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multi-Camera People Tracking with a Probabilistic Occupancy 
Map,” IEEE Transactions on Pattern Analysis and Machine Intelligence. 30(2), 267-282 (2008). 

SPIE-IS&T Vol. 8304  830411-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


