
2412
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

PAPER

Two-Level FIFO Buffer Design for Routers in On-Chip
Interconnection Networks

Po-Tsang HUANG†a), Student Member and Wei HWANG†, Nonmember

SUMMARY The on-chip interconnection network (OCIN) is an inte-
grated solution for system-on-chip (SoC) designs. The buffer architecture
and size, however, dominate the performance of OCINs and affect the de-
sign of routers. This work analyzes different buffer architectures and uses
a data-link two-level FIFO (first-in first-out) buffer architecture to imple-
ment high-performance routers. The concepts of shared buffers and mul-
tiple accesses for buffers are developed using the two-level FIFO buffer
architecture. The proposed two-level FIFO buffer architecture increases
the utilities of the storage elements via the centralized buffer organization
and reduces the area and power consumption of routers to achieve the same
performance achieved by other buffer architectures. Depending on a cycle-
accurate simulator, the proposed data-link two-level FIFO buffer can real-
ize performance similar to that of the conventional virtual channels, while
using 25% of the buffers. Consequently, the two-level FIFO buffer can
achieve about 22% power reduction compared with the similar performance
of the conventional virtual channels using UMC 65 nm CMOS technology.
key words: two-level FIFO buffer, centralized shared buffer, router, on-chip
interconnection network

1. Introduction

System-on-Chip (SoC) designs are an integrated solution for
merging processor elements (PEs) or intellectual properties
(IPs) in communications, multimedia and consumer elec-
tronics. A successful SoC design depends on the availabil-
ity of methodologies that allow designers to meet two major
challenges — the miniaturization of a device and intercon-
necting features, and ultra-large-scale of circuit integration.
Modern SoC designs face a number of problems caused by
the communication among multiple PE’s. Thus, using an
on-chip bus to create a platform is a solution for SoC de-
signs. This on-chip bus platform provides interfaces be-
tween multiple processor elements and verification environ-
ments [1]. However, the requirements for on-chip communi-
cation bandwidth and processor elements are growing con-
tinually beyond that which can accommodate standard on-
chip buses. Moreover, advanced SoC designs using nano-
scale technologies face a number of challenges. First, the
shared bus architecture will become a development-critical
factor for integration with an increasing number of proces-
sor elements. Existing bus architectures and techniques are
not scalable, and cannot meet the specific requirements as-
sociated with low power and high performance [2]. Second,
the interconnect delay across the chip exceeds the average

Manuscript received September 13, 2010.
Manuscript revised June 28, 2011.
†The authors are with National Chiao-Tung University,

HsinChu 300, Taiwan.
a) E-mail: bug.ee91g@nctu.edu.tw

DOI: 10.1587/transfun.E94.A.2412

clock period of IP blocks. Thus, the ratio of global inter-
connect delay to average clock period will continue increas-
ing according to the International Technology Roadmap for
Semiconductors (ITRS) [3]. Third, advanced technologies
increase the coupling effect for interconnects, such as capac-
itive and inductive crosstalk noise. The increasing coupling
effect aggravates power-delay metrics and degrades signal
integrity [4]. Fourth, system design and performance are
limited by the complexity of the interconnection between
the different modules and blocks with a single clock design
[3]. As design complexity continues to increase, a global ap-
proach is required to effectively transport data and manage
on-chip data communication.

Network-on-chip (NoC) designs were investigated as
a method for dealing with a number of challenges caused
by the scale and complexity of next generation SoC de-
signs [5]. Furthermore, on-chip interconnection networks
(OCINs) provide the micro-architecture and the building
blocks for NoCs, including network interfaces, routers and
link wires [6], [7]. The generic OCIN is based on a scal-
able network, which considers all requirements associated
with on-chip data communication and traffic. OCINs have a
few beneficial characteristics, namely, low communication
latency, low energy consumption constraints, and design-
time specialization. The motivation in establishing OCINs
is to achieve performance using a system communication
perspective.

