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ABSTRACT 

The paper presents the architecture and experimentation of a 10-Gb/s QoS-enabled almost-all-optical packet switching 
system (QOPS) for metro WDM networks. By applying cluster-based wavelength sharing and downsized single-staged 
optical buffers, QOPS is featured by its highly scalable and cost-effective design. In this paper, we first introduce the 
switch architecture, system operation, and the key techniques. We describe the in-band header/payload modulation and 
optical label swapping that is suitable for high-speed optical packet switching. We also present the design of the highly 
efficient Four-Wave Mixing wavelength converters for packet preemption. We then present an adaptive bifurcated 
routing (ABR) that directs same-connection packets to different switch clusters according to optimal bifurcation 
probabilities. Experimental and simulation results demonstrate that QOPS can achieve superior packet-loss performance, 
QoS differentiation, and minimize traffic blocking probability.  
 

Keywords: Optical Packet Switching (OPS), Quality of Service (QoS), Optical Label Switching (OLS), Superimposed 
Amplitude Shift Keying (SASK), Four-Wave Mixing (FWM), Adaptive Bifurcating Routing (ABR). 
 

1. INTRODUCTION 
Current applications of WDM mostly follow the Optical Circuit Switching (OCS) paradigm for long-haul backbone 
networks. Metro WDM networks, on the other hand, which are geographically closer to users, exhibit a wide range of 
heterogeneous traffic with different time-varying bandwidth demand and Quality-of-Service (QoS) requirements. Such 
facts bring about the necessity of exploiting Optical Packet Switching (OPS) [1] that is capable of achieving high 
statistical multiplexing gains, superior packet loss performance, QoS differentiation, and minimizing traffic blocking 
probability. 

In this work, we aim at the design and experimentation of a 10-Gb/s QoS-enabled almost-all-Optical Packet Switching 
System (QOPS) that is facilitated with four beneficial features to metro WDM networks. First, full wavelength sharing 
attains higher degrees of statistical multiplexing gains, however at the cost of requiring a large space switch size, and 
thus results in poor scalability. To circumvent the problem, QOPS employs cluster-based wavelength sharing where 
wavelengths are grouped into clusters and wavelength sharing is only allowed within the same cluster. Figure 1 displays 
the general architecture of a switch with w wavelengths and c wavelength clusters. A switch with k clusters is called a 
Class-k switch. 

Second, QOPS adopts the use of FDL-based single-stage downsized optical buffers. The rational behind the design is 
based on the following observation shown in Fig.2. We discovered that applying few optical buffers yield immense 
decline in loss probability. The improvement, however, becomes insensitive and thus unbefitting under larger buffer 
sizes. For example, an increase of buffer size from 2 to 3 results in almost two order of magnitude of packet loss 
improvement.  However, it needs a buffer increase from 11 to 16 to achieve similar performance. Thus, the packet loss 
can be maintained with only a small amount of buffers under adequate number of wavelengths in a cluster.  

Third, QOPS provides QoS differentiation by means of optical packet preemption, with which a high-priority packet 
entering a fully occupied system can preempt a low-priority packet that is already in one of the optical buffers. As a 
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result, QOPS achieves superior packet loss probability and effectual QoS differentiation under varying traffic loads. As 
will be shown how packet preemption is achieved by taking the advantage of multiple wavelength conversion of Four-
Wave Mixing (FWM) wavelength converters. 

Fourth, we have observed that, satisfying a given packet loss probability, high (low) switch classes attain distinctly 
greater (smaller) normalized per-wavelength capacities due to more (less) statistical multiplexing gains. Our goal is to 
determine optimal routing of QOPS networks taking cluster capacities into account. In this paper, we propose a new 
Adaptive Bifurcated Routing (ABR) method for OPS networks with switches possessing different clusters and 
capacities. Differing from existing routing methods, ABR directs packets of the same connection to different switch 
clusters in accordance with optimal bifurcation probabilities. As will be shown, ABR achieves superlative load balancing 
and thus drastic decrease in connection blocking probability compared to other adaptive routing methods without 
bifurcation. 

