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Abstract 

This study aims to identify key factors affecting crash frequencies under various times of the day, so as to propose 
effective and time-specific countermeasures. Two approaches are proposed and compared. The clustering approach 
combines a crash count model to predict total number of crashes and a clustering model to divide segments into 
clusters according to their time-of-day distribution patterns of crash frequency. The multivariate approach treats the 
crash frequencies of various times of the day as target variables and accommodates potential correlation among 
them. Crash datasets of Taiwan Freeway No.1 are used to estimate and validate the models. Four times of the day, 
late-night/dawn (24-06), morning/noon (07-13), afternoon/evening (14-19), and night (20-23) are formed according 
to crash count distribution. In terms of Adj-MAPE and RMSE, the clustering approach performs better than the 
multivariate approach. According to the clustering results, segments in metropolitan areas have higher crash 
frequency in the afternoon/evening, while those in rural areas have higher crash frequency in late-night/dawn, 
suggesting the time-of-day distributions of crash frequency markedly differ among segments. Time-specific 
countermeasures are then proposed accordingly. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Many studies have developed crash frequency models to identify factors contributing to crash counts at roadway 
segments or at intersections during a certain time period (usually one year) (e.g., Jones et al., 1991; Miaou, 1994; 
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Many studies have developed crash frequency models to identify factors contributing to crash counts at roadway 
segments or at intersections during a certain time period (usually one year) (e.g., Jones et al., 1991; Miaou, 1994; 
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Fridstrom et al., 1995; Shankar et al., 1995; Poch and Mannering, 1996; Shankar et al., 1997; Milton and Mannering, 
1998; Ivan et al., 1999; Ivan et al., 2000; Abdel-Aty and Radwan, 2000; Khattak et al., 2002; Wang and Nihan, 2004; 
Lord, 2006; Wong et al., 2007; Malyshkina and Mannering, 2010). However, only a few of studies further examined 
risk factors contributing to crash counts at various times of the day (e.g., morning, afternoon, and night) which can 
definitely provide more useful information for proposing effective and time-specific countermeasures. For example, 
Doherty et al. (1998) studied the distribution of crash frequency at times of the day. They showed a very high crash 
frequency for drivers aged 16 to 19 to drive at night. Clarke et al. (2006) investigated how age, driving experience, 
and time of day affect the crash frequency of young drivers and the results suggested that the problems of accidents 
in darkness are not a matter of visibility, but a consequence of the way young drivers use the roads at night. Qin et al. 
(2006) examined the relationship between crash occurrence and hourly traffic. The results revealed how the 
relationship between crashes and hourly traffic varies by time of day, thus improving the accuracy of crash 
occurrence predictions. The results show that even accounting for time of day, the hourly traffic is indeed non-linear 
of crash occurrence, implying that at any time of day, the crash occurrence is not proportional to the hourly traffic. 
Marquis (2014) analyzed the truck-related crash occurrences in Manhattan, New York over four time blocks: the 
morning peak (6:00-10:00), the mid-day (10:00-15:00), the afternoon peak (15:00-19:00), and the night time (19:00-
6:00) by using zero-inflated negative binomial models. The study found that both the built environment and the 
traffic flows contribute to the temporal variation of truck-related crash occurrence. 

Most of the above studies examined the effect of time of day on crash counts by introducing a time variable into 
the model or by modelling crash counts at various time periods separately. The former has difficulty in investigating 
the different effects of risk factors on crash counts at various time periods and the latter ignores the potential 
correlation among crash counts at various time periods. Thus, this study aims to simultaneously model the crash 
counts at various time periods. The model framework is similar to those modelling crash frequencies by severity 
levels (e.g., property damage only, injury, and fatality) and collision types (e.g., rear-end, head-on, sideswipe, and 
right angle) or by collision types (Milton et al., 2008; Ye et al., 2009; Naderan and Shahi, 2010; Aguero-Valverde, 
2013; Chiou and Fu, 2013; Ye et al., 2013; Chiou et al., 2014; Venkataraman et al., 2014; Chiou and Fu, 2013). The 
remainder of this paper is organized as follows. Section 2 presents the proposed models. Section 3 addresses data 
collection and descriptive statistics of the study crash dataset. Section 4 presents the model estimation results and 
comparisons. Concluding remarks and suggestions are then given in Section 5. 

2. Model 

To identify the key factors contributing to crash counts at various times of day, two approaches are proposed, 
clustering and multivariate modeling approaches, as narrated below, respectively. 

2.1. Clustering approach 

The proposed clustering approach contains two stages.  The first stage is to predict total crashes on each segment 
by using commonly adopted Poisson (PO) and Negative binomial (NB) models. The second stage is to divide 
freeway segments into finite clusters according to their time-of-day crash frequency distribution patterns. The 
average time-of-day crash frequency distribution of each cluster is then used to represent the segments belonging to 
it. 

