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A Hierarchical Model of Rough Rock 
Joints Based on Micromechanics 
J.-J. DONGt  
Y.-W. PANt~ 

A rough rock joint model is proposed in this study on the basis ofmicromechan- 
ics concepts. In the model, the global behavior of a rough joint depends on the 
microfeatures of the contact planes on the joint. The contact mechanics on 
contact planes controls the mechanical behavior of the joint via a homogeniz- 
ation process. Also, the complex mechanical behavior of a joint is associated 
with simple microfeatures of the joint, including the frictional properties and 
the structure of contact planes. To capture the feature of scale dependency of 
joint roughness, a hierarchical representation of a joint profile is proposed in 
the form of a multi-level-asperity model. Moreover, the constitutive relation 
of the multi-level-asperity model is derived through a recursive homogenization 
process. The proposed model's framework is general and systematic. Further- 
more, major deformation mechanisms of joint asperities, i.e. interlocking, 
wearing, shearing-off, sliding, separation and degradation, are taken into 
account. 

I. INTRODUCTION 

Many mechanical models describe joint behavior~ of 
which, phenomenological models based on plasticity 
theory comprise the majority [1-6]. Phenomenological 
models, however, have several disadvantages in model- 
ingjoint behavior. First, the required parameters in these 
models lack any physical meaning because plasticity-the- 
ory treats joints as a continuum. Besides, a phenomeno- 
logical approach of a joint model cannot explicitly take 
into account the contact mechanisms under loading. 
Accordingly, a structural approach seems preferable in 
modeling joints since contact mechanisms predominate 
the mechanical behavior of a joint. 

A rough rock joint's mechanical behavior under load- 
ing involves the interaction of irregular joint surfaces. 
The micro-contact effects on these surfaces determine the 
macroscopic response of the joint. On the basis of the 
contact theory of two rough surfaces [7, 8], Swan [9] 
directly correlated the normal stiffness with the topogra- 
phy of joint wall. In his work, the global joint behavior 
was evaluated via the joint roughness profiling technique 
by measuring joint height variation. Later, Swan and 
Zongqi [10] extended this work to consider the shear 
behavior of joints. The extended model was later verified 
by Sun et al. [11]. These models assume the occurrence 
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of elastic contact and do not explicitly consider asperity 
degradation. For practical use, the statistical profiling 
data of natural joint surfaces must be analyzed [12, 13]. 
This procedure appears time-consuming and inefficient. 

Alternatively, following the "~b + i"  concept [14], the 
joint topography is often modeled as a set of regular 
asperities in most structural approaches. Ladanyi and 
Archambault [15], in their pioneering work, proposed a 
widely used joint strength model originated from granu- 
lar mechanics [16-18]. They considered riding up or 
shearing through the asperity as two major mechanisms 
controlling the global behavior of joints. On the basis of 
this concept, Amadei and Saeb [19] proposed a constitu- 
tive model of a rock joint based on the modified theory 
of Ladanyi and Archambault [20]. Their model takes 
into account the coupling shear behavior of a joint 
resulting from dilatancy and the boundary effect. Theor- 
etically taking the irregularity of the joint surface into 
account is really impossible. One alternative, then, is to 
use certain empirical indexes and make a correlation 
[21,22]. The well-known JRC-JCS models [23-29] rep- 
resent this branch of "~b + i"  approaches. Considering 
the geometry of joint surface and the relative degraded 
strength, this category of simple models correlates two 
empirical variables (JRC and JCS) with the joint behav- 
ior observed. As a result, the mechanism of joints under 
compression and shear is captured to a certain extent. 

By modeling joint behavior as an interaction problem 
between two media, Plesha [30] later developed a 
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macroscopic constitutive law of joints through micro- 
structural consideration. The joint surface is idealized as 
a triangular saw-tooth model and the yield function is 
linked to micro level sliding criterion of contact area. 
This plasticity-based joint model illustrates the mechan- 
ism of joint behavior through means of microscopic 
features. The model captures well the sliding mechanism 
along contact surface well. Moreover, this model 
incorporates a wear theory to account for the degra- 
dation of joint asperities under cyclic loading. The model 
has been further extended to model the joint asperities 
in a sinusoidal shape [31,32]. Through a local slip 
criterion in the contact level, the model bridges the 
big gap between the phenomenological and structural 
model of rock joints. On the basis of the same concept, 
Jing [33] modeled the softening behavior of a joint using 
hardening and softening functions. 