The remainder of this paper is organized as follows. In Section 2, we describe the architecture of QOPS and key 
techniques used in the system. The experimentation and the simulation results of packet loss probability are then 
presented in Section 3. In Section 4, we introduce the ABR scheme. We provide the problem formulation and draw 
comparisons of traffic blocking probability. Finally, concluding remarks are made in Section 5. 

 

 

Figure 1. Architecture of a Class-c optical switch. 
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and number of wavelengths. 

Proc. of SPIE Vol. 6354  635402-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

2. SYSTEM ARCHITECTURE AND KEY TECHNOLOGIES 
QOPS is a synchronous switching system that supports fixed-size packets. It consists of two parts- the optical switch and 
the Central Switch Controller (CSC), as shown in Figure 3. While the header of each packet is electronically processed 
by CSC, the payload travels within the optical switch all-optically. The header that carries forwarding (i.e., label) and 
QoS (i.e., priority) information is modulated with its payload based on the Superimposed Amplitude Shift Keying 
(SASK) technique [2]. Upon packet arriving at QOPS, the label is SASK-based swapped [2] and the priority information 
is passed to the QoS Control module which determines the destined wavelength and delay to which the packet belongs. 
QOPS is specially featured by its QoS capability. A newly arrived high priority packet can preempt a low priority packet 
that has been in the system if the optical buffer is fully occupied.  The preemption is achieved by the fast FWM-based 
wavelength converters [3] which are able to convert multiple wavelengths at the same time. We describe the detailed of 
system architecture, the SASK, and the FWM wavelength converter in the following sections. 

2.1 System Architecture and Operation 

The optical switch consists of four sections: input, Many-to-One Space Switch (MOSS), output buffer, and output 
sections. In the input section, there are N input/output fibers, each carrying n wavelengths. After DEMUX, each Tunable 
Optical Wavelength Converter (TOWC) converts the wavelength on which a packet is carried to an internal wavelength 
that is associated with the free space of the output buffer for the packet. For a Class c QOPS, in the MOSS section, there 
are c space switches corresponding to c clusters of wavelengths, respectively. Specifically, space switch Ck takes on n/c 
wavelengths, from λ(k-1)n/c+1, λ(k-1)n/c+2,…,λkn/c , for each of N fibers. Thus, the size of each space switch is N⋅(n/c)×N⋅(n/c), 
where c is the number of clusters in the switch. Then, each packet will be switched to the outlet that corresponds to the 
destined wavelength and output fiber on which the packet is carried. Notice that by Many-to-One, multiples packets 
coming from different inlets can be switched to the same outlet using different wavelengths. 

Followed by the MOSS, the output buffer section contains n sets of FDL-based shared optical buffers corresponding to n 
wavelengths, respectively. Each set of buffers is composed of a pair of Arrayed Waveguide Grating (AWG’s) and a set 
of F optical FDL’s connecting the AWG’s. Such buffer set can accommodate B packets at once, where B=(F−1)⋅M, and 
M is the number of internal wavelengths used within the switch. Notice that a packet entering the buffer at the ith input 
port of the first AWG will exit the buffer from the ith output port of the second AWG after receiving a specific delay 
determined by the QoS control module. Most significantly, more than one packet may be arranged to exit from the same 
output port of the second AWG. Nevertheless, only one packet with the highest priority can be passed (through the 
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Figure 3. QOPS system architecture. 
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optical filter) preempting other earlier arriving lower priority packets in the delay lines. Finally, wavelength selection is 
performed via MUX’s in the output section.         

The QoS control module performs packet scheduling as follows. Simultaneous arriving high- and low-priority packets 
are randomly scheduled and assigned from the wavelength with the smallest delay. If the system is full, a low-priority 
packet is dropped, and a high-priority packet can preempt the low-priority packet receiving the lease delay. 