The PO model is the most fundamental count model. The probability function of PO model (Miaou, 1994; Jones 
et al., 1991) is expressed as Eq. (1). 
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where PO (yi) is the probability of yi accidents occurring on roadway segment i under a specific time period. λi is the 
expected number of accidents on roadway segment i at the time period, which is defined in non-negative numbers. 
For estimation purposes, λi is usually specified as Eq. (2): 

λi=exp(β′Xi)                                                                                                                                                (2) 
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where PO (yi) is the probability of yi accidents occurring on roadway segment i under a specific time period. λi is the 
expected number of accidents on roadway segment i at the time period, which is defined in non-negative numbers. 
For estimation purposes, λi is usually specified as Eq. (2): 

λi=exp(β′Xi)                                                                                                                                                (2) 
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where Xi and β are the vectors of explanatory variables (such as road geometry, traffic, and weather conditions) and 
associated estimated coefficients, respectively. 

The PO distribution assumes the equality of mean and variance. However, the empirical studies usually show that 
crash counts of some road segments are extremely high, while others are rather low in contrast, suggesting variance 
may exceed mean (over-dispersion) and violating the underlying assumption of the PO model. Consequently, the 
NB model is an appropriate alternative option to crash frequency modelling (Milton and Mannering, 1998; Poch and 
Mannering, 1996). 

The NB model adds an error term εi to the expected cash frequency (λi) as shown in Eq. (3): 

λi=exp(β′Xi+εi)                                                                                                                    (3) 

where the error term εi in Eq. (3) is a gamma-distributed error term with mean one and variance α which represents 
the degree of over-dispersion. Thus, the formulation of NB probability density distribution, NB(yi), can be expressed 
as: 
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Secondly, according to our field observations, the time-of-day distributions of various freeway segments 
remarkably differ due to the traffic, weather, lighting or other unknown reasons. Based on this, the crash percentages 
of 24 hours is used as the clustering variables (a total of 24 variables) to divide road segments into clusters. The 
freeway segments belonging to the same cluster exhibit the similar time-of-day distribution of crash counts. The 
choice of cluster algorithms depends on samples sizes. It is appropriate for a sample size below 200 cases to use the 
layering method, while the K-means method is usually recommended for a sample size more than 200 cases 
(Karlaftis and Tarko, 1998; Anderson, 2009; Mohamed et al., 2013). 

Afterward, the estimated crash counts of a freeway segment i at time period t can be determined by multiplying 
the crash counts (λi) estimated by the crash frequency model and the average crash percentages of time period t (ptc) 
of cluster c which the segment is classified to. 

2.2. Multivariate modeling approach 

In order to reflect the correlations among various types of crashes, Ye et al. (2009; 2013) simultaneously 
estimated T expected crash counts (λit, i=1, 2, …, N; t=1,2,…, T) at segment i by specifying error components 
coefficient (δ), which assumes the random error term follows a normal distribution. This conceptual framework can 
be applied to multivariate modeling of crash frequencies at various time periods of a day. Taking a case of four time 
periods (i.e. n=4) for instance, the crash counts of four time periods can be expressed as Eq. (5). 

 
ln(λi1)=β1′X i1+εi1 =β1′X i1+δ1µ1 
ln(λi2)=β2′X i2+εi2 =β2′X i2+δ2µ1+δ3µ2  

ln(λi3)=β3′X i3+εi3=β3′X i3+δ4µ1+δ5µ2+δ6µ3                                                                                                                                                                             

ln(λi4)=β4′X i4+εi4=β4′X i4+δ7µ1+δ8µ2+δ9µ3+δ10µ3 (5) 
 

where Xit denotes the explanatory variables vectors of different time periods, t=1, 2, 3, 4. βt is the coefficient vector 
of corresponding explanatory variables to be estimated. εit is the error term. µj is a standard normal distributed 
random variable, j=1, 2, …, 10. δj are the coefficients corresponding to µj to be estimated. The variance-covariance 
matrix of crash frequencies of four time periods can then be expressed as: 
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Cov(ε1, ε2)= δ1δ2; Cov(ε1, ε3)= δ1δ4; Cov(ε1, ε4)= δ1δ7;                                                                                           
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Cov(ε2, ε3)= δ2δ4+δ3δ5; Cov(ε2, ε4)= δ2δ7+δ3δ8;                                                                                                       
Cov(ε3, ε4)= δ4δ7+δ5δ8+δ6δ9  (7) 
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where Eqs. (6) and (7) are the variance and covariance of ε1, ε2, ε3  and ε4, respectively. Eq. (8) represents the 
correlation coefficients of ε1, ε2, ε3 and ε4. The flexible framework of assigned error components to various variates 
largely simplifies complicated potential correlation among crash counts of various time periods and increase 
computation efficiency. The estimated correlation coefficient with an absolute value close to 1 indicates perfect 
correlation. An absolute value of the correlation coefficient between 0.7 to 0.9 expresses high correlation, while a 
medium correlation would be between 0.3 to 0.6. Otherwise, it is slightly or not correlated. 

Under the assumption of Poisson distribution (Ye et al., 2013) and the condition on µj  of  λit, the conditional 
probability function POt(yit|λit) of four crash frequencies yit  is expressed as Eq.(9). 
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The probability functions of four crash counts in Eq.(9) are then multiplied, making the MPO (multivariate 

Poisson) joint probability function as Eq. (10). 