Recently, Haberfield and Johnston [34] reviewed the 
limitations of available joint models and proposed a 
mechanistically-based joint model. In their investigation, 
by using joint roughness and a few basic rock properties 
as model parameters, the capability of the structural 
model was demonstrated through simulating shear 
behavior of joints under constant normal stiffness (CNS) 
condition. Their model treats a joint profile as a series 
of irregular triangular asperities capable of sustaining 
elastic deformation. The asperities can also be sheared 
off if the shear stress on the joint exceeds a certain limit. 
In their model, the distribution of normal stress on each 
asperity must be determined. As stated by Haberfield 
and Johnston [34], using a complex numerical procedure 
to determine the normal stress distribution of each 
asperity is impractical. Instead, they proposed a sim- 
plified but approximate alternative that involves several 
assumptions. However, this procedure makes the 
solution somewhat indirect. 

In this study, a conceptual model is proposed by 
considering the microscopic contact features of rough 
rock joints. The successful application of micromechan- 
ics to granular materials [35] has led toward modeling 
the rock joint behavior in this approach. This model is 
a micromechanics based homogenization process con- 
trolled by a friction law and contact plane orientation. 
A multi-level roughness model represents the statistical 
nature of a joint surface. Therefore, the scale dependent 
property of joint roughness can be simulated in a 
relatively easy approach via the hierarchical roughness 
representation. In this model, any level of asperity can 
be smoothed if the stress state exceeds certain critical 
conditions. As a result, this model can simulate the 
effects of interlocking and degradation of micro- 
asperities. The softening behavior of a joint can also be 
modeled by the gradual change in the orientation of 
contact planes (degrading from an initial inclined angle 
to a certain residual value). The global behavior of a 
joint can be determined easily from the micro-feature of 
the basic contact plane on which the frictional law and 
degradation law applies. The number of required par- 
ameters in this model are relatively few; in addition, each 
material parameter processes a physical meaning. The 

proposed model's framework is more straightforward 
than other conventional models. Moreover, the contact 
interaction can be solved more directly using this 
approach than the simplified approach adopted by 
Haberfield and Johnston. 

2. THE BASICS OF THE MICROMECHANICS-BASED 
MODEL 

2.1. Fundamental concepts of  micromechanics-basedjoint 
model 

A micromechanics-based model is presented in this 
work to describe the mechanical behavior of a rock joint. 
The following concepts are fundamental elements in the 
proposed model. 

2. I. 1. Basic contact plane. A rock joint is considered 
as two rough rock surfaces in contact with each other. 
The characteristics of contact rock surfaces control the 
global mechanical behavior of a joint. To simplify the 
complicated contact mechanics, a real contact point is 
represented by a smooth basic contact plane using the 
homogenization concept. On this plane, the Amonton's 
friction law is assumed here to apply. Selecting basic 
contact planes depends on the stress level and the joint 
scale. Small undulation (thereby resulting in the inter- 
locking effect [36, 37]) on joint faces tends to become 
smoothened quickly after shearing action. Unless the 
mechanical behavior of a joint under very low magni- 
tude of shear stress is concerned, one need not select a 
very small basic contact plane to model the contact 
problem in a rock joint. 

2.1.2. Hierarchical contact structure. An actual joint- 
face frequently undulates irregularly. Uniform orien- 
tation distribution of contact planes may oversimplify 
the nature of a real joint. Different approaches are 
proposed to represent the actual joint surface geometry. 
Roberts et al. [38] proposed a systematic framework 
capable of describing the joint surface geometry in either 
a deterministic approach, statistical approach, or proba- 
bilistic approach. Alternatively, fractal geometry [39] 
was used to model a joint surface by treating the joint 
surface as a self-similar surface [40,41]. This fractal 
geometry approach seems promising. To account for the 
scale dependence of joint roughness, the representation 
of joint surface as a self-affine surfaces appears more 
reasonable [42-44]. In addition, joint roughness can be 
represented in any desired resolution using the self-affine 
fractal. Following a similar concept, the proposed model 
considers the contact structure within a rock joint as a 
multi-level hierarchical system. The asperity of a rock 
joint is represented as multi-level asperities in a saw- 
tooth shape, as illustrated in Fig. 1. The orientation of 
saw teeth can be random in any level. The basic contact 
planes are composed of the outward boundary of the 
lowest level asperity (which is also in a saw-tooth shape). 
On the basis of micro-mechanistic formulation, the 
contact behavior of asperity along basic contact planes 
(which is the lowest level asperity) can determine the 
mechanical behavior of the higher level asperities 
through a homogenization process. The global (average) 
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Fig. 1. The hierarchical structure of joint profile. 

mechanical behavior of a joint can thus be obtained in 
a recursive procedure. The single saw-tooth shape sur- 
face represents a special case in which only one level of 
asperity is considered. 

