
2246
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

PAPER Special Section on Smart Multimedia & Communication Systems

A Fast Systematic Optimized Comparison Algorithm for CNU
Design of LDPC Decoders

Jui-Hui HUNG†a) and Sau-Gee CHEN†b), Members

SUMMARY This work first investigates two existing check node unit
(CNU) architectures for LDPC decoding: self-message-excluded CNU
(SME-CNU) and two-minimum CNU (TM-CNU) architectures, and an-
alyzes their area and timing complexities based on various realization ap-
proaches. Compared to TM-CNU architecture, SME-CNU architecture is
faster in speed but with much higher complexity for comparison opera-
tions. To overcome this problem, this work proposes a novel systematic
optimization algorithm for comparison operations required by SME-CNU
architectures. The algorithm can automatically synthesize an optimized fast
comparison operation that guarantees a shortest comparison delay time and
a minimized total number of 2-input comparators. High speed is achieved
by adopting parallel divide-and-conquer comparison operations, while the
required comparators are minimized by developing a novel set construction
algorithm that maximizes shareable comparison operations. As a result, the
proposed design significantly reduces the required number of comparison
operations, compared to conventional SME-CNU architectures, under the
condition that both designs have the same speed performance. Besides, our
preliminary hardware simulations show that the proposed design has com-
parable hardware complexity to low-complexity TM-CNU architectures.
key words: channel coding, LDPC decoder, comparison operation, algo-
rithm, hardware

1. Introduction

Low-Density parity check (LDPC) code [1] can achieve per-
formance close to Shannon bound. As such, LDPC has been
adopted by many state-of-the-art communication systems. It
is a kind of binary linear block code whose parity check ma-
trix is sparse which has much fewer 1s than a common ma-
trix. A sparse parity check matrix facilitates simple decod-
ing algorithms and low-complexity decoder designs. Check
matrix of a LDPC code is often represented by a bipartite
graph, called Tanner graph [2], which is composed of n vari-
able nodes (realized by variable node units (VNU)) and m
check nodes (realized by CNUs). Those variable nodes and
check nodes are connected by edges defined by the nonzero
entries of the parity-check matrix H. Figure 1 shows an ex-
ample with 4 check nodes and 8 variable nodes. The num-
ber of “1” in each column of H determines the number of
edges for each variable node connected to check nodes, and
the number of “1” in each row of H determines the connec-
tions from each check node to variable nodes. Tanner graph
shows a clear picture of all the information exchange links

Manuscript received January 27, 2011.
Manuscript revised May 12, 2011.
†The authors are with the Institute of Electronics, National

Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
300, ROC.

a) E-mail: paholisi.ee99g@nctu.edu.tw
b) E-mail: sgchen@mail.nctu.edu.tw

DOI: 10.1587/transfun.E94.A.2246

Fig. 1 Tanner graph of a parity check matrix.

in a decoding process.
Decoding of a LDPC code is generally carried out

by Sum-Product algorithm (SPA) [3]. However, it is too
complicated to be practically realized. Min-Sum algorithm
(MSA) [4] is a popular, accurate and low-complexity ap-
proximation to SPA. Hence, the existing LDPC decoders
are basically all based on MSA. According to MSA, for
every decoding iteration, each CNU has to send updated
messages to all its connecting variable nodes. The updated
message a variable node receives from its connecting check
node should be the minimum values among all the message
values the CNU received from all its connecting variable
nodes, except for the message sent from the target variable
node to the check node. Hence, a CNU mostly is perform-
ing comparison operations in a decoding iteration and find
out the minimum message values it needs to send to all its
corresponding connecting variable nodes. As such, the most
time-consuming operations in LDPC decoders are the com-
parison operations required by check nodes.

Due to the mentioned characteristic of MSA, in the lit-
erature [5]–[7], roughly there are two different CNU design
approaches for LDPC decoders. Consider a check node and
one of its connecting variable nodes. The first approach is
that the CNU finds the minimum message value (for sending
to the variable node) without including the variable node’s
message (as dictated by MSA). The CNU in [8] is based on
this approach which has the advantage of high-speed, inde-
pendent and parallel decision of all the minimum message
values. However, it has the disadvantage of high area cost,
because so many redundant comparison operations are per-
formed. For the convenience of later discussion, we call this
type of CNU design as “self-message-excluded CNU” (i.e.,
SME-CNU for simplicity).