MPO(yt|λ(µj)) 
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=∫∫∫∫PO(yk|λ(µk)) ·g(µk=1,2,3,4) ·d(µ1) ·d(µ2) ·d(µ3) ·d(µ4)  (10) 

2.3.  Goodness-of-fit indices 

The best number of clusters can be determined depends on the pre-set criterion of cluster analysis. This study 
uses F value to determine the optimal number of clusters, which can be expressed as (Chiou and Lan, 2001): 
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where N is the total number of segments), m is the number of clusters, nk is the number of segments in cluster k, and 
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Secondly, according to our field observations, the time-of-day distributions of various freeway segments 
remarkably differ due to the traffic, weather, lighting or other unknown reasons. Based on this, the crash percentages 
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coefficient (δ), which assumes the random error term follows a normal distribution. This conceptual framework can 
be applied to multivariate modeling of crash frequencies at various time periods of a day. Taking a case of four time 
periods (i.e. n=4) for instance, the crash counts of four time periods can be expressed as Eq. (5). 

 
ln(λi1)=β1′X i1+εi1 =β1′X i1+δ1µ1 
ln(λi2)=β2′X i2+εi2 =β2′X i2+δ2µ1+δ3µ2  
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ln(λi4)=β4′X i4+εi4=β4′X i4+δ7µ1+δ8µ2+δ9µ3+δ10µ3 (5) 
 

where Xit denotes the explanatory variables vectors of different time periods, t=1, 2, 3, 4. βt is the coefficient vector 
of corresponding explanatory variables to be estimated. εit is the error term. µj is a standard normal distributed 
random variable, j=1, 2, …, 10. δj are the coefficients corresponding to µj to be estimated. The variance-covariance 
matrix of crash frequencies of four time periods can then be expressed as: 

 
Var(ε1)= δ1

2; Var(ε2)= δ2
2+δ3

2 ; Var(ε3)= δ4
2+δ5

2+δ6
2; Var(ε4)= δ7

2+δ8
2+δ9

2+δ10
2 (6) 

 
Cov(ε1, ε2)= δ1δ2; Cov(ε1, ε3)= δ1δ4; Cov(ε1, ε4)= δ1δ7;                                                                                           
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Cov(ε2, ε3)= δ2δ4+δ3δ5; Cov(ε2, ε4)= δ2δ7+δ3δ8;                                                                                                       
Cov(ε3, ε4)= δ4δ7+δ5δ8+δ6δ9  (7) 
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where Eqs. (6) and (7) are the variance and covariance of ε1, ε2, ε3  and ε4, respectively. Eq. (8) represents the 
correlation coefficients of ε1, ε2, ε3 and ε4. The flexible framework of assigned error components to various variates 
largely simplifies complicated potential correlation among crash counts of various time periods and increase 
computation efficiency. The estimated correlation coefficient with an absolute value close to 1 indicates perfect 
correlation. An absolute value of the correlation coefficient between 0.7 to 0.9 expresses high correlation, while a 
medium correlation would be between 0.3 to 0.6. Otherwise, it is slightly or not correlated. 

Under the assumption of Poisson distribution (Ye et al., 2013) and the condition on µj  of  λit, the conditional 
probability function POt(yit|λit) of four crash frequencies yit  is expressed as Eq.(9). 
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The probability functions of four crash counts in Eq.(9) are then multiplied, making the MPO (multivariate 

Poisson) joint probability function as Eq. (10). 

MPO(yt|λ(µj)) 
=PO1(y1 |λ(µ1))· PO2(y2|λ(µ1, µ2)) · PO3(y3|λ(µ1, µ2, µ3)) · PO4(y4|λ(µ1, µ2, µ3, µ4))  
=∫∫∫∫PO(yk|λ(µk)) ·g(µk=1,2,3,4) ·d(µ1) ·d(µ2) ·d(µ3) ·d(µ4)  (10) 

2.3.  Goodness-of-fit indices 

The best number of clusters can be determined depends on the pre-set criterion of cluster analysis. This study 
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where N is the total number of segments), m is the number of clusters, nk is the number of segments in cluster k, and 
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xt is a vector of clustering variables. 
To evaluate the goodness-of-fit, two proposed approaches: Adjusted Mean Absolute Percentage Error (Adj-

MAPE) and Root Mean Square Error (RMSE) are adopted: 
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where Aij refers to the actual crash counts of segment i at time period j, Pij refers to the predicted crash counts of 
segment i at time period j. Actual crash counts of some segments at some time periods are zero, which results in a 
computation error according to the original MAPE formula. Thus, the adjusted-MAPE is adopted instead. 

3. Data 

The accident datasets for Taiwan’s Freeway No.1 in 2005 and 2006 were collected. The Freeway runs north-south, 
is 373.3 km long, and has 63 interchanges. To facilitate model estimation, a study segment is formed by two 
adjacent interchanges. By separately considering north- and south-bound directions, 124 analytical samples are 
obtained. The accident database, which is maintained by the National Highway Police Bureau (NHPB), contains 
accident information, such as crash severity, location and time of an accident, and number and types of vehicles 
involved. Covariates regarding geometric and facility characteristics were extracted from as-constructed freeway 
drawings and the online website of the Taiwan National Freeway Bureau. Traffic data collected by the Taiwan 
National Freeway Bureau include traffic volumes and occupancy of small vehicles, large vehicles, and tractor 
trailers. Rainfall data were obtained directly from the Taiwan Central Weather Bureau. 