2.1.3. Deformation mechanism. Johnston and Lam 
[36] observed several basic mechanisms controlling joint 
movement. These basis mechanisms include: (i) initial 
deformation; (ii) asperity sliding (including the 
smoothening of micro-asperities which subsequently 
causes sudden loss of the apparent cohesion); (iii) asper- 
ity shearing; and (iv) asperity crushing. To simplify the 
complex process of joint deformation, three dominant 
mechanisms influencing joint deformation are con- 
sidered in the proposed model, i.e.: (i) the elastic contact 
deformation (in the initial deformation stage); (ii) the 
relative sliding of contact plane (in the asperity sliding 
stage); and (iii) the degradation of joint wall which may 
include the smoothening of the relative micro asperities, 
the wearing effect, and the crushing (damaging) of the 
macro asperity. In developing the proposed model, the 
following assumptions are made concerning the micro- 
mechanistic deformation mechanism on a basic contact 
plane: (i) The contact materials deform elastically before 
the shearing stress on a basic contact plane reaches the 
frictional strength on the plane. The frictional strength 
on the contact plane is determined from the basic 
frictional angle, (ii) Sliding between the contact rock 
materials occurs when the shear stress reaches the fric- 
tional strength on the contact plane. Consequently, the 
shear stress on the contact plane becomes equal to the 
frictional strength during sliding, (iii) If the average 
shear stress on a micro saw tooth of any level exceeds the 
joint-wall strength, degradation of the saw tooth occurs 
simultaneously and the basic contact plane gradually 
changes in the degradation process, (iv) The complicated 
nature of degradation of a macro saw tooth (which may 
include tensile cracks in the saw tooth and the wearing 
on the contact plane) can be simplified by a degradation 
process. A gradual degradation process can model the 
effect of wearing on the contact plane; on the other hand, 

a rapid degradation process may model brittle behavior 
due to the tensile breakage of a saw tooth. 

2.2. The proposed model's framework 

Micromechanics has been successfully applied in 
recent years to model the mechanical behavior of gran- 
ular materials [35, 45]. In a micromechanical model, the 
macro behaviors of granular assemblage are a function 
of the microstructure and micro properties of particles. 
Following a similar concept, the proposed model obtains 
a macrofeature from micro feature through a homogen- 
ization process. The process is based on the following 
basic relations: 

(1) between the local contact stress and the average 
stress, 

(2) between the local relative displacement and the 
average relative displacement, 

(3) between the local contact stress and the local 
relative displacement (i.e. the local constitutive 
law). 

It is assumed that the local constitutive law of the 
basic contact plane is elastic before yielding. After 
yielding, the sliding and separation effects of contact 
plane can be considered through a relaxation stress [35]. 
The averaged stress and relative displacement is derived 
through a homogenization process, as shown in Fig. 2. 
The micromechanics-based constitutive model of a rock 
joint is derived in an incremental form. 

3. SINGLE-LEVEL-ASPERITY CONSTITUTIVE MODEL 
OF JOINT 

3. I. Model formulation 

Figure 3 illustrates the coordinate system and the 
stress components used in the following formulation. 
The stress components, a~ and a~, are the global normal 
stress and shear stress, respectively, on the global joint 
plane (i.e. the average joint plane). The stress tensors, a~ 
and ¢7~, are the local contact normal stress and shear 
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Fig. 2. Framework of the proposed model. 

stress, respectively, on the local contact plane (i.e. the 
basic contact plane). 

From the equilibrium conditions, the increment of 
global stress tensor, da~, can be obtained by first trans- 
forming the local contact stresses tensor, da~, into the 
global coordinates system then summing up their total. 
Hence, 

1 N 
da~ =AGo,.=] ~ aCT~da;' (1) 

Og ~ °c 

N 

o~ 
Fig. 3. The coordinate system of the single level model. 

where 

A0 is the global cross-sectional area of joint, 
a" is the selected contact area of the basic contact 
plane "c" ,  
T~) is a coordinate transformation tensor (from the 
local coordinate system to the global coordinate 
system) depending on the orientation of the contact 
plane. For the plane strain condition: T,, = 
Tss=cosa,  T , ~ = - T s , = s i n ~ ,  in which ~ is the 
inclined angle of the contact plane, as shown in Fig. 3, 
N is the total number of selected basic contact planes. 