On the other hand, the second approach finds out the
global minimum and the second minimum values from all
the message values the check node receives from all its

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

HUNG and CHEN: A FAST SYSTEMATIC OPTIMIZED COMPARISON ALGORITHM FOR CNU DESIGN OF LDPC DECODERS
2247

connecting variable nodes, and then picks either the sec-
ond minimum value or the minimum value, depending on if
the particular variable node’s message value is equal to the
minimum value or not. This approach significantly reduces
the amount of comparison operations, compared with the
first approach. The CNU design in [9] adopts the approach,
which effectively reduces the required number of the com-
parison operations but has a longer delay time than the first
approach. Similarly, for convenience, we term this kind of
CNU designs as “two-minimum CNU” (i.e., TM-CNU for
simplicity).

Since this work focuses on high-speed applications, the
proposed systematic optimization technique also assumes
SME-CNU structure. In order to reduce the redundant com-
parison operations involved in SME-CNU, the approach in
[8] proposes a 6-input SME-CNU architecture, by consider-
ing the design of reusable and sharable comparator cells.
However, it only conducted a customized specific design
with 6 inputs, without proposing a systematic and general-
ized design approach for arbitrary input numbers. For cases
with long code lengths, it will be impractical to optimize the
designs manually. Therefore, it is very desirable to have an
efficient and automatic generator for the comparison opera-
tions and comparators of SME-CNU. To address this design
challenge, this work is aimed to achieve the fastest compar-
ison speed with the lowest comparator complexity as much
as possible.

This paper is organized as follows. In Sect. 2, the
widely used Sum-Product algorithm (SPA) and Min-Sum al-
gorithm (MSA) LDPC decoding algorithms are introduced.
Section 3 introduces key comparison algorithms used in
CNUs, the associated CNU architectures, and some CNU
design issues. Section 4 details the proposed optimized sys-
tematic comparison algorithm for SME-CNU design. Sec-
tion 5 presents the performance of the proposed algorithm.
Finally, Sect. 6 is the conclusion.

2. Decoding Algorithm for LDPC Codes

Decoding of a LDPC code is generally carried out by SPA,
which is based on log-likelihood ratio (LLR) of the form:
L(x) = log(P{x = 0}/P{x = 1}). In the decoding process, the
ith variable node vi needs to update the following message
Lvi→c j, which will then be sent by the variable node to its
connecting check node c j,

Lvi→c j = channel(vi) +
∑

ck∈C\c j

Lck→vi, (1)

where C\c j is a set containing all the check nodes connected
to variable node vi (excluding check node c j), and chan-
nel(vi) is the channel value of vi. This equation is imple-
mented with a VNU. On the other hand, check node c j needs
to update and send the following message Lc j→vi to variable
node vi,

Lc j→vi = 2 tanh−1

⎛⎜⎜⎜⎜⎜⎜⎝
∏
vk∈B\vi

tanh

(
Lvk→c j

2

)⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where B\vi is a set containing all the variable nodes con-
nected to c j (excluding variable node vi). Since Eq. (2) is too
complicated to be practically realized, MSA [4] is proposed
which is a popular, accurate and low-complexity approxi-
mation to (2), as shown below.

Lc j→vi ≈
⎛⎜⎜⎜⎜⎜⎜⎝

∏
vk∈B\vi

sign(Lvk→c j)

⎞⎟⎟⎟⎟⎟⎟⎠
× min
vk∈B\vi

(|Lvk→c j|) (3)

MSA reduces decoder hardware complexities signifi-
cantly, at the cost of a little performance loss. Like most
existing designs, this work is also based on MSA. Decod-
ing of a LDPC code is an iterative process composed of the
following sequential decoding steps: 1) initialize the decod-
ing parameters such as the maximum iteration count, itera-
tion counter, channel values, and etc; 2) update check-node
messages; 3) update bit-node messages; 4) hard decision of
bit-node messages; 5) check if the iteration count exceed the
maximum iteration number, or the decoded information bits

satisfy the zero syndrome vector constraint, i.e., xHT =
⇀

0 or
not, where x denotes the decoded codeword in row vector
form; if it is then output the decoded bits, otherwise go to
step 2).

As can be seen, the key operation required in a LDPC
decoding process is finding the minimum value from a set of
samples as shown in (3). Therefore, it is crucial to achieve
fast comparison operations with low hardware complexity.
It is well-known that the fastest comparison operations of
finding the minimum among a set of Nin samples can be
achieved with a delay time of

⌈
log2 Nin

⌉
Tcmp and an area of

(Nin − 1) comparators, by performing parallel binary com-
parison operations, where Tcmp is the delay time of a 2-input
comparator and the ceiling function

⌈
log2 Nin

⌉
is the number

of comparison levels.

3. CNU Architectures & Comparison Algorithms

In this work, since we focus on the design of highest-speed
LDPC decoders (while minimize the area) as much as possi-
ble, all the ensuing discussions assume unfolded CNU struc-
tures. As mentioned in Introduction, there are two different
types of CNU structures, namely, SME-CNU and TM-CNU.
The basic module of a complete SME-CNU is a direct real-
ization of (3) as discussed below. Without loss of general-
ity, consider check node c j and its connecting ith variable
node vi. According to (3), c j must find out the minimum
value Lc j→vi (for sending it to vi) from all its inputs exclud-
ing the input from vi. Note that, a complete unfolded SME-
CNU contains Nin parallel basic modules. Obviously, this
design can achieve very high-speed performance, because it
updates all the minimum message values in parallel, simul-
taneously and independently. However, it is at the cost of
considerable hardware for parallel message generations and
redundant comparison operations.

For the success of the SME-CNU architecture, one

2248
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

needs to reduce the redundant comparators. The most intu-
itive way is to find out the common comparison terms in the
parallel generation of minimum message values [8]. How-
ever, the design in [8] only did a customized optimization
for a specific 6-input CNU architecture without proposing
a systematic and generalized design approach for arbitrary
input numbers. For cases with long code lengths, it will be
impractical to optimize the designs manually.

By observing (3), it is obvious that the output value
from the jth check node to the ith variable node will be the
minimum value of all the input values to the jth check node
if the minimum value is unequal to the input value from the
ith variable node. Otherwise, output of the CNU to the ith
variable node will be the second minimum value of all the
CNU inputs. Thus, (3) can be rewritten as:

Lc j→vi

≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S ·min
vk∈B

(|Lvk→c j|), if Lvk→c j � min
vk∈B

(|Lvk→c j|)
S ·min 2

vk∈B
(|Lvk→c j|), otherwise

, (4)

where for simplicity, the overall sign term S is defined as

S =
∏
vk∈B\vi

sign(Lvk→c j) (5)

and min2(.) represents the function that finds out and re-
turns the second minimum value from its input operands.
By directly realizing (4), one can get the TM-CNU architec-
ture as shown in Fig. 2. In the figure, XOR gates altogether
generate the overall sign term S in (4) for all the outputs
of CNU, while the two-minimum comparator (TMC) gener-
ates the minimum, the second minimum values, and index-
ing information of the minimum value [9] from CNU input
values. The output “index of min” from TMC is simply the
unsigned binary number of the variable node that has the
minimum message value.

For example, if Nin = 8 and v3 has the minimum mes-
sage value, then “index of min” is equal to 011. The index
decoder then expands the “index of min” value to a binary
positional representation (similar to a de-multiplexer) that
reflects the number of the variable node in position. In this
example, since 011 is equal to 3, the output of index decode
will be 00000100, where the value at the 3rd bit position is

Fig. 2 A TM-CNU architecture.

equal to one while all the other bit values are equal to zero.
The decoded 8 output bits are served as the control signals
to their respective multiplexers for selecting the appropri-
ate minimum message values. In this case, the 3rd multi-
plexer will select the second minimum value, while all the
other multiplexers will select the minimum value. Finally,
the selected message values are sent to their corresponding
variable nodes.

Compared to SME-CNU architecture, TM-CNU archi-
tecture costs smaller area. However, since TM-CNU archi-
tecture needs to find out the second minimum value from all
its input values, its delay time is inherently longer than that
of SME-CNU architecture.

For finding the two minimum values in a TM-CNU,
generally there are three approaches, namely, the double-
elimination (DE) comparison scheme, the trace-back (TB)
comparison scheme [10], and the tree-structure (TS) com-
parison scheme [11]. Any one the three schemes can be
realized with TMC.

3.1 Double-Elimination (DE) Comparison Scheme

The concept of DE comparison scheme is similar to the
double-elimination tournament in sport competitions. A
double-elimination tournament is divided into two sets of
brackets: winner’s bracket (WB) and loser’s bracket (LB).
In the beginning, all the participants are in WB, and ran-
domly (in a fair game) paired and entered the contests. For
each paired contest, the winner will remain in WB and
continue his/her random paired contests with the remain-
ing players in WB, while the loser exits to LB. In WB, it
is conducted as a single-elimination tournament. Similarly,
all the players in LB conduct the similar single-elimination
tournament as in WB. The loser of each paired contest in
LB will be eliminated totally from the tournament. Finally,
both WB and LB will generate their own winners, respec-
tively. These two players then proceed to the final content
for the championship. When applying the above game rules
to CNU comparison operations, the winners of WB and LB
respectively represent the minimum and the second mini-
mum values among all the CNU inputs.

Consider an Nin-input CNU and each input of CNU has
wordlength of (w+1) bits (including a sign bit at the MSB).
By adopting the DE comparison scheme, there will be Nin

inputs (players) in WB and Nin−1 inputs (players) in LB.
Hence, it needs (Nin−1) and (Nin−2) comparison operations
to compute the minimum value and the second minimum
value, respectively. For high speed consideration, parallel
binary tree comparison operations can be adopted, which
take (

⌈
log2 Nin

⌉
+1) comparison levels to get the final results.

This number reflects the critical path delay time in a CNU.
Figure 3 shows an example of a 6-input comparison contest
chart using DE scheme to find out the minimum and second
minimum values.

Note that since each comparison operation in WB
needs to pass the loser to LB, it needs an additional 2-to-1
multiplexer. Note that it is easier to do comparison oper-

HUNG and CHEN: A FAST SYSTEMATIC OPTIMIZED COMPARISON ALGORITHM FOR CNU DESIGN OF LDPC DECODERS
2249

Fig. 3 An example of 6-input comparison operation chart based on DE
comparison scheme.

ations and find out the minimum value in (4), by adopting
signed-magnitude data representations, as commonly done
in the existing designs. Hence, the MSB of each CNU in-
put is not required in the comparison operation, and only
the w-bit magnitude part is involved in the comparison op-
eration. In the ensuing discussion, all the comparators and
multiplexers in a CNU assume w-bit operations, except for
some specified cases otherwise.

If DE scheme is adopted, the TM-CNU architecture in
Fig. 2 needs (2Nin − 3) comparators, (4Nin − 4) multiplex-
ers, an index decoder, and some additional hardware (for
indexing the minimum value in TMC). The critical path de-
lay time of the design consists of (

⌈
log2 Nin

⌉
+ 1) units of

a comparator delay time, (
⌈
log2 Nin

⌉
+ 2) units of a multi-

plexer delay time, a unit of an index decoder delay time and
an additional delay time of the indexing circuit.

3.2 Trace-Back (TB) Comparison Scheme [10]

Although DE comparison scheme is simple in implementa-
tion, it may execute a large amount of redundant comparison
operations in LB, because some members in LB may have
already competed with some other members in LB when
they were in WB. Consequently, one can eliminate those re-
dundant operations by tracking those members in LB if they
already met and compared before in WB so that one can im-
mediately eliminate those losers without repeating the com-
parison operations done before. That is the main idea of TB
comparison scheme. Take the same 6-input CNU design ex-
ample as in Fig. 3, Fig. 4 shows the whole contest chart of
TB scheme. In the figure, the contest chart in WB is exactly
the same as that in Fig. 3 which produces the WB winner C1

(i.e., the minimum value).
Next, one has to decide the second minimum value in

LB as follows. Since C5 lost to C1 in the final-round contest
of WB and it is the last one to be put into LB, it has very high
potential of being the second minimum value. As such, it is
enough that one can simply only compare C5 with all those
losers to C1 in the previous contest rounds in WB. This can
be done by tracing back the whole comparison tree branches
of C1 in WB, and at the same time only compare C5 with

Fig. 4 Comparison chart based on the TB comparison scheme, of the
same 6-input comparison example as in Fig. 3.

those losers to C1 in the tree comparator leaves. In Fig. 4,
since C3 is the first traced leaf member in the C1 branch, it
is compared with C5 first. The winner (i.e., C5 in this case)
of the comparison operation will then be compared with the
next traced leaf member (i.e., C2 in this example), and so
on. In the end of the trace-back comparison process in LB,
the winner of LB represents the second minimum value of
CNU operations.

TB comparison scheme can be easily shown to have
the least amount of comparison operations. If realized
with unfolded structure, an Nin-input CNU architecture
[11] based on TB scheme needs (Nin +

⌈
log2 Nin

⌉ − 2)
comparators, (

⌈
log2 Nin

⌉
2�log2 Nin� + 2Nin − 2) w-bit mul-

tiplexers, (2�log2 Nin�(2�log2 Nin� − ⌈
log2 Nin

⌉ − 1) 1-bit mul-
tiplexers, (

⌈
log2 Nin

⌉
) 1-bit inverters and an index de-

coder. The critical path of this design consists of
(
⌈
log2 Nin

⌉
+

⌈
log2

⌈
log2 Nin

⌉⌉
) units of a comparator delay

time, (2
⌈
log2 Nin

⌉
+

⌈
log2

⌈
log2 Nin

⌉⌉
+ 1) units of a multi-

plexer delay time, (
⌈
log2 Nin

⌉−1) units of a 1-bit multiplexer
delay time, a unit of an inverter delay time and a unit of an
index decoder delay time. Note that the indexing overhead
in the TMC has already been included in these hardware cost
and delay time quantities.

Although TB scheme costs fewer comparators than DE
scheme, it needs some additional hardware to handle the
trace-back operation and information recording. The over-
head may contribute to a higher overall hardware cost than
DE scheme. Besides, the delay time of a TB-based CNU is
much longer than that of a DE-based CNU due to a larger
number of comparator levels and some additional overhead
for back tracing.

3.3 Tree-Structure (TS) Comparison Scheme [11]

The TS comparison scheme in [11] can be shown to be
a compromised design between DE and TB schemes. TS
scheme divides an Nin-input CNU into several minimum-
value generators (mVG) with smaller numbers of inputs
which can then generate their respective minimum values,
second minimum values and indexing information. After
that, the two global minimum values are decided from these
local minimum values. A particular 4-input mVG [11] needs

2250
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

only 5 comparators, 8 multiplexers and a 1-bit multiplexer
with a total delay time consisting of 2 units of a comparator
delay time and 3 units of a multiplexer delay time.

Generally, the critical path delay time of an Nin-input
CNU based on TS scheme consists of

⌈
log2 Nin

⌉
units of a

comparator delay time, 2
⌈
log2 Nin

⌉
units of a multiplexer

delay time and a unit of an index decoder delay time. Since
TS scheme in [11] is specifically realized for different Nin

cases, there is no general closed-form formula for the re-
quired hardware complexity. Here, we only discuss the case
of assuming Nin is a power-of-2 number. For other cases, the
results are similar. In this case, the design needs (2Nin − 3)
comparators, (4Nin−4) multiplexers, (Nin−log2 Nin−1) 1-bit
multiplexers and an index decoder. Note that the indexing
hardware overhead in TMC has already been included in
these hardware cost and delay time quantities.

Compared to TB comparison scheme, although TS
scheme needs more comparison operations, it has a much
lower additional overhead. As a result, overall, TS scheme
requires smaller area and shorter delay time than TB scheme
when realized with the mentioned unfolded structures.

All the above discussed design techniques will be com-
pared with the proposed design later. Specifically, as men-
tioned before we will focus on the design of highest-speed
unfolded SME-CNU architecture. However, the biggest dis-
advantage of SME-CNU is its area cost which is much larger
than TM-CNU. To lower the area cost of SME-CNU, we
will present a systematic optimization algorithm for the syn-
thesis of fast and parallel comparison operations of (3) so
that the proposed design achieve the shortest delay time,
while minimizes the required number of 2-input compara-
tors. It can be done by designing sharable comparators as
much as possible, while maintaining the highest operation
speed as detailed next.

4. The Proposed Comparison Algorithm for SME-
CNU [12]

To achieve the minimum comparison delay time, the pro-
posed comparison algorithm is also based on (3) and fast
parallel divide-and-conquer comparison algorithm. Addi-
tionally, to reduce the required total number of 2-input com-
parators, we recently proposed a vertical-and-horizontally-
cyclic (VHC) set construction algorithm for the parallel
comparison algorithm in [12]. The set algorithm can maxi-
mize sharable comparison operations so as to minimize the
required number of comparators.

Before detailing the comparison algorithm and VHC
set reconstruction algorithm, we will roughly introduce the
design concept. Figure 5 shows a 7-input example (i.e.,
Nin=7). In the figure, the minimum value of each of the
seven row sets is to be obtained in the top comparison level
(i.e., Level

⌈
log2 Nin

⌉
=3). The seven minimum values are

supposed to be generated in parallel and sent to their respec-
tive variable nodes. Each row set’s minimum value can in
turn be obtained by properly comparing two minimum val-
ues of the four subsets’ minimum values in Level 2 (i.e.,

Fig. 5 An example of the proposed algorithm with 7 inputs.

⌈
log2 Nin

⌉ − 1 = 2). Those subsets are obtained in the VHC
set reconstruction process. The process will generate some
H-V, H and H-C sets (as will be defined later) which should
cover all the elements in the seven sets of the top level. Note
that these four subsets are maximized sharable subsets bro-
ken down from the row sets in the top level.

For example, the minimum value of the first row set
can be obtained by the operation of Min{Min{subset 2 in
Level 1}, Min{subset 3 in Level 2}}, where Min{.} represents
the operation which finds out the minimal value of its argu-
ments. Finally, the four subsets can be broken down to the
7 primitive 2-input comparison sets in the bottom level (i.e.,
Level 1). Likewise, the four minimum values in Level 2 can
be obtained by suitably comparing two minimum values of
the 7 subsets in this level.

Next, the most key part of the proposed algorithm is
how to construct and maximize sharable comparison sets so
that the required number of comparators can be minimized.
In the following, we will detail the set construction and op-
timization algorithm.

4.1 The Proposed VHC Set Construction Algorithms

To maximize sharable comparison sets across the input ma-
trix rows as much as possible, we will utilize some symme-
try properties discussed below. The first step of the proposed
algorithm is to layout all the exclusive CNU input operand
sets in a matrix, where the minimum value of each matrix
row set is to be generated in parallel with all the other min-
imum row values. Observing the matrix pattern of Fig. 5,
one can conclude the following two regular properties:

• First, the diagonal elements of the matrix are all blank
(which correspond to the missing exclusive inputs). And
there exhibits row set symmetry in the matrix.
• Second, each row of the matrix is almost the same as any

others rows, except in two exclusive elements.

4.1.1 The Formation of H-V Sets

First due to the position symmetry (i.e., the first property) of
the input matrix, the discussion can be limited to the upper
right half part (i.e., the U part) of the matrix from row 1 to
row 3. The lower left half part (i.e., the L part) from row 5
to 7 can be treated similarly, while comparison operations of
the center symmetry row (i.e., row 4) is automatically solved
once the upper and lower parts of the matrix are solved, as
can be easily seen later.

HUNG and CHEN: A FAST SYSTEMATIC OPTIMIZED COMPARISON ALGORITHM FOR CNU DESIGN OF LDPC DECODERS
2251

Fig. 6 An example of the proposed algorithm with 8 inputs.

Based on the second property, in the second step this
algorithm finds out the intersection sets of the matrix that
maximize the number of sharable compared results both in
the horizontal and vertical directions of the input matrix.
Moreover, in order to reduce the required number of com-
parators, each intersection set should contain 2k elements,
where k is a positive integer. We define this kind of sets as
the H-V (horizontal-vertical) sets. For example, in Fig. 6,
the set (in dotted square enclosing elements 5, 6, 7 and 8)
is the initial maximum H-V set. Similarly, due to the men-
tioned symmetry, the dotted square enclosing elements 1,
2, 3 and 4 of rows 5 to 8 is another initial H-V set of the
same size as the previous one. Next, one can find smaller
H-V sets of size 2k−1 that contain the remnant elements. In
Fig. 6, sets {3, 4} (of rows 1 and 2), {1, 2} (of rows 3 and 4),
{7, 8} (of rows 5 and 6) and {5, 6} (of rows 7 and 8) include
those remnant elements, as shown in the Level 1.

4.1.2 The Formation of H and H-C Sets

After formation of H-V sets, there is no more sharable ele-
ments in the vertical direction can be combined as an H-V
set, and it can be easily shown that there are at most two
remnant elements left in each row. Therefore, one can only
form comparison sets in the horizontal (row) direction for
those remaining elements. Figure 6 shows the case of only
one element left in each row such as element 2 in the first
row. In this condition, each one of those elements can be
combined with the smallest H-V set and formed a H (hori-
zontal) set, such as {2, 3, 4} in the first row. Figure 5 shows
the case of two elements left in each row, where elements
2 and 3, 1 and 3, 1 and 2 are remnant elements in row 1,
row 2 and row 3, respectively. In this case, if the remnant
elements are consecutive, then they can be formed an H set,
for examples, {2, 3} and {1, 2} are two H sets formed in rows
1 and 3, respectively. Similarly, due to symmetry property,
{5, 6} of row 7 and {6, 7} of row 5 are the two H sets formed
this way.

Up to now, only non-consecutive remnant elements are
left, such as elements 1 and 3, 5 and 7 in rows 2 and 6,
respectively in Fig. 5. Of these elements, 3 and 5 are sym-
metric non-boundary elements which can be combined with
their immediate neighbor elements and formed two addi-
tional H sets. In this case, element 3 is combined with ele-
ment 4 in row 2, while element 5 is combined with element
4 in row 6.

Finally, only boundary remnant elements are left. In

this case, there are the symmetric elements 1 (of row 2)
and 7 (of row 6). We can then further define the H-C (hor-
izontally cyclic) set of size 2m which cyclically combines
a boundary remnant element with its end-around neighbor
elements in the same row. For example, element 1 can be
combined with the end-around elements 5, 6 and 7 as the
first H-C set {1, 7, 6, 5} in row 2, while element 7 can be
combined with its end-around elements 1, 2, and 3 as the
second H-C set {7, 1, 2, 3}. For the consideration of least
number of required 2-input comparators, we can take advan-
tage of the mentioned symmetry property and form sharable
sets by combining the boundary remnant element.

4.1.3 Detailed Flows of the Proposed Comparison Algo-
rithm

The proposed complete comparison algorithm is divided
into the following eight steps.

Step 1) Initialization: Layout all the exclusive input CNU
operands in matrix form denoted as M. Set the initial
value of the iteration number variable Nitr and the row
count variable Nr as

⌈
log2(Nin − 1)

⌉ − 1 and 1, respec-
tively.

Step 2) Formation of H-V sets: Find out the maximum H-
V sets which have 2Nitr elements in the U part of M.
Due to symmetry, there are corresponding H-V sets in
the L part which can be formed automatically, from the
remnant elements (or all elements in the first iteration).
Set Nitr = Nitr − 1.

Step 3) Update of H-V set size: Check if Nitr=0. If it is,
go to Step 4, otherwise go back to Step 2.

Step 4) Formation of H sets: Form the H sets in the Nrth
row of M.

Step 5) Formation of H-C sets: Form H-C sets that cover
those boundary remnant elements in the Nrth row of
M, after H set is formed. If no remnant element is left,
go to Step 6.

Step 6) Check of termination condition: Set Nr = Nr+1.
If Nr > Nin, go to Step 7, otherwise go back to Step 4.

Step 7) Execution of binary comparison operations:
Perform parallel binary divide-and-conquer compari-
son operations for each row, based on the formed H
sets, H-V sets and H-C sets in the previous steps.

Step 8) End of the algorithm: Output Nin parallel com-
parison operation results.

Figure 7 shows the implementation of a 7-input CNU
architecture using the proposed VHC algorithm. The CNU
is a realization of the design example in Fig. 5. The func-
tion block “Min” in Fig. 7 executes a comparison operation
which is composed of a comparator and a 2-to-1 multiplexer.

5. Performance of the Proposed Design

The SME-CNU in [8] also considers the design of sharable
comparators for parallel and simultaneous generation of all
the necessary minimum message values. However, it only

2252
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

Fig. 7 The 7-input CNU architecture using the proposed VHC algorithm.

manually optimized the design of specific 6-input case, and
did not present a general and systematic design methodol-
ogy assuming arbitrary input numbers. Consequently, ex-
cept for the case of Nin=6, there is no further data provided
in [8] so that it can be compared with the proposed design.
Coincidently, when Nin=6, the required hardware of the pro-
posed design is the same as the design in [8]. It suggests
that the proposed algorithm can systematically optimize the
design with comparable performances to the manually opti-
mized design.

Since the proposed design is for SME-CNU, while DE,
TS schemes are for TM-CNU, it is hard to do a fair com-
parison of them with the proposed design. Nonetheless,
we still can provide some insights on the advantages of the
proposed design. Table 1 summarizes the performances of
the proposed design and the existing designs mentioned be-
fore, where symbols A and T with subscripts denote the
area and time measures of a particular hardware cell spec-
ified by the subscript, respectively. The subscript abbrevi-
ations cmp, mux1, mux2, inv, xor and idx represent a 2-
input comparator, a 1-bit 2-to-1 multiplexer, a w-bit 2-to-
1 multiplexer, an inverter, an XOR gate and an index de-
coder, respectively. In the table, Ncmp represents the num-
ber of 2-input comparators required in the CNU architec-
ture based on the proposed VHC algorithm. As can be seen,
the proposed VHC-based SME-CNU design has a much
smaller area complexity than the direct SME-CNU design
(because Nin × Nin � Ncmp). The direct SME-CNU is a
direct Nin-copy realization of Eq. (3) without optimization
of sharable comparators. For fair comparison, the same
indexing technique for TS scheme in [11] is also applied
to generate the index information in TMC for DE scheme.
Thus, the additional hardware and delay time of the in-
dexing hardware in TMC as mentioned in Sect. 3.1 will be
(
⌈
log2 Nin

⌉
)Ainv + (2�log2 Nin�(2�log2 Nin� − ⌈

log2 Nin
⌉ − 1)Amux1

and Tinv + (
⌈
log2 Nin

⌉ − 1)Tmux1, respectively.
There is no closed-form formula for the required com-

parator number of the proposed design, because the com-
parator number does not consistently increase with the input
number. The proposed design obviously needs more com-
parators than the other designs, because the design goal is
to achieve a CNU design that has the shortest delay time

Table 1 Comparisons of time and area complexities for various unfolded
CNU architectures.

Table 2 The required numbers of 2-input comparators vs. input number
for various designs.

while consumes as least hardware as possible. However, the
number of comparators is much reduced than without opti-
mization, as shown in Table 2. The table shows the required
comparator number versus CNU input number for various
design approaches.

Besides, in average one also can find that the pro-
posed design consumes about 1.76-times comparators of
those required by the CNU architectures based on DE and
TS schemes. However, since the proposed CNU design is an
SME-CNU, it doesn’t need those indexing hardware (such
as multiplexer, inverter and index decoder) required by TM-
CNU (based on DE and TS scheme). The CNU areas (in
gate counts) and delays versus CNU input numbers, due to
the proposed and existing comparison schemes are shown in
Fig. 8, where the number marked on the top of each bar is
the maximal delay time of its corresponding CNU design.
All the design results are synthesized by SynopsysTM De-
sign Compiler, based on UMC CMOS 90-nm cell library,
without setting any timing and area constraint for fair com-

HUNG and CHEN: A FAST SYSTEMATIC OPTIMIZED COMPARISON ALGORITHM FOR CNU DESIGN OF LDPC DECODERS
2253

Fig. 8 The synthesized CNU areas (in gate counts) versus CNU input
numbers, due to the proposed and existing comparison schemes. Those
numbers on the bars indicate the corresponding synthesized delay times.

parison. As can be seen, the proposed CNU designs have
lower delays and smaller areas than all the compared de-
sign. Thus, for high-speed applications, the proposed design
achieves the best speed with low area cost.

6. Conclusion

The presented systematically optimized comparison algo-
rithm achieves efficient SME-CNU designs with the short-
est critical path delays and low comparator counts. For very
long LDPC code lengths, it will take immeasurable time to
optimize the designs manually. For those cases, the pro-
posed VHC technique can provide close to optimal solutions
in a short time. Finally, the technique can give the design-
ers reference results to help them further improve their de-
signs when they consider the hand-crafted structures. The
proposed algorithm can also be applied to VNU design by
replacing all 2-input comparators with 2-input adders units.

Acknowledgments

This work is supported in part by the grants NSC 98-2220-
E-009-029 and NSC 98-2219-E-009 -010, Taiwan.

References

[1] R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, MA,
1963.

[2] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol.27, pp.533–547, Sept. 1981.

[3] D.J.C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol.45, no.2, pp.399–431, March
1999.

[4] X.Y. Hu, E. Eleftheriou, D.M. Arnold, and A. Dholakia, “Efficient
implementation of the sum-product algorithm for decoding LDPC
codes,” IEEE Proc. GLOBECOM, vol.02, pp.1036–1036E, Nov.
2001.

[5] M.M. Mansour and N.R. Shanbhag, “Design methodology for
high-throughput memory-efficient programmable decoder cores for

architecture-aware low-density parity-check codes,” IEEE Work-
shop on SiPS, pp.159–164, Aug. 2003.

[6] M.M. Mansour and N.R. Shanbhag, “High-throughput LDPC de-
coders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.11,
no.6, pp.976–996, Dec. 2003.

[7] M.M. Mansour and N.R. Shanbhag, “Architecture-aware low-
density parity-check codes,” IEEE Proc. ISCAS, vol.2, pp.57–60,
May 2003.

[8] M. Karkooti and J.R. Cavallaro, “Semi-parallel reconfigurable ar-
chitectures for real-time LDPC decoding,” IEEE Proc. ITCC, vol.1,
pp.579–585, April 2004.

[9] C.-C. Lin, K.-L. Lin, H.-C. Chang, and C.-Y. Lee, “A 3.33 Gb/s
(1200, 720) low-density parity check code decoder,” IEEE Proc. ES-
SCIRC, pp.211–214, Sept. 2005.

[10] J. Snyders, “Reduced lists of error patterns for maximum likelihood
soft decoding,” IEEE Trans. Inf. Theory, vol.IT-37, pp.1194–1200,
July 1991.

[11] C.L. Wey, M.D. Shieh, and S.Y. Lin, “Algorithms of finding the
first two minimum values and their hardware implementation,” IEEE
Trans. Circuits Syst., vol.55, no.11, Dec. 2008.

[12] J.H. Hung and S.G. Chen, “A systematic optimized comparison al-
gorithm for fast LDPC decoding,” IEEE Proc. ISSPIT, pp.922–926,
Dec. 2007.

Jui-Hui Hung received his B.S. degree
from National Chi Nan University, Taiwan, in
2005 and M.S. degree in Electronics Engineer-
ing from National Chiao Tung University in
2007. He is currently a Ph.D. student in the In-
stitute of Electronics, National Chiao Tung Uni-
versity. His research interests include digital
signal processing, channel coding, VLSI archi-
tecture and bio-information.

Sau-Gee Chen received his B.S. degree
from National Tsing Hua University, Taiwan, in
1978, M.S. degree and Ph.D. degree in electrical
engineering, from the State University of New
York at Buffalo, NY, in 1984 and 1988, respec-
tively. Currently, he is a professor at the De-
partment of Electronics Engineering, National
Chiao Tung University, Taiwan. He was the di-
rector of Institute of Electronic at the same or-
ganization from 2003 to 2006. During 2004–
2006, he served as an associate editor of IEEE

Transactions on Circuits and Systems I. His research interests include dig-
ital communication, multi-media computing, digital signal processing, and
VLSI signal processing. He has published more than 100 conference and
journal papers, and holds several US and Taiwan patents.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