 
2.2 Superimposed Amplitude Shift Keying (SASK) Technique 

QOPS is an Optical Label Switching (OLS) system that follows the operation of GMPLS protocols. A label which 
carries forwarding and QoS information is modulated with the payload based on the Superimposed Amplitude Shift 
Keying (SASK) technique. As shown in Figure 4, SASK superimposes a low-speed ASK label on top of a high-speed 
DC-balanced line-coded ASK payload. At any intermediate switching node, the old ASK label is erased by modulating 
the combined payload and label signal with the inverse of the received ASK label. It has been shown [2,8] that such 
technique requires only low-speed external modulators and low-speed optical receivers to perform label swapping. As a 
result, sophisticated phase modulation devices or optical components, such as MZI-SOA, can be eliminated. 

The basic building blocks of an optical transmitter are two-stage intensity modulators. A continuous-wave light source is 
first modulated by a high-speed Non-Return-to-Zero (NRZ) payload with a large modulation depth. It is subsequently 
modulated by a low-speed NRZ label with a small modulation depth. A DC-balanced line-encoder was adopted to 
suppress the low frequency energy of the payload signal. An 8B/10B line code has been adopted due to high 
practicability and bandwidth efficiency. It is worth noticing that the determination of a proper modulation depth for a 
label signal is crucial to the system performance. On one hand, a label with a low modulation index cannot sustain multi-
hop long-distance transmission due to payload interference and transmission noise. On the other hand, a label with a 
large modulation index may result in a decrease in payload signal power, and thus higher residual noise due to non-ideal 
label erasers. 

At each intermediate switching node, label swapping is performed by an optical label swapping subsystem that is 
composed of a label eraser module and a new-label AM modulator. In the label eraser module, a portion of the input 
signal is detected through a passive optical tap and a photodiode. A Low Pass Filter (LPFr) at the receiver front end is 
used to remove the payload signal and out-of-band noise. A limiting amplifier and a Low Pass Filter (LPFt) are then used 
to provide a constant amplitude and to reshape the received label waveform, respectively. The LPFt in the switching 
node should have a frequency response as close to that of the transmitting-end LPFt in order to inversely compensate the 
superimposed old label. Should the received label have a low error-rate performance, it can be considered as an analog 
copy of the original label signal. We use this re-shaped label, called complementary signal, to reverse modulate the 
optical signal via the AM modulator. Notice that a fiber delay line is placed before the AM modulator to minimize the 
deterministic phase error between the incoming and complementary signals. Consequently, most of the incoming (old) 
label can be removed. 
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Figure 4. SASK label swapping subsystem. 
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The performance of the Label Eraser may be affected by the timing error during matching the path of the fiber delay line 
and that of the electrical signal (see Figure 4). In the absence of noise, since all components on both paths are analog and 
not clock driven, the timing difference is a static value. Thus, timing control can be carried out by a manually tunable 
optical delay line, which can compensate the delay difference within tens of picoseconds. In the presence of noise, the 
random timing jitter problem arises from the Limiting amplifier as a result of the amplitude noise, subject to the 
selections of modulation index, optical amplifier spacing, and received power. A detailed performance analysis in this 
case has been presented in paper [2]. In general, using a modulation index of 0.22 and an optical received power of -
14dBm, the label signal integrity can be fully maintained in 10-hop links [2]. 

Notice that an important design parameter of SASK is the data rate for payload and label. To avoid payload's 
interference to the low-frequency label, not only the DC-null channel coding is used in payload signal, but also the 
label's data rate should be relatively low compared to the payload's data rate. The payload and label rates are 10G/b and 
125 Mb/s in the experiments shown in Section 3. 

2.3 High Efficient SOA-based Four-Wave Mixing Wavelength Converter 

We use a FWM-based wavelength converter to be the outbound OWC in QOPS system. Four-wave mixing (FWM) is 
distinguished from other wavelength conversion techniques by its ability to simultaneously convert a number of input 
wavelength channels [4,5]. However, it generally suffers from poor conversion efficiency and narrow conversion range. 
Significant improvement on the signal-to-background-noise ratio (SBR) and the conversion wavelength range is required 
for practical applications in optical switching networks. We have developed a new FWM wavelength converter which 
has high conversion efficiency and wide conversion range by applying a 1480-nm assisted beam in the SOA [3]. 