The local constitutive law of the basic contact plane 
regulates the relation between the local contact stresses 
tensor, da~, and the local relative displacement tensor, 
du), of the basic contact plane "c".  This constitutive law 
can be expressed as 

da~ = k~du~ - dry, (2) 

in which k~ is the contact stiffness tensor of the basic 
contact plane "c" ,  and dr~ is the relaxation stress tensor 
that accounts for the sliding and separation effects on 
the contact plane. When sliding occurs, the shear com- 
ponent of the relaxation stress is taken as the amount of 
contact shear stress exceeding the contact shear strength. 
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When separation occurs, the normal component of the 
relaxation stress is taken as the amount of the contact 
normal stress exceeding the contact tensile strength. The 
tensile strength is zero if no adhesive material in the joint 
is present. 

Inserting equation (2) into equation (1) yields 

1 N 1 N 
dag =Aoo ,=,Z aCT't)k~kdU~-Aoo c=,Z aCTit)dr; " (3) 

The global relative displacement, du g , can also be 
obtained by averaging the local relative displacements, 
du~, according to 

N 

du g = ~ TTjduj. (4) 

A heterogeneous tensor H e is next introduced to 
account for the variational nature of the local relative 
displacement. Correspondingly, the local relative dis- 
placement is derived as 

c- 1 /../c z/~g du7 = Tij ,, k j • . j .  (5) 

The heterogeneous tensor, H~j, accounts for the vari- 
ation of local relative displacement, du~. If the local 
relative displacement is uniformly distributed over a 
contact plane, an identity tensor represents the hetero- 
geneous tensor. Otherwise, a suitable statistical distri- 
bution should be considered in modeling the 
non-uniform distribution of the local relative displace- 
ment over a contact plane. 

Inserting equation (5) into equation (3), yields the 
following expression. 

1 N 1 U 
dag=~o,=.~ a"T~jk~kT~ 'H~,,dug,-~o c=l ~ a'T'Jr~ (6a) 

o r  

da g = K j u  g - dRy, (6b) 

where Ku and dR~ are the global stiffness and relaxation 
stress tensor, respectively. K 0 is a function of the contact 
plane orientation and local contact stiffness. The 
relaxation stress tensor, dRy, reflects the local yielding 
condition. 

3.2. Verification 
Numerical simulation of a symmetrical saw-tooth 

shaped joint is presented in this subsection to demon- 
strate the validity of the proposed model. Each saw 
tooth contains a pair of contact planes with a positive 
slope and negative slope, respectively, to form a triangu- 
lar asperity. For simplicity, additional assumptions 
(besides the fundamental assumptions) are made in the 
numerical simulations (although these assumptions are 
not essential in the proposed model). 

k n 

t , .  u~ 

¢ 

~n c tan ~b ] - - / k  s 

9 / P tl t s 

- ~ -  -1 a~ t.n *b 
Fig. 4. The local constitutive law of  the basic contact plane. 

(1) Contact bodies deform linear-elastically before 
relative sliding or separation occurs. (Figure 4 
illustrates the local constitutive law.) 

(2) The contact shear stress on the contact plane does 
not exceed the sliding shear strength, ~r, as defined 
by the friction law zj = a, tan ~bb. In which a, and 
~bb are the normal stress and the basic frictional 
angle, respectively. 

(3) Plane-strain condition is considered. 
(4) The bodies on two sides of the joint are initially 

matched perfectly. 
(5) The local relative displacement is identical to the 

global relative displacement through coordinate 
transformation. Hence, the heterogeneous tensor 
becomes an identity tensor. 

To verify the proposed model, a comparison is made 
of model simulation results with the experimental data 
of artificial regular joints of saw-tooth shape [32]. 
Table 1 lists the parameters used in the simulation. The 
single-level-asperity model is capable of accurately 
depicting a saw-tooth shaped joint. Hence, this model 
can successfully capture the shear behavior of joint with 
a relatively simple calculation. Figure 5 shows the com- 
pressive deformation and the shear dilation of the 
experimental data. Results of the model simulation are 
shown in Fig. 6. 