Since the lengths of segments markedly differ, the dependent variable is represented by the crash count divided by 
the segment length (GL) to better reflect the crash risk. While constructing the time period of the Multivariate 
Poisson model, the response variant is the crash number in all time periods. Model estimation was facilitated by 
determining four time periods with distinct numbers of crash counts according to the real distribution of crash 
frequency. Four time periods are “Late-night/Dawn”(00-06), “Morning/Noon”(07-13), “Afternoon/Evening” (14-
19), and “Night” (20-23). Table 1 shows the crash count per km for the four time periods. The table indicates that 
the afternoon/evening time period has the highest crash counts, followed by morning/noon time period and the late-
night/dawn period has the lowest crash counts. The distribution of crash counts is consistent with the pattern of 
traffic flow, confirming the results of most studies. As reported in most studies, the distribution indicates that traffic 
is the most important exposure measure of crashes. 

 
Table 1. Descriptive statistics for dependent variable (crash counts per km) 

 Crash counts per km 
 (=Crash counts/segment length) 

Mean Std. Min. Max. 

Total crash counts 17.32 16.55 2.19 85.29 
Crash counts by time periods of days     
Night 1.89 2.07 0.00 11.58 
Late-night / Dawn 1.73 1.24 0.00 5.59 
Morning / Noon  6.13 6.75 0.40 37.89 
Afternoon / Evening 7.58 8.48 0.52 39.13 
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Fig. 1. Time-of-day crash distribution 

 
Table 2 shows that the explanatory variables considered in this study can be divided into three categories: 

Geometric factors, Environmental factors, and Traffic factors. Geometric features of the freeway include maximum 
upward and downward slopes, curvature, Clothoid parameter, posted speed limit, and number of lanes. 
Environmental factors include the number of speeding cameras; annual rainfall; rest area or toll station; adjacent 
urban area, airport, seaport or industrial area; and freeway system interchanges. The traffic factors include total 
traffic (average daily traffic volume), traffics of various vehicles types (including small vehicles, buses and trucks, 
and tractor-trailers), and percentage of large vehicles (including buses, trucks, and tractor-trailers). 
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Number of lanes 2.73 .53 2.00 4.00 

Environmental  factors     
Number of speeding cameras 3.57 3.96 0.00 22.00 
Annual rainfall (1000 millimeters) 2.80 0.57 1.48 4.24 
Dummy variable(yes=1, no=0)     

Presence of rest area  0.10 0.30 0.00 1.00 
Presence of toll station 0.16 0.37 0.00 1.00 
Adjacent to urban area 0.47 0.50 0.00 1.00 
Adjacent to airport, seaport or industrial area 0.32 0.47 0.00 1.00 
Adjacent to freeway system interchanges  0.23 0.42 0.00 1.00 

Traffic factors     
Total traffic (1000 pcu/hr) 3.14 1.03 1.31 6.40 

Night 3.40 1.21 1.40 7.38 
Late-night / Dawn 1.74 0.58 0.65 3.55 
Morning / Noon 3.74 1.24 1.58 7.74 
Afternoon / Evening 4.17 1.40 1.77 8.67 

Traffic of buses (1000 veh/hr) 0.24 0.12 0.07 0.56 
Night 0.25 0.13 0.07 0.63 
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xt is a vector of clustering variables. 
To evaluate the goodness-of-fit, two proposed approaches: Adjusted Mean Absolute Percentage Error (Adj-
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where Aij refers to the actual crash counts of segment i at time period j, Pij refers to the predicted crash counts of 
segment i at time period j. Actual crash counts of some segments at some time periods are zero, which results in a 
computation error according to the original MAPE formula. Thus, the adjusted-MAPE is adopted instead. 

3. Data 

The accident datasets for Taiwan’s Freeway No.1 in 2005 and 2006 were collected. The Freeway runs north-south, 
is 373.3 km long, and has 63 interchanges. To facilitate model estimation, a study segment is formed by two 
adjacent interchanges. By separately considering north- and south-bound directions, 124 analytical samples are 
obtained. The accident database, which is maintained by the National Highway Police Bureau (NHPB), contains 
accident information, such as crash severity, location and time of an accident, and number and types of vehicles 
involved. Covariates regarding geometric and facility characteristics were extracted from as-constructed freeway 
drawings and the online website of the Taiwan National Freeway Bureau. Traffic data collected by the Taiwan 
National Freeway Bureau include traffic volumes and occupancy of small vehicles, large vehicles, and tractor 
trailers. Rainfall data were obtained directly from the Taiwan Central Weather Bureau. 

Since the lengths of segments markedly differ, the dependent variable is represented by the crash count divided by 
the segment length (GL) to better reflect the crash risk. While constructing the time period of the Multivariate 
Poisson model, the response variant is the crash number in all time periods. Model estimation was facilitated by 
determining four time periods with distinct numbers of crash counts according to the real distribution of crash 
frequency. Four time periods are “Late-night/Dawn”(00-06), “Morning/Noon”(07-13), “Afternoon/Evening” (14-
19), and “Night” (20-23). Table 1 shows the crash count per km for the four time periods. The table indicates that 
the afternoon/evening time period has the highest crash counts, followed by morning/noon time period and the late-
night/dawn period has the lowest crash counts. The distribution of crash counts is consistent with the pattern of 
traffic flow, confirming the results of most studies. As reported in most studies, the distribution indicates that traffic 
is the most important exposure measure of crashes. 
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Morning / Noon 0.28 0.13 0.08 0.62 
Afternoon / Evening 0.31 0.16 0.08 0.84 

Traffic of light duty vehicles (1000 veh/hr) 1.61 0.69 0.49 4.36 
Night 1.92 0.88 0.55 5.46 
Late-night / Dawn 0.69 0.31 0.22 2.14 
Morning / Noon 1.96 0.85 0.58 5.35 
Afternoon / Evening 2.28 0.97 0.73 6.40 

Traffic of heavy-duty vehicles (%) 21.51 5.96 9.34 33.02 
Night 18.49 5.30 7.18 29.12 
Late-night / Dawn 30.23 9.50 9.33 48.36 
Morning / Noon 20.86 5.88 9.43 32.64 
Afternoon / Evening 19.33 5.44 7.97 30.23 

Traffic of tractor-trailers (1000 veh/hr) 0.17 0.08 0.07 0.67 
Night 0.15 0.07 0.06 0.56 
Late-night / Dawn 0.12 0.06 0.03 0.48 
Morning / Noon 0.20 0.10 0.08 0.87 
Afternoon / Evening 0.20 0.10 0.07 0.77 

4. Results 

The clustering approach was used to classify segments into clusters according to their crash percentages in 
various time periods of a day. The commonly adopted K-means method is chosen, and the number of clusters, K, is 
determined by the F-value. Fig. 2 depicts the distribution of F-values under various numbers of clusters. Note that 
K=4 has the highest F-value and it is used to form clustering by K-means method. 

 

 
Fig. 2. Distribution of F-values under various numbers of clusters 

 
To examine the differences among four clusters, the mean values of explanatory variables of four clusters are 

reported in Table 3. Table 3 gives the average values of explanatory variables of four clusters. Table 3 shows that 
the Cluster 1 segments have the lowest downward slope, curvature, and percentage of large vehicles. These 
segments have no toll stations but have the highest total traffic and small vehicles, the highest percentage of 
segments in 100km/hr speed limits and are adjacent to urban areas, airport, port, and industrial park. These segments 
are mostly in metropolitan areas. The Cluster 2 segments have the highest maximum upward and downward slopes, 
curvature rate, Clothoid parameter values, number of speeding cameras, and percentage of large vehicles. These 
segments are mostly in rural areas. The Cluster 3 segments have the highest percentage of segments in 100km/hr 
speed limits, bus and truck traffic, presence of toll stations, but have the lowest annual rainfall and tractor-trailer 
traffic. The Cluster 4 segments have the lowest maximum upward slope, Clothoid parameter values, percentage of 
segments in 100km/hr speed limits, number of lanes, number of speeding cameras, and traffic in most vehicle types 
but have the highest annual rainfall and largest number of segments adjacent to system interchanges. 
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Table 3. Means of explanatory variables of the segments in four clusters 
Means Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 
Freeway geometrics      

Maximum upward slope (%) 1.05 1.54 1.12 0.86 1.25 
Maximum downward slope (%) 0.72 1.63 0.83 0.90 1.17 
Curvature (‰) 0.48 0.90 0.59 0.69 0.73 
Clothoid parameter (1000 degrees) 0.49 1.28 0.95 0.45 0.93 
Posted speed limit (100 km/h) 1.12 1.11 1.12 1.08 1.11 
Number of lanes 2.77 2.76 2.72 2.61 2.73 

Environmental  factors and Freeway facilities      
Number of speeding cameras 2.46 4.65 3.56 1.89 3.57 
Annual rainfall (1000 millimeters) 2.87 2.73 2.68 3.08 2.80 
Dummy variable(yes=1, no=0)      

Presence of rest area  0.12 0.15 0.04 0.00 0.10 
Presence of toll station 0.00 0.20 0.28 0.11 0.16 
Adjacent to urban area 0.58 0.40 0.44 0.56 0.47 
Adjacent to airport, seaport or industrial 
area 0.42 0.27 0.28 0.39 0.32 

Adjacent to system interchanges  0.19 0.25 0.16 0.28 0.23 
Traffic characteristics      

Total traffic (1000 pcu/hr) 3.36 3.11 3.16 2.88 3.14 
Night 3.65 3.34 3.52 3.09 3.40 
Late-night / Dawn 1.86 1.74 1.73 1.57 1.74 
Morning / Noon 4.09 3.71 3.59 3.52 3.74 
Afternoon / Evening 4.35 4.13 4.38 3.77 4.17 

Buses (1000 veh/hr) 0.22 0.25 0.26 0.21 0.24 
Night 0.24 0.26 0.28 0.21 0.25 
Late-night / Dawn 0.14 0.17 0.17 0.13 0.16 
Morning / Noon 0.27 0.29 0.28 0.25 0.28 
Afternoon / Evening 0.28 0.33 0.35 0.26 0.31 

Light-duty vehicles (1000 veh/hr) 1.82 1.57 1.61 1.46 1.61 
Night 2.20 1.83 1.95 1.73 1.92 
Late-night / Dawn 0.80 0.68 0.66 0.62 0.69 
Morning / Noon 2.22 1.92 1.88 1.80 1.96 
Afternoon / Evening 2.52 2.20 2.38 2.05 2.28 

Percentage of heavy-duty vehicles (%) 18.91 22.50 22.27 21.16 21.51 
Night 15.85 19.52 19.45 17.83 18.49 
Late-night / Dawn 26.49 31.36 32.15 29.50 30.23 
Morning / Noon 18.76 21.60 21.31 20.99 20.86 
Afternoon / Evening 16.81 20.40 19.89 18.90 19.33 

Tractor-trailers (1000 veh/hr) 0.19 0.16 0.16 0.17 0.17 
Night 0.16 0.15 0.15 0.15 0.15 
Late-night / Dawn 0.14 0.12 0.12 0.12 0.12 
Morning / Noon 0.24 0.20 0.18 0.21 0.20 
Afternoon / Evening 0.21 0.20 0.19 0.20 0.20 

Note: The maximum mean is underlined and the minimum mean is in bold type. 
 

Figure 3 further depicts the crash percentages under four time periods of segments in four clusters by Box-
plotting. Fig. 3 shows a markedly different time-of-day distribution in the four clusters. Segments in metropolitan 
area (Cluster 1) have crashes frequently occur in the morning and noon (07-13) and afternoon and evening (14-19). 
There is a rising trend of crashes in rural areas (Cluster 2) from night (20-23) to afternoon and evening (14-19). 
Segments far from system interchanges (Cluster3) have crashes concentrated in the afternoon and evening (14-19) 
while the crash percentage of Cluster 4 concentrates in the morning and noon (07-13). 
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Table 3. Means of explanatory variables of the segments in four clusters 
Means Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 
Freeway geometrics      

Maximum upward slope (%) 1.05 1.54 1.12 0.86 1.25 
Maximum downward slope (%) 0.72 1.63 0.83 0.90 1.17 
Curvature (‰) 0.48 0.90 0.59 0.69 0.73 
Clothoid parameter (1000 degrees) 0.49 1.28 0.95 0.45 0.93 
Posted speed limit (100 km/h) 1.12 1.11 1.12 1.08 1.11 
Number of lanes 2.77 2.76 2.72 2.61 2.73 

Environmental  factors and Freeway facilities      
Number of speeding cameras 2.46 4.65 3.56 1.89 3.57 
Annual rainfall (1000 millimeters) 2.87 2.73 2.68 3.08 2.80 
Dummy variable(yes=1, no=0)      

Presence of rest area  0.12 0.15 0.04 0.00 0.10 
Presence of toll station 0.00 0.20 0.28 0.11 0.16 
Adjacent to urban area 0.58 0.40 0.44 0.56 0.47 
Adjacent to airport, seaport or industrial 
area 0.42 0.27 0.28 0.39 0.32 

Adjacent to system interchanges  0.19 0.25 0.16 0.28 0.23 
Traffic characteristics      

Total traffic (1000 pcu/hr) 3.36 3.11 3.16 2.88 3.14 
Night 3.65 3.34 3.52 3.09 3.40 
Late-night / Dawn 1.86 1.74 1.73 1.57 1.74 
Morning / Noon 4.09 3.71 3.59 3.52 3.74 
Afternoon / Evening 4.35 4.13 4.38 3.77 4.17 

Buses (1000 veh/hr) 0.22 0.25 0.26 0.21 0.24 
Night 0.24 0.26 0.28 0.21 0.25 
Late-night / Dawn 0.14 0.17 0.17 0.13 0.16 
Morning / Noon 0.27 0.29 0.28 0.25 0.28 
Afternoon / Evening 0.28 0.33 0.35 0.26 0.31 

Light-duty vehicles (1000 veh/hr) 1.82 1.57 1.61 1.46 1.61 
Night 2.20 1.83 1.95 1.73 1.92 
Late-night / Dawn 0.80 0.68 0.66 0.62 0.69 
Morning / Noon 2.22 1.92 1.88 1.80 1.96 
Afternoon / Evening 2.52 2.20 2.38 2.05 2.28 

Percentage of heavy-duty vehicles (%) 18.91 22.50 22.27 21.16 21.51 
Night 15.85 19.52 19.45 17.83 18.49 
Late-night / Dawn 26.49 31.36 32.15 29.50 30.23 
Morning / Noon 18.76 21.60 21.31 20.99 20.86 
Afternoon / Evening 16.81 20.40 19.89 18.90 19.33 

Tractor-trailers (1000 veh/hr) 0.19 0.16 0.16 0.17 0.17 
Night 0.16 0.15 0.15 0.15 0.15 
Late-night / Dawn 0.14 0.12 0.12 0.12 0.12 
Morning / Noon 0.24 0.20 0.18 0.21 0.20 
Afternoon / Evening 0.21 0.20 0.19 0.20 0.20 

Note: The maximum mean is underlined and the minimum mean is in bold type. 
 

Figure 3 further depicts the crash percentages under four time periods of segments in four clusters by Box-
plotting. Fig. 3 shows a markedly different time-of-day distribution in the four clusters. Segments in metropolitan 
area (Cluster 1) have crashes frequently occur in the morning and noon (07-13) and afternoon and evening (14-19). 
There is a rising trend of crashes in rural areas (Cluster 2) from night (20-23) to afternoon and evening (14-19). 
Segments far from system interchanges (Cluster3) have crashes concentrated in the afternoon and evening (14-19) 
while the crash percentage of Cluster 4 concentrates in the morning and noon (07-13). 
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Fig. 3. Box-plots of crash percentages of segments in four clusters 
 
The results obtained by the better performing crash count model are combined with the above clustering results. 

In the process of crash count model estimation, only the significantly tested explanatory variables (with |t |>1.645) 
are retained. Table 4 gives the estimation results for the PO or NB models. The over-dispersion coefficient of the 
NB model is significantly different from zero, suggesting that the over-dispersion nature of the crash data and the 
NB model should be adopted. Meanwhile, the t values of explanatory variables in PO and NB models markedly 
differ, because the standard errors of the PO model are underestimated. In terms of goodness-of–fit indices, ρ2 value 
and BIC value, the NB model outperforms the PO model. The log-likelihood ratio test (χ2=-2×(LL(βPO)- LL(βNB) 
=352.50 > χ2

(0.05,6)=12.59) also confirms the better performance of the NB model. 
 
Table 4. Estimated PO and NB models 

Explanatory variables 
Model 
PO NB 

Para. t-value Para. t-value 
Constant 0.73 1.15 3.27 7.62 

Over-dispersion - - 0.28 6.49 
Geometric factors     

Maximum downward slope -0.19 -7.61 -0.19 -3.96 
Curvature 0.16 6.60 0.11 2.08 
Clothoid parameter -0.18 -4.99 -0.12 -1.72 
Posted speed limit 1.34 3.43 - - 

Environmental  factors     
Number of speeding cameras -0.05 -4.32 -0.04 -1.87 
Annual rainfall 0.27 4.50 - - 
Presence of rest area  0.41 4.32 - - 
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Presence of toll station -0.34 -4.06 - - 
Adjacent to urban area 0.36 7.65 0.37 3.21 

Traffic factors     
Small vehicles 0.24 2.05 0.24 2.73 
Bus and trucks 1.20 2.38 - - 
exp (Tractors-trailer) 0.48 3.04 - - 
Percentage of large vehicles -0.04 -3.45 -0.04 -2.50 

Goodness of fit     
Sample size 124 124 
LL(C) -1053.58 -1053.58 
LL(β) -603.49 -427.23 
ρ2 0.43 0.59 
BIC 1274.454 897.85 
Number of covariates 13 7 

 
For the multivariate modeling approach, the MPO model directly uses the number of crashes in the four time 

periods in a day as the target variables. Table 5 shows the estimation results for the MPO model. Notably, the 
overall goodness-of-fit value of the MPO model is 0.39. The significantly tested explanatory variables in four time 
periods differ, suggesting the necessity to identify the key factors affecting crash counts of various time periods in a 
day. The estimated correlation coefficient indicates that the crash counts in the four time periods have a strong 
positive correlation (all of them are larger than 0.9), which strongly suggests that separately modeling the crash 
counts in various time periods is inappropriate. 

According to the estimation results of the MPO model, an increased number of speeding cameras and increased 
volumes of buses decrease the number of crashes during night (20-23). In segments adjacent to urban areas, the 
number of crashes increases. During late-night/dawn (00-06), the presence of toll station and higher percentage of 
heavy-duty vehicles remarkably increase number of crashes. During morning and noon (07-13), the number of 
crashes increases in segments with larger difference in the slope and Clothoid parameter, in segments with a high 
number of speeding cameras, and in segments with toll stations. However, the number of crashes is even larger in 
the segments that have high annual rainfall, high total traffic and that are adjacent to an urban area. During 
afternoon/evening (14-19), higher maximum downward slope, Clothoid parameter, and percentage of heavy-duty 
vehicles obviously decrease number of crashes, while the segments adjacent to an urban, the number of crashes 
obviously increases. 

In sum, geometric and environmental factors highly affect number of crashes occurring in the afternoon and 
evening, while traffic and environmental factors affect greater on the crashes in the nighttime. However, geometric, 
environmental, and traffic factors all contribute to crashes in the morning and noon. 
 
Table 5. Estimated MPO model 

Variables Night Late night / Dawn Morning / Noon Afternoon / 
Evening 

Para. t-Stat Para. t-Stat Para. t-Stat Para. t-Stat 
Constant 0.71 2.30 0.57 1.49 0.23 0.60 2.39 7.91 
Geometric factors         

Maximum downward slope - - - - - - -0.10 -2.22 
Maximum upward slope  - - - - -0.05 -2.17 - - 
Clothoid parameter - - - - -0.16 -2.32 -0.16 -2.32 

Environmental  factors         
Number of speeding 
cameras -0.07 -2.59 - - -0.09 -4.40 - - 

Annual rainfall - - - - 0.39 4.21 - - 
Presence of toll station - - -0.29 -2.13 -0.29 -2.13 - - 
Presence of rest area  - - - - - - -0.43 -2.12 
Adjacent to urban area 0.34 2.09 - - 0.17 1.72 0.17 1.72 
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evening, while traffic and environmental factors affect greater on the crashes in the nighttime. However, geometric, 
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Traffic factors         
Total traffic - - - - 0.14 3.64 - - 
Buses and trucks -4.50 -1.73 - - - - - - 
(Buses and trucks)2 8.21 1.84 - - - - - - 
Small vehicles - - 0.56 2.36 - - - - 
Percentage of large 
vehicles - - -0.02 -1.90 - - -0.04 -2.73 

Error components         
δ1、δ2、δ4、δ7 0.61 7.47 0.21 2.71 0.47 7.70 0.73 11.44 
δ3、δ5、δ8 - - -0.02 -0.58 -0.03 -0.95 -0.05 -1.83 
δ6、δ9 - - - - 0.16 8.41 0.09 4.24 
δ10 - - - - - - -0.04 -2.08 

Correlation coefficient 
Night 1.000    
Late-night / Dawn 0.995 1.000   
Morning / Noon 0.945 0.946 1.000  
Afternoon / Evening 0.989 0.991 0.978 1.000 

Goodness of fit  
Sample size 124 
LL(C) -1646.67 
LL(β) -1001.80 
ρ2 0.39 
BIC 2148.22 
Number of covariates 16 

 
To compare the estimation and validation performance of the proposed two approaches, Table 7 compares the 

predicted crash counts based on crash datasets for 2005 and 2006. As expected, the estimation performance of two 
approaches is slightly better than the validation performance in terms of two performance indices, adj-MAPE and 
RMSE. Additionally, the clustering approach performs better than the multivariate modeling approach. However, 
the difference in the performance of two approaches does not substantially differ, which suggests that both 
approaches can be used for modeling time-of-day crash frequencies. 
 
Table 7.  Performance indices of two approaches 

Performance indices 
Time periods 

Total crashes 
Night  Late-

night/Dawn  
Morning 

/Noon  
Afternoon 
/Evening 

Year of 2005 (estimation)      
Actual crashes 8.56 8.81 25.39 32.33 75.09 
Predicted crashes      

Clustering approach 9.53 10.86 28.52 33.38 82.29 
Multivariate approach 8.48 8.64 23.33 32.32 72.76 

Adj-MAPE (%)      
Clustering approach 67.66 54.93 52.36 53.90 57.21 
Multivariate  80.83 56.00 67.89 85.13 72.46 

RMSE      
Clustering approach 7.36 10.00 20.37 24.80 17.20 
Multivariate approach 11.91 5.42 23.77 50.72 28.76 

Year of 2006 (validation)      
Actual crashes 7.54 7.36 25.98 31.33 72.21 
Predicted crashes      

Clustering approach 8.58 8.91 29.62 34.27 81.38 
Multivariate approach 8.43 8.57 18.55 32.54 68.09 
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Adj-MAPE (%)      
Clustering approach 68.39 57.50 56.51 59.80 60.55 
Multivariate approach 88.05 58.97 72.38 81.35 75.19 

RMSE      
Clustering approach 6.75 7.76 21.65 24.03 16.97 
Multivariate approach 11.92 6.09 23.89 53.25 29.94 

5. Conclusions 

This study developed two novel approaches for modeling crash frequency under a time-of-day distribution and for 
identifying key factors that affect crash frequency during various time periods so as to propose more effective and 
time-specific countermeasures. The first approach is the clustering approach, which uses univariate count models to 
model total crash frequency and uses a clustering method to determine the time-of-day crash percentage distribution. 
The second approach models time-of-day crash frequencies by using multivariate count models. A case study on the 
crash data of Taiwan Freeway No. 1 in 2005 and 2006 is conducted. The results show that the clustering approach 
performs slightly better than the multivariate modeling approach, implying the way to separate time periods of day 
may have more significant impact than modeling methods. 

According to the estimation results, crash counts are higher in the segments adjacent to metropolitan areas in the 
time periods of morning/noon (07-13) and afternoon/evening (14-19), while those in rural areas concentrate in the 
time periods of night (20-23) and afternoon/evening (14-19). Crash counts of segments far from system interchanges 
concentrate in the time period of the morning/noon. Additionally, geometric and environmental factors have higher 
effect on crashes in the afternoon and evening, while traffic factors have higher effect in the time period of the 
morning/noon. Additionally, geometric and environmental factors have the largest effect on crashes in the afternoon 
and evening while traffic factors have the largest effect in the morning/noon. Additionally, geometric and 
environmental factors have the largest effect on crashes in the afternoon and evening while traffic factors have the 
largest effect on crashes in the night and morning/noon. Geometric, environmental and traffic factors all affect 
crashes in the time periods of morning/noon. These findings show that the “peak and off-peak” of crash counts in 
various segments markedly differ. Corresponding countermeasures (such as freeway police routine patrol and set up 
the speeding camera) can be designed for the high risk road segment at specific time. Additionally, from the 
estimation of MPO model, the correlation among four time periods do exist, suggesting the necessity of 
simultaneous modeling. 

Due to the limited availability of data and the high model complexity, four time periods are assumed according to 
the crash distribution to estimate the MPO model. Future studies can enhance the model performance and 
application by using detailed time periods such as 1 hour. However, under finer time period segmentation, many 
segments may have zero crash counts in many time periods; therefore, the zero-inflated MPO model should be 
adopted instead. This study used K-means method to classify segments into clusters under given number of clusters. 
More flexible clustering method with self-determining number of clusters, such as Genetic Clustering Algorithm 
proposed by Chiou and Lan (2001), can be adopted. Finally, most of the explanatory variables considered in this 
study (e.g. geometric and environmental factors) are not time variant. Finally, the traffic factors that could be the 
major sources depicting the time variation in four time periods, the following study can further incorporate other 
time variant explanatory factors such as rainfall and work zone, so as to improve the model applicability on crash 
modeling. 
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