The wavelength converter combines the merits of using the two orthogonal polarized pumps (OPPs) scheme and an 
assisted beam [6]. The assisted beam allows obtaining high conversion efficiency by using a SOA with moderate gain 
and the OPP scheme provides wide conversion range. It is known that the maximum FWM efficiency is proportional to 
the unsaturated gain and square of the saturation power of an SOA. Therefore, increasing the gain and/or saturation 
power of a SOA is the key to improve the conversion efficiency and SBR. Since the fiber-to-fiber gain of a commercial 
SOA is typically around 20 dB, the maximal gain is usually limited by the amplified spontaneous emission (ASE) and 
the thermal effect. Instead, the saturation intensity and wavelength conversion efficiency of a single-pump SOA 
converter can be increased with a short-wavelength assisted beam [6].  

Fig. 5 shows the performance improvement by using a 1480-nm assisted beam. The 1480-nm assisted beam increases the 
signal amplitude by > 3dB and enhances the eye opening. The power penalties at a BER of 10-10 for 25-nm down-
conversion without and with the assisted beam are less than 1.2 dB and 0.8 dB, respectively. With the help of an assisted 
beam, the BER can be better than 10-10 with a power penalty of 2.7 dB for up-conversion. An assisted beam can reduce 
the power penalty because it improves not only the conversion efficiency but also the SBR. Further detailed results can 
be found in [3]. 
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Figure 5. Performance of the FWM-based OWC. 
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3. EXPERIMENTATION AND RESULTS 
We set up an experimental testbed to demonstrate the feasibility and performance of QOPS, as shown in Figure 6(a). The 
testbed operated at a data rate of 10 Gb/s and was time-slotted with each slot being 0.64 µs or 800 bytes long. Without 
loss of generality, we only implemented one optical signal path. In the control plane, an FPGA-based traffic generator 
produced four traffic channels using two different labels (fibers 1 and 2) and two priorities (H and L), respectively. For 
each channel, the traffic arrivals were generated following an Interrupted Bernoulli Process [7] characterized by two 
parameters (α,β), where α (β) corresponds to the probability of the state change per slot from “ON” (“OFF”) to 
“OFF”(“ON”). While the first-channel traffic was used to trigger the 10 Gb/s data pattern generator to actually pump out 
data packets, the remaining three channel’s information was passed to CSC to virtually emulate the environment with 
desired traffic and loads. The packet loss rate over time was monitored and displayed on a PC. 

In the optical switch, based on cross-phase modulation (XPM), the Input Wavelength Converter (IWC) was implemented 
by a fast tunable laser and Mach-Zehnder interferometer with a transient time shorter than 200 ns. The input wavelength 
(1550.92 nm) that carried packets was first converted to one of four AWG wavelengths, 1544.13 nm, 1545.72 nm, 
1550.52 nm, and 1552.12 nm, corresponding to 0- to 3-packet delays, respectively. The many-to-one switch consisted of 
fiber couplers and Semiconductors Optical Amplifiers (SOA’s). While couplers were used to broadcast packets, SOA’s 
functioned as on/off gates with a switching time less than 50 ns and an on/off extinction ratio greater than 30dB with a 
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140mA switching current. 

With the aim of converting multiple wavelengths at the same time, the Output Wavelength Converter (OWC) was 
implemented by means of the Four-Wave-Mixing (FWM) technique shown in Section 2. Followed by OWC, a fixed 
optical filter was used to extract the desired wavelength (1540.56nm) from the converted wavelengths. 

Figure 6(b) displays snapshots of the packet loss rate over time. In the experiment, we first increased the low-priority-
traffic load at time 3, followed by raising the high-priority-traffic load at time 12. Testbed results show that high-priority 
traffic experienced unaffected loss rate prior to time 12, and suffered higher loss only under an increasing traffic load of 
the same class. 