Routers are the essential components of OCINs. Fig-
ure 1 shows a generic router architecture, consisting of a
set of input buffers, an interconnect matrix, a set of output
buffers and control circuitries, including a routing controller,
an arbiter and an error detector. The control circuitries serve
ancillary tasks and implement some functions of the control

Fig. 1 A generic router architecture.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

HUANG and HWANG: TWO-LEVEL FIFO BUFFER DESIGN FOR ROUTERS IN ON-CHIP INTERCONNECTION NETWORKS
2413

Fig. 2 (a) A router with the centralized buffer (b) A generic router.

flow protocol. Additionally, the interconnection matrix can
be implemented using a single crossbar or by cascading var-
ious stages. The control circuitry and interconnection matrix
are key components of routers [8]. Furthermore, the buffers
significantly increase the overall performance and decrease
the complexity of control policies [9], [10]. The buffers al-
low for local storage of data that cannot be routed imme-
diately. Unfortunately, queuing buffers have high costs in
terms of area and power consumption; thus, implementa-
tions of OCIN design strive against limited buffer size. In
the realm of on-chip buffer design, both size and organiza-
tion are directly related to performance and power consump-
tion of the OCIN [11]. Buffer size in particular has been
thoroughly investigated in [12]–[15]. If a design lacks suffi-
cient buffer space, buffers may fill up too fast to decrease the
overall performance; conversely, over-provisioning buffers
clearly wastes scarce area resources. Thus, in this work,
buffer utilization is optimized via a centralized buffer in a
router as shown in Fig. 2(a). Compared with a generic router
as shown in Fig. 2(b), a centralized buffer has a shared buffer
mechanism allowing channels to share the centralized buffer
with sufficient buffer space.

A data-link two-level FIFO (first-in first-out) buffer ar-
chitecture with the centralized shared buffer is proposed in
this paper. The proposed two-level FIFO buffer architecture
has a shared buffer mechanism allowing the output channels
to share the centralized FIFO with sufficient buffer space.
Additionally, the proposed architecture reduces the area and
power consumption to achieve the same performance. The
remainder of this paper is organized as follows. Section 2
compares and analyzes different buffer architectures and dif-
ferent circuit implementations. The concept of the proposed
two-level FIFO buffer architecture is presented in Sect. 3.
Section 4 describes the behavior and circuit implementation
of the data-link two-level FIFO buffer for the router. The
associated two-level FIFO buffer architectures are presented
in Sect. 5. Section 6 shows simulation results. Finally, Con-
clusions are given in Sect. 7.

2. Buffer Implementations and Architectures

The queuing buffer is adopted for routers or network inter-
faces to store un-routed data. Buffer size and management
are directly linked to the flow control policy which affects

Fig. 3 Head-of-line blocking problem induced by insufficient buffer.

OCIN performance and resource utilization [8]. Buffer ar-
chitectures can be classified by their location and circuit im-
plementation of buffers. Queuing buffers consume the most
area and power among composing blocks in OCINs [10],
[16]. However, insufficient buffer size induces head-of-line
blocking problems. Figure 3 shows an example of the head-
of-line blocking problem. When head data of a virtual chan-
nel cannot be routed and data behind the head data are occu-
pying queuing buffers, network performance is decreased.
Nevertheless, head-of-line blocking problems reduce the
network performance and increase power consumed dur-
ing on-chip data communication. Therefore, head-of-line
blocking is a key factor when evaluating different buffer ar-
chitectures.

The buffer circuits can be implemented using registers
(flip-flops) or SRAM according to the buffer sizes. For large
capacity queuing, the SRAM-based queuing buffer with sep-
arated read/write ports is preferred over a register-based
buffer [17], [18]. However, SRAM incurs large latency over-
head [10]. For achieving high-performance OCINs, register-
based buffers are usually realized in the routers with small
buffer sizes. Since register-based implementations have a
limited capacity due to rapid increasing power consumption
and circuit area [11], [16]. In most OCINs, register-based
buffers are adopted to provide high bandwidth of on-chip
data communication. Consequently, register-based buffers
can be classified into four different implementations — (a)
Shift Register, (b) Bus-In Shift-Out Register, (c) Bus-In
Bus-Out Register, and (d) Bus-In-MUX-Out Register [6].