Through a proper correlation of asperity inclination 
with accumulated shear displacement, the proposed 

Table 1. Parameters selected for verifying the presented micromechanics 
based model 

Basic Inclined 
friction angle of Normal Shear 
angle asperity stiffness stiffness 

~b b = 39.8 ° ~ = 10 ° k. = 15 MPa /mm k~. = 13 MPa /mm 
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Fig. 5. Experimental data of  artificial joints (retrieved from [32]). 
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Fig. 6. Simulated results of  artificial regular joints by single-level 
model. 

model can be expanded easily to simulate the wearing 
effect of asperity under cyclic shearing. Such an example 
is the wear theory adopted by Plesha and co-workers 
[30, 31]. This subject is not covered in detail here. Figures 
7 and 8 present the simulation results of cyclic shearing, 
in which the wear effect is taken into account. 

3.3. Discussion 

The proposed single-level-asperity model has been 
verified in the above by making a comparison of simu- 
lation and experimental results for an artificial saw-tooth 
joint. Unsurprisingly, simulation results are quite close 
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Fig. 7. (a) and (b) Simulated results for the first five cycles of  a direct shear test; (c) and (d) experimental results (normal 
stress = 1.0 MPa) (retrieved from [31]). 
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to those of Plesha's model [32] since the deformation 
mechanisms considered in both models are similar (in 
spite of the differences in the formulation of two 
models). The proposed model, however, makes use of 
only four basic parameters to capture the shear and 
compressive behavior of a regular joint. Consequently, 
the required calibration effort can be significantly 
reduced. A detailed calibration procedure and a para- 
metric study are presented in Section 5. The amount of 
calculation required in the model simulation is relatively 
light. 

The single-level-asperity model just presented gener- 
ally follows the "~ + i "  concept, in which the angle " i "  
represents the inclined angle of joint asperity. However, 
natural joints are frequently irregular, and natural joint 
roughness is very different from an ideal saw-tooth 
model. Joint roughness generally has a random and 
scale-dependent nature. In a practical measurement, 
joint roughness depends primarily on the relative scale of 
selected base length for measuring the joint roughness. 
Micro-roughness on a joint controls the mechanical 
behavior of the joint only when the stress level and 
relative scale are relatively small. As the stress level or 
scale increases, the importance of micro-roughness' 
role degrades rapidly. Micro-asperities can become 
smoothened quickly once the shear stress is sufficiently 
large. Absolutely defining the inclined angle of joint 
asperity is relatively difficult since joint roughness is a 
scale-dependent parameter. With this aspect in mind, a 
hierarchical concept of joint roughness is next proposed 
to expand the single-level-asperity model into a so-called 
"multi-level-asperity model". The formulation and 

simulation of the multi-level-asperity model are 
presented in the subsequent sections. 

4. MULTI-LEVEL-ASPERITY CONSTITUTIVE MODEL 
OF JOINT 

4.1. Model formulation 

The homogenized (average) mechanical behavior of 
level one asperity determines the global mechanical 
behavior of a joint, as shown in Fig. 1. Let d(~a~) and 
d(~u~) denote the incremental global averaged stress 
tensor and the global averaged relative displacement 
tensor, respectively. The left headnote number denotes 
the averaged level of asperity homogenized, and the right 
headnote specifies the particular contact plane homogen- 
ized. For instance, d(tcr~) is the incremental average 
stress on the global (average) plane of the joint (in 
level-one asperity). By using a similar formulation as 
presented in the last section, the generalized global 
constitutive law can be formulated as follows. 

d('a~) = tg~.d(tu~) - d ( t ry ) .  (7) 

The tensor tK~j is the global averaged stiffness and can 
be expressed by 

i s _  1 ,N~ 
giJ -- Ia--~o n=lE 2an2zn,, zg''t ,¢:T",,, ,~-' 2H",,j, (8) 

in which 2K7, t is the local stiffness tensor of the nth 
contact plane in the level-two averaged (asperity) plane, 
and ~N s is the total number of averaged contact planes 
in level-one asperity. 
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d(*R~) is the global relaxation stress tensor expressed 
by 

1 INs 

d(tRgi)=T~oo ~=12A"2Tg. d(2R;). (9) 

1 g K 0 is a function of  the averaged contact plane orien- 
tation and the averaged contact stiffness 2K~t in level-two 
asperity homogenized. 

Following the same line of homogenization process, 
every averaged contact stiffness in the level-two asperity is 
a function of the contact plane orientation and averaged 
contact stiffness in the level-three asperity. Therefore, 

2 n _ _  1 2Nn 
K i j - -  T ~  E 3 As3,-rs  31e.s [3 , r s  "t--I 3 S ( 1 0 )  ,tat a ik lXkl ~ Jt lm I H m j  , 

s = l  
2N n 

d ( 2 R n )  = E 3 A S 3  s 3 s Tod( Rj), (11) 
s = |  

in which 3K~t is the local stiffness tensor of the sth 
contact plane in the level-three averaged (asperity) plane, 
2N" is the total number of  averaged contact planes in 
level-two asperity of nth averaged plane, and d(aR~) is 
the relaxation stress tensor in the level-three averaged 
(asperity) plane. 