We further draw comparisons of packet loss probability among four QoS schemes: priority-less (PL), priority upon 
arrivals (PA), PA with preemption (PA+P), and head-of-line priority (HOL). Notice that, PA+P is our approach 
described above. While in PA, priority takes effect only upon arrivals; HOL gives absolute priority to high-priority 
packets, which cannot be realized for switches with non-circulated FDL-based buffers. In simulations, there were 40 
high-priority and 40 low priority channels, each given identical load and IBP arrivals with probabilities of switching 
from ON to OFF and OFF to ON being 0.225 and 0.225A/(1-A), respectively, where A is the mean arrival rate. Figure 7 
displays packet loss probability under increased low-priority traffic load and a given high priority traffic load (0.4). We 
discover from Figure 7(a) that our scheme (PA+P) distinctly outperforms PL and PA and PL. Finally, as shown in Figure 
3(b), QOPS achieves great QoS differentiation between high- and low-priority traffic by four orders of magnitude under 
aggregate loads 0.7 and above. 

 

4. ADAPTIVE BIFURCATED ROUTING (ABR) IN CLUSTER BASED OPS NETWORKS 
We have observed that in a cluster-based wavelength sharing switch, satisfying a given packet loss probability, high (low) 
switch classes attain distinctly greater (smaller) normalized per-wavelength capacities due to more (less) statistical 
multiplexing gains. Table 1 displays simulation results of the normalized capacity for various classes of switches 
(without optical buffer), satisfying 10-6 loss probability, under 2, 3, and 4 input ports each with four traffic-load ratios, 
and w=32. For example, a 2-port Class-1 switch offers normalized capacity 0.53 that is three times as high as that of a 
Class-4 switch (0.17). Saliently, the capacity gain is more insensitive to the number of multiplexed input port and traffic 
load ratio. Then, the cluster capacity becomes the per-wavelength capacity multiplied by the number of wavelengths in 
the cluster. Our goal is to determine optimal routing of OPS networks taking cluster capacities into account. 

Due to the structure of cluster switch, a graph transformation is first required. For each node with k clusters, it is replaced 
by a subgraph with k artificial vertices. These artificial vertices are interconnected by corresponding artificial edges 
depending on their wavelengths relationship. Artificial edges that belong to the same cluster are grouped into a virtual 
link.  An example of the transformation is shown in Figure 8.  

Table 1 Per-wavelength capacity of different 
switch classes (w=32)

 1:1 1:2 1:4 1:8 
Class-1 0.530 0.534 0.565 0.603 
Class-2 0.350 0.360 0.380 0.420 
Class-4 0.170 0.175 0.190 0.210 
Class-8 

2 
ports

0.040 0.042 0.046 0.054 
 1:1:1 1:2:4 1:4:16 1:8:64 

Class-1 0.490 0.510 0.550 0.593 
Class-2 0.320 0.335 0.370 0.413 
Class-4 0.150 0.156 0.177 0.204 
Class-8 

3 
ports

0.035 0.037 0.042 0.052 
 1:1:1:1 1:2:4:8 1:4:16:64 1:8:64:512

Class-1 0.480 0.492 0.537 0.593 
Class-2 0.310 0.320 0.363 0.410 
Class-4 0.140 0.148 0.175 0.202 
Class-8 

4 
ports

0.032 0.035 0.042 0.051 
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4.1 Problem Formulation 

The proposed adaptive bifurcated routing (ABR) directs same-connection packets to different switch clusters according 
to optimal bifurcation probabilities. Given a physical topology including cluster capacities of switches, a source (src) and 
destination (dest) node pair, and traffic demand d, the ABR problem is to determine a path and all bifurcation 
probabilities so as to optimize a given objective function. Based on the graph transformation shown in Figure 8, we 
formulate ABR as an Integer Linear Programming (ILP) problem as follows.  

Input values: 

N:  denote the switch node set;  

L:  the physical optical link set;  

M:  the virtual link set; 

(V,E): the artificial vertices and edges set, namely the cluster set on the transformed graph;  

El: the artificial edge set inside physical link l; 

Em: the artificial edge set inside virtual link m; 

Vn: the artificial vertices inside node n; 

Cm: denote the capacity of virtual link m ;  

te: the existing flow on artificial edge e; 

ϕnl = −1, if link l exists from node n; =1, if link l enters node n; and =0, otherwise.  