For the Bus-In register, an arrival packet can be stored
in all registers. However, as queuing capacity increases, the
driving ability of the sender should be increased for large
fan-outs. For the Bus-Out register, all register outputs are
connected to a shared output bus via tri-state buffers. The
parasitic capacitance of tri-state buffers will increase both
delay and power consumption. Therefore, the Bus-In MUX-
Out Register with output multiplexers can be utilized to
eliminate the parasitic capacitance of tri-state buffers.

Depending on the location of queuing buffers, buffers
can be placed before or after the interconnection matrix in
a router; these buffers are the input buffer and output buffer,
respectively. To be sure, input buffers and output buffers dif-
fer. If a data word is delayed in a router with input buffers, it
will stall all data words arriving at the same input. None can
be processed until the first data word has been forwarded
successfully. With output buffers, this situation differs be-
cause switching is performed prior to buffering. If a router

2414
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

Fig. 4 Diagram of input buffer, middle buffer and output buffer.

cannot send data through one of its outputs, the buffers at
that output will fill up. However, congestion on outputs has
no immediate influence on inputs; that is, successive data
words can still be received. An architectural disadvantage
of output buffering is that in one cycle, data from multiple
input ports may be written to the same output port. Never-
theless, a multiple-access buffer can be implemented in par-
allel at the output to deal with this shortcoming. Both output
buffers and input buffers can cause the head-of-line block-
ing problem and stall input data. Figure 4 shows the input
buffers, middle buffers and output buffers in routers. During
middle buffering, the buffer placement moves to the mid-
dle of switching circuits. Middle buffer architectures have
O(N2) buffer blocks for an N-port router, while input and
output buffering architecture only have O(N) buffer blocks.
The middle buffer architecture, however, can reduce the ef-
fects of head-of-line blocking via multiple virtual channels
during switching. This is a trade-off between traffic prob-
lems and buffer sizes.

Since buffer resources are costly in resource-
constrained OCIN environments, minimizing buffer size
without adversely affecting performance is essential. How-
ever, based on observed traffic patterns, buffer size and ar-
chitecture cannot be changed dynamically during opera-
tion. Therefore, some approaches [11], [12] optimize pre-
determined buffer size during the design stage via a de-
tailed analysis of application-specific traffic patterns. Ad-
ditionally, static virtual channel allocation techniques were
proposed to optimize the performance, area and power for
target applications based on the traffic characteristics [14],
[19].

For general-purpose and reconfigurable SoC executing
different applications, advanced buffer architectures maxi-
mize the utilization of buffers under different traffic patterns
in NoC applications. As virtual channels are not equally
used in different applications, dynamically allocated multi-
queue (DAMQ) buffer schemes were proposed to share
a common buffer [20]–[23]. However, these approaches
are not suited to OCIN implementation, which is typically
resource-constrained [24]. Moreover, NoC applications are
intolerant of large latency against the quality of service con-
straint. Hence, in view of resource and latency overhead, dy-
namic virtual channel allocation schemes were proposed to
maximize throughput for resource-constrained OCIN [24]–

Fig. 5 Concepts of (a) dynamic virtual channel allocation (b) centralized
shared buffer.

[28]. Figure 5(a) shows the concept of dynamic virtual
channel allocation techniques to share the virtual channels
and arbitrate output packets based on the traffic conditions.
The dynamic virtual channel regulator (ViChaR) proposed
in [24] introduced a unified buffer structure that dynami-
cally allocated virtual channels and buffer resources based
on network traffic patterns. The ViChaR has the unified
buffer structure and unified control logic. The unified buffer
structure shares buffers in virtual channels for each input
port. Additionally, the unified control logic controls the ar-
riving/departing pointers and virtual channel allocation of
each virtual channel via virtual channel control tables and
dispensers. However, the hardware overhead would increase
non-linearly. In view of this, other dynamically-allocated
virtual channel architectures were proposed by inspecting
the physical link state and speculating the packet transfer-
ring [25]–[28]. However, when the shared buffers of an in-
put port are full, these approaches do not provide a mech-
anism for accessing the buffers of other virtual channels at
other input ports. Furthermore, the performance of these dy-
namical virtual channel allocation schemes is also limited
due to the resource-constraints of the pointers and virtual
channel control tables.

Figure 5(b) shows the centralized shared buffer archi-
tecture that maximizes buffer utilization [29]–[31]. Shared
buffer architectures are implemented by centralized buffer
organizations, which dynamically alter the buffer size for
different channels. The input packets from different ports
can access all buffers without any head-of-line blocking.
This architecture enhances OCIN performance regardless
of traffic type. Shared buffering, in addition, achieves the
best buffer utility with the fewest memory elements. We
have proposed a two-level FIFO buffer architecture to re-
alize the centralized shared buffer via a pointer scheduler
[29]. However, the limited size of the pointer scheduler still
reduces the performance of the centralized shared buffer.
Therefore, other centralized shared buffer architectures en-
hance the buffer utilization via allocation tables [30], [31].
Nevertheless, the control mechanisms of these shared buffer
architectures are more complex than those of other buffer
architectures and increase the pipeline stages. Hence, the
new proposed data-link two-level FIFO buffer architecture
is utilized as the shared buffer architecture to simplify the
shared buffer architecture and achieve better performance
than other buffer architectures while not increasing buffer

HUANG and HWANG: TWO-LEVEL FIFO BUFFER DESIGN FOR ROUTERS IN ON-CHIP INTERCONNECTION NETWORKS
2415

size.

3. Concept of Two-Level FIFO Buffer Scheme

The proposed two-level FIFO buffer is constructed by a cen-
tralized level-2 FIFO and distributed level-1 FIFOs at out-
put channels. Figure 6 illustrates the data flow of the two-
level FIFO buffer scheme. The distributed level-1 FIFOs
performs output queues for output channels, and the cen-
tralized level-2 FIFO is a unified shared buffer for all output
channels. The purposes of distributed level-1 FIFOs is to
provide a linear increasing of the FIFO sizes to retrieve the
fixed sizes of the centralized level-2 FIFO. The operation
of the two-level FIFO buffer is described as follows. Af-
ter switching packets, the packets are dispensed to the dis-
tributed level-1 FIFOs of output channels. If the distributed
level-1 FIFO is full or congestion exists in an output chan-
nel, packets are dispensed to the centralized level-2 FIFO
to prevent head-of-line blocking problems. The centralized
level-2 FIFO reduces head-of-line blocking problems via
a unified shared buffer to increase the OCIN performance.
This unified shared buffer is utilized for all input/output
channels that can access all memory elements in the shared
buffer. Moreover, the multiple-access mechanism of the
shared buffer is also provided for all input/output channels
to keep the data flows in OCINs. Therefore, the input/output
channels can send/get data to/from the shared buffer at the
same time slot via multiple accesses of the shared buffer.
Additionally, the centralized level-2 FIFO maximizes buffer
utilization. In view of the operation of the two-level FIFO
buffer, the arbiter only manages the order of switching pack-
ets in output channels.

The centralized level-2 FIFO achieves shared buffering
using data-link-based FIFO. Figure 7 presents the concept
of the data-link-based FIFO, which takes advantage of data
continuity in an FIFO queue. Each slot in the data-link-
based FIFO has two stored fields, the data field and linker
field. In a slot, the data field stores a flit and linker field
stores the address of the next slot, which may not be the ad-
jacent slot in the data-link-based FIFO. In the other words,
the linker[i] will store the address of the flit[i+1] in the same

Fig. 6 Data flow of two-level FIFO buffer scheme.

FIFO queue. Therefore, the read controller reads the next
datum depending on the address stored in the linker field.

The two-level FIFO buffer scheme can be employed
at the flit level or packet level depending on flow con-
trol techniques, store-and-forward switching, virtual cut-
through switching or wormhole switching [32]. Wormhole
flow control was proposed to improve performance at the
flit level and relaxes the constraints on buffer sizes. There-
fore, the wormhole switching technique is the most popu-
lar switching technique in packet-switching-based OCINs
[33]–[35]. At the flit level, when more than one packet
are sent to the same output, the links between these pack-
ets cannot be constructed. Therefore, the two-level FIFO
buffer needs an extra linker table to record the linked ad-
dresses if the tail flit of the front packet is not arrived. Fig-
ure 8 gives an example of the two-level FIFO buffer scheme
based on a 5input/5output router in a mesh OCIN at the flit
level. Therefore, this router is connected to the east router
(E), south router (S), west router (W), north router (N), and
processor element (P). The flits in the neighbor routers will
be dispensed to this router. The first capital letter of a flit in-
dicates the output port of the flit, and the second capital let-
ters (.H, .D and .T) represent the header flit, data flit and tail
flit in a packet, respectively. In the two-level FIFO buffer,
the first two capital letters indicate the input port and output
port of this packet. For example, ES means a packet has an
EN turn in this router. In other word, this packet is from the
east router, and will be dispensed to the north router. For the
output channel S, the packet order is ES–NS–PS–PS, and
the centralized level-2 FIFO will construct the links in the

Fig. 7 Concept of the data-link-based FIFO.

Fig. 8 An example of two-level FIFO buffer scheme.

2416
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

linker fields based on the packet order. The linker field will
store the address of the linked slot. The read address of each
output channel denotes the first flit in the centralized level-2
FIFO. When the router N sends a request for this router, the
distributed level-1 FIFO will dispense the EN.D flit to the
router N, and the flit in the slot 11 will be transferred to the
distributed level-1 FIFO. At the same time, the read address
of output N will be changed to slot 1. Additionally, the data
flit from the router W will be stored into slot 4 that is linked
to slot 9. In this example, the packets from E, N and P are
routed to the output S, and the order of these packets is E–
N–P. The header flit of packet N should be linked to the tail
flit of packet E. However, the tail flit of packet E is not dis-
pensed to this router yet. In view of this, the two-level FIFO
buffer scheme needs an extra linker table to reconstruct the
link by recording the linker for the tail flit.

4. Two-Level FIFO Buffer Architecture

The two-level FIFO buffer architecture is implemented us-
ing register-based buffer and consists of a data-link sched-
uler, distributed level-1 FIFOs, and a data-link-based cen-
tralized level-2 FIFO. Figure 9 shows the architecture of
the data-link two-level FIFO buffer. The operation of the
two-level FIFO buffer router is briefly described as fol-
lows. When input packets arrive at the two-level FIFO buffer
architecture, the header decoder first de-multiplexes input
data from header information. The data-link scheduler then
schedules empty buffers and sends de-multiplexed data to
the centralized level-2 FIFO. The link scheduler records the
address of the output buffer in the linker fields. When ac-
knowledge signals are asserted from the next stage, the dis-
tributed level-1 FIFO will transfer output data. Moreover,
the data-link scheduler transfers the address, which indi-
cates the bottom of the output buffer, to the centralized level-

Fig. 9 Two-level FIFO buffer architecture in routers.

2 FIFO. The centralized level-2 FIFO delivers accuracy data
to the level-1 FIFO. The details of the functional blocks in
the two-level FIFO buffer architecture are described as fol-
lows.

4.1 Header Decoder and Routing

The packets delivered from processor elements contain
headers and payloads. The headers describe the paths the
packets will go through. Header information depends on
the routing algorithm and OCIN architecture. The two-level
FIFO buffer scheme can be employed for both deterministic
routing and adaptive routing algorithms.

4.2 Data-Link Scheduler and Centralized Level-2 FIFO

The data-link scheduler and centralized level-2 FIFO are
kernel blocks of the two-level FIFO buffer architecture. Fig-
ure 10 shows block diagrams of the data-link scheduler
and data-link-based centralized level-2 FIFO. The data-link
scheduler consists of a write generator, a wordline encoder,
a linker table and linker fields that record the addresses of
linked data. The centralized level-2 FIFO is constructed us-
ing a read controller and data fields. For k flits in the two-
level FIFO buffer, the data fields and linker fields are imple-
mented by k slots (words), which can be accessed via write
control signals (wordlines). Each slot contains m-bits in the
data field and log2(k)-bits in the linker field. Restated, the
width of the linker fields is log2(k)-bits to record the linked
addresses. The width of the data fields is m-bits, and de-
pends on the physical size of a flit.

The data-link scheduler creates links among output
channels using the write generator and linker fields. The
write generator generates the writing wordlines for the data

Fig. 10 Data-linked based centralized level-2 FIFO and data-link
scheduler.

HUANG and HWANG: TWO-LEVEL FIFO BUFFER DESIGN FOR ROUTERS IN ON-CHIP INTERCONNECTION NETWORKS
2417

Fig. 11 Implementation of the centralized level-2 FIFO.

fields to write input flits. While asserting the writing word-
lines for the data fields, the linked addresses are produced
using the wordline encoder. The wordline encoder en-
codes these writing wordlines and feeds the encoded ad-
dresses (linked addresses) into the linker fields to create
links. Therefore, the write generator also latches writing
wordlines of the data fields for the linker fields to record
the addresses of the next arrival flits. Thus, the switching
circuits of the router are utilized in the write generator and
data fields based on the link information. Clearly, the read
controller obtains addresses from the linker fields to read the
next flits of the output channels in the data fields. Hence, the
read controller reads the output flits and linked addresses at
the same time, and latches the linked addresses for the next
transaction. Restated, when the data have been read from the
data fields, the read controller records the reading addresses
of the data fields to read the next address of the first-in da-
tum in output queues from the linker fields.

The centralized level-2 FIFO provides unified shared
buffer and a multiple-access mechanism. In the centralized
level-2 FIFO, each slot (word) of the data fields contains m
bits to store input data. The linker field is constructed us-
ing log2(k) bits for storing the addresses of the next datum
in queues. Figure 11 shows the schematic of the central-
ized level-2 FIFO. The data fields and linker fields are both
implemented by the Bus-MUX-In MUX-Out registers. For
the Bus-MUX-In register, an arrival packet from all possi-
ble input channels can be stored in all FIFO cells via the
writing MUX, which is designed to select the input chan-
nel. The Bus-MUX-In structure provides multiple accesses
for the unified shared buffer. Additionally, the Bus-MUX-
In structure also performs the switching circuits depending
on information from the arbiter and write generator. The
arbiter determines the order of packets in an output chan-
nel and transfers the routing and arbitration information to

Fig. 12 Example of the arbitration policy in deterministic routing
algorithms.

the write generator first. Thus, the write generator switches
the Bus-In data into appropriate words by writing wordlines
and writing MUXs. Further, depending on switching condi-
tions, the write generator transfers writing wordlines to the
wordline encoder and creates links. The read controller and
reading MUXs decode link addresses and send output data
to the distributed level-1 FIFO.

4.3 Distributed Level-1 FIFO

The distributed level-1 FIFOs are designed as output queues
located in output channels. Hence, the distributed level-1
FIFOs are implemented using Bus-In Mux-Out registers for
shallow output queues. The purpose of distributed level-1
FIFOs is to provide a linear increasing of the FIFO sizes
to retrieve the fixed sizes of the centralized level-2 FIFO.
Therefore, the size of the distributed level-1 FIFO is usu-
ally small, and the Bus-In MUX-Out register is preferred.
Moreover, the distributed level-1 FIFOs pre-fetch flits from
the centralized level-2 FIFO and to keep the data flow when
other output channels are congested.

4.4 Arbiter

The arbiter determines the order of multiple accesses in the
same cycle. When more than one packet at different input
ports requires the same output port, the arbiter prioritizes the
packets. The arbitration algorithm, however, relies on buffer
sizes. When buffer size is insufficient, the complexity of
the arbiter algorithm increases to eliminate traffic problems.
The two-level FIFO buffer architecture provides sufficient
buffer sizes using the shared buffer mechanism and multiple
accesses for output buffers. That is, the arbiter only decides
the order of packets from different input channels when the
header flits of these