The recursive process can proceed until the level of  a 
basic contact plane (e.g. the pth level) is reached. The 
averaged stiffness, P-~KC/, and the relaxation tensors, 
d( p- *R~), in the level (p - 1) averaged (asperity) plane 
can be expressed as follows: 

1 ,-,N~ 
P - I K ~ ) = p _ I A  ~ ~ P l l b P " F b l r b [ P ' T ' b  ~ - lP l ' i ' b  ( 1 2 )  ,ca ~t iktVkl \ Jt lm ] ,ta mj, 

b=l  
1 p - I N c  

-- A Tqd(r/), (13) d ( P - l R C i )  p - l A C  E p bp  b b 
b= l  

in which kbt and d(r b) denote the basic contact stiffness 
and relaxation tensor, respectively, of  the contact plane 
"b". These two tensors depend on the deformation 
mechanisms, as previously described in Section 3. In the 
above equation, P-IN ~ is the total number of basic 
contact planes in level ( p -  1) asperity of the cth 
averaged plane. 

Micro-roughness tends to be smoothened (shearing- 
off) when the stress state reaches a certain critical 
condition. To model this aspect, a low level asperity is 
allowed to disappear when the average shear stress in 
that level exceeds a shear strength z~ (which obeys 
z~ = a, tan ~b~ in which a, is the normal stress and ~b~ is 
the shearing-off angle). The shearing-off of the micro 
asperities only starts from the asperities of the lowest 
level and may proceed to the asperities of a higher level 
if the shear stress rises any further. 

Following the recursive formulation described above, 
the global stiffness tg} and the global relaxation stress 
tensor d(~Rf) can be derived from the local constitutive 
relations on the basic contact plane (i.e. the lowest level 
asperity) through homogenization as shown in Fig. 2. 

4.2. Demonstration 
A comparison of the simulated and laboratory direct 

shear tests of  slate joint [10] is made in Fig. 9 to 
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Fig.  9. (a) Laboratory and simulated direct shear test of  slate joint 
(retrieved from [10]). (I-7 experimental result--simulation by Bar-  
t o n - B a n d i s  model.) (b) Simulated direct shear test of slate joint by the 

proposed model. 
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Fig. 11. The influence of basic friction angle on the shear behavior of 
a regular joint under direct shear: (a) shear stress vs shear displace- 

ment; (b) dilation vs shear displacement. 

demonstrate the validity of the multi-level model. The 
assumptions stated in Section 3.2 are still preserved in 
this part. Joint models with single and three level(s), 
respectively, of triangular saw-tooth asperity are con- 
sidered. The parameters used in the simulation are: (1) 
the basic friction angle ~b b = 12°; (2) the inclined angle of 
the 1st level asperity = 6.21 °, inclined angle of the 2nd 
and 3rd level asperity =26.21°; and (3) the normal 
stiffness k , = 5 0 M P a / m m  and the shear stiffness 
k~ = 5 MPa/mm. The frictional and inclined angle of the 
1st level asperity are adopted from [10]. The other 
parameters are selected arbitrarily. The simulation re- 
sults correlate sufficiently with the experimental results. 
A substantial improvement in the accurate prediction of 
initial stiffness of nature joints over the simulation 
results by other q5 + i 's  model [dashed line of Fig. 9(a)] 
can be observed. 

As Fig. 9(b) shows, the selected levels of asperities 
affect the initial shear stiffness of the joint model. 
Adopting higher levels of asperities not only implies an 
increase in the relative roughness implicitly, but also 
represents a greater number of micro-contacts sharing 
the external loads. Interlocking of these micro-contacts 
can largely constrain the mobility of relative shear 
displacement of a joint. Any model treating a joint 
surface only as an averaged saw-tooth shape can never 
capture this phenomenon thoroughly. Figure 9(b) also 
reveals that the ultimate strength is independent of the 
levels of asperities considered because the selected shear- 
off strength of the relative micro-level asperities is small 

(~bs= 10 ° in both 2nd and 3rd levels). In practice, 
micro-asperities tend to smoothen under a small shear 
displacement as long as the shear stress becomes quite 
large relative to the strength of joint wall. As a result, 
most interlocking micro-contacts vanish eventually and 
the macro-asperity controls the ultimate behavior of the 
joint. This accounts for why those models adopting 
~b + i 's  concept can only predict ultimate behavior, but 
fail to accurately describe the initial stage of a loaded 
joint. 

5. P A R A M E T E R S  C A L I B R A T I O N  A N D  P A R A M E T R I C  

S T U D Y  

5. I. Determination of the parameters 

The proposed model uses only a few parameters, i.e. 
basic frictional angle and local stiffness. A method to 
obtain these parameters is described in this subsection. 
The basic friction angle and the local stiffness (of a 
contact plane) can be determined by compressive and 
shearing tests on two smooth surfaces. The basic fric- 
tional angle of a common rock type can be easily found 
in previous literature involving the mechanical proper- 
ties of rock materials [46]. Available information regard- 
ing the local stiffness is not as common as those of basic 
frictional angle. However, we will demonstrate later that 
the local stiffness of contact plane plays an insignificant 
role, particularly when the ultimate shear strength is the 
major concern. 
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Fig. 12. The influence of local normal stiffness on the shear behavior 
of a regular joint under direct shear: (a) shear stress vs shear 
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5.2. Parametric study 

A parametric study is next presented to investigate the 
influences of single level joint asperity microfeatures on 
the direct shear behavior of a joint under a constant 
normal loading condition (Figs 10-15). The parametric 
study in this section makes use of the same assumptions 
as in Section 3.2 to represent the microfeatures of joint 
asperity. For simplicity, regular saw-tooth shaped asper- 
ity without degradation is assumed unless noted other- 
wise. The parameters used (if not presented in the 
figures) can be found in Table 1. The normal stress an is 
0.5 MPa in the simulations presented in Figs 12 and 13 
and 1.0 MPa in others unless noted otherwise. 

The local constitutive law on a basic contact plane 
contains a sliding criterion and a local stiffness. The 
normal loading and the basic frictional angle are the 
dominant factors governing the sliding mechanism. 
Figure 10 reveals that the shear strength is proportional 
to the normal loading. Each curve in Fig. 10 can be 
divided into four segments: (1) segment ab-elastic defor- 
mation; (2) segment bc-relative sliding of the contact 
surface with negative slope; (3) segment cd-separation of 
the contact surface with negative slope; and (4) segment 
after d-relative sliding of the contact surface with posi- 
tive slope. This figure also reveals that the shear displace- 
ment corresponding to the onset of the 4th segment 
(relative sliding along all contact surfaces) increases with 
an increase in normal loading. The increase in normal 
loading subsequently reduces joint dilation, but does not 
affect the dilation rate after the occurrence of relative 
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sliding. The dilation rate only depends on the orientation 
of the contact plane. The basic frictional angle is a 
fundamental parameter of frictional materials. Figure 11 
reveals that: (i) the shear strength of joint increases with 
the basic frictional angle; (ii) the basic frictional angle 
affects neither dilation nor dilation rate; and (iii) the 
basic frictional angle does not affect the initial slope of 
the curve of shear stress versus shear deformation. 

Figures 12 and 13 present the influences of local 
stiffness on joint deformation. Figure 12(a) shows that: 
(i) local normal stiffness does not significantly affect the 
initial stiffness and shear strength of a joint; (ii) the 
normal deformation under compression and the shear 
displacement after yielding increase with a decrease in 
the local normal stiffness, k,. Figure 12(b) shows that the 
dilation rate remains constant. The influence of local 
shear stiffness is presented in Fig. 13. Local shear 
stiffness affects the initial curve of shear stress vs shear 
deformation, but does not alter the shear strength and 
dilation curve. 

Figure 14 shows that the shear strength of a joint 
increases with the inclined angle of the contact plane. 
The dilation rate after yielding is exactly equal to the 
inclined angle of the contact plane. The orientation of 
contact plane plays a role similar to the dilation angle 
of granular materials. This role reflects the influence of 
joint roughness to the shear behavior of the joint. 

The joint asperities may be crushed or gradually worn 
down to a residual shape under stress. The degradation 
process may further derive from the development of 
tensile cracks within the joint wall [47]. The actual mode 
of degradation depends on the stress field within the 
joint wall. However, this stress field is highly compli- 
cated; in addition, analytically modeling this aspect is 
impractical. Alternatively, the combined degradation or 
damaging process can be modeled by a degradation law 
which considers a continuous change in the orientation 
of a contact plane from an initial state to a residual one. 
In an averaging concept, the onset of degradation can be 
assumed to occur when the averaged shear stress reaches 
a certain limit (which can be regarded as an equivalent 
shear strength of joint wall). Next, a hypothetical degra- 
dation law is proposed herein for demonstration pur- 
poses. The contact inclined angle ct is assumed to be a 
function of the accumulated plastic work wp as follows. 

c~ = ~, + ( %  - ct,)e -',~"~ (14) 

in which s0 is the initial contact inclined angle before any 
degradation occurs; ~r is the residual contact inclined 
angle after the degradation process is complete; ca 

is degradation coefficient which reflects the speed of 
asperity degradation. 

Figure 15 presents the effect of joint-asperity degra- 
dation under various joint wall strengths. Curve 1 in this 
figure shows the simulation results without joint-asperity 
degradation. The ultimate strength can be obtained by 
combining the inclined angle without degradation 
(~t 0 = 10 °) and the basic frictional angle (~b b = 39.8°). If 
the averaged shear stress on joint wall exceeds the 
joint-wall strength, the joint tooth starts degrading 

(curves 2-4). The hardening or softening behavior 
depends on the strength and degradation process of the 
joint-wall. When the joint-wall strength is relatively high 
(e.g. curves 3 and 4, tks=49°), the curve shows a 
softening behavior from the peak to a residual strength. 
The residual contact inclined angle is set to be 1 o in cases 
2-4. The only difference between curves 3 and 4 is the 
selected degradation coefficient Ca (5 and 100, respect- 
ively) which reflects the speed of degradation. The 
softening behavior will not exist if the joint-wall strength 
is relatively low (as shown in curve 2, ~bs = 10°). Further- 
more, for cases 2-4, the dilation rates after yielding are 
all equal to the residual inclined angle. 

The proposed model can simulate the mechanical 
behavior of rock joint under a variety of conditions. The 
proposed model, which is derived in an incremental 
form, can take the stress-path effect into account without 
much difficulty. Besides, model simulation can take the 
effects of boundary and system-stiffness conditions into 
account. Figure 16 demonstrates the capability of the 
proposed model to simulate the shear behavior of joint 
under CNL (constant normal loading) and CNS (con- 
stant normal stiffness) conditions. The system stiffness is 
assigned infinity to simulate the boundary condition of 
a constrained normal dilation. Figure 16(a) indicates 
that the joint stiffness under constrained normal dis- 
placement condition arises after a large shear displace- 
ment develops. Because the joint dilatancy [dashed line 
in Fig. 16(b)] is constrained, the normal loading tends to 
increase. This effect also increases the ultimate strength 
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of the joint .  Unde r  this condi t ion,  the degradat ion 
mechanism of asperity may control  the shear behavior  of  
the joint .  

6. SUMMARY AND CONCLUSIONS 

A model  of  rough rock joints  based on micromechan-  
ics concepts has been proposed in this study. In the 
proposed model,  the global behavior  of a rough jo in t  
depends upon  the microfeatures of the contact  planes on 
the joint .  Through  a homogeniza t ion  process, the con- 
tact mechanics on contact  planes control  the mechanical  
behavior  of the joint .  Thus,  the complex mechanical  

behavior  of a jo in t  is l inked with simple microfeature of 
the joint ,  including the frictional properties and  the 
structure of  contact  planes. To capture the feature of 
scale dependency of  jo in t  roughness,  a hierarchical rep- 
resentat ion of jo in t  profile has been proposed in a form 
of multi-level-asperity model. Moreover,  the consti tut ive 
relat ion of  the multi-level-asperity model  is derived 
through a recursive process of  homogeniza t ion .  

The proposed model ' s  f ramework is general and  sys- 
tematic. Major  deformat ion  mechanisms,  i.e. including 
sliding and separat ion between contact  planes, interlock- 
ing and  shearing-off effects of  micro roughness,  wearing 
and degradat ion  of  jo in t  tooth on jo in t  asperity, are 
taken into account.  The global consti tutive law is 
derived in an  incremental  form. Hence, the proposed 
model  can take the stress dependency of jo in t  behavior  
into account  without  much difficulty. This model  
requires only a few parameters  which can be either 
cal ibrated or est imated easily. The numerical  implemen-  
ta t ion of  this model  is quite simple. Accordingly,  it can 
be easily incorporated with a c o m m o n  numerical  tool to 
simulate the mechanical  behavior  of  rock masses. 

Accepted for publication 18 May 1995. 
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