ηve = −1, if edge e exits from vertex v; =1, if edge e enters vertex v; and =0, otherwise.  

Decision variables: 

Figure 8. Graph transformation. 
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xl =1, if l is included in the final optimal path; and =0, otherwise.   

ye/d: the optimal bifurcation probability for edge e, where ye represents the partial traffic demand flowing into edge e.  

Thus, ABR is formulated as follows. 

Problem (ILP):  

l
Ll

l xw∑
∈

  min    

subject to:   

⎪
⎩

⎪
⎨

⎧
=
=−

=∑
∈ otherwise 0,

  if,1
  if ,1

destn
srcn

x
Ll

lnlϕ  Nn∈∀  (1) 

1or  0=lx  Ll∈∀  (2) 

l
Ee

e dxy
l

=∑
∈

 Ll∈∀  (3) 

0=∑
∈Ee

eve yη  
destsrc VVvVv U∉∈∀ ,  (4) 

ee uy ≤  Ee∈∀  (5) 

m
Ee

ee Cyt
m

≤+∑
∈

 Mm∈∀  (6) 

 

Constraint (1) and (2) give path routing constraints. Constraint (3) requires that the traffic demand being carried on the 
edges inside the selected links. Constraint (4) states the flow conversation law for each vertex. Constraints (5) and (6) are 
the capacity constraints. In our work, we consider three ABR methods respectively satisfying three objective functions 
associated with three different weight assignments. They are (1) Shortest Feasible Path with Bifurcation (SFP+BF): wl 

=1; (2) Weighted Feasible Path with Bifurcation (WFP+BF): l
Ee

el Ctw
l

∑
∈

= ; and (3) Reciprocal of Residual Capacity 

with Bifurcation (RRC+BF): )(1 ∑
∈

−=
lEe

ell tCw .  

4.2 Simulations 

We carried out simulations over two randomly generated networks with 14 and 20 nodes, respectively, as shown in 
Figure 9. In simulations, without loss of generality, all switches in the network were assumed to have 32 wavelengths. 
Switches were set to be of one of three classes (Class-1, Class-2, and Class-4). The source and destination pair was 
randomly selected with traffic demand being uniformly distributed between 0 and 1λ. The ILP ABR problem was solved 
directly through CPLEX package. We drew comparisons between three variants of ABR methods and three 
corresponding adaptive routing approaches without bifurcation, i.e., SFP, WFP, and RRC. We measured the Traffic 
Blocking Probability (TBP), defined to be the ratio of rejected connections’ traffic demand to the total requested traffic 
demand, under different network loads in unit of Erlang (network call arrival rate × mean call holding time). Simulation 
results are plotted in Figure 10. Simulation results show that, the three ABR variants distinctly outperform the three 
corresponding routing mechanisms without bifurcation irrespective of network size and load. 
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5. CONCLUSION 
In this paper, we have presented the architecture of QOPS, a 10-Gb/s QoS-enabled almost-all-optical packet switching 
system. QOPS is facilitated with scalable many-to-one space switch and downsized single-staged optical buffers. Those 
features make QOPS to be highly scalable and to achieve superior packet loss probability and QoS differentiation 
performance. The system performs efficient optical label swapping by the proposed SASK-based modulation of the 
header and optical payload. In addition, QoS differentiation is provided by means of packet preemption that is achieved 
by our high efficient FWM-based wavelength converters. To minimize the call blocking probability, the proposed ABR 
algorithm provides optimal bifurcated routing by taking cluster capacity into account. ABR achieves superlative load 
balancing and thus drastic decrease in connection blocking probability compared to other three adaptive routing methods 
without bifurcation. 

: Class-1; : Class-2; : Class-4;

(a) N=14 (b) N=20 

Figure 9. Network topology. 
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Figure 10. ABR Simulation results. 

(b) Comparison under N20 network (a) Comparison under N14 network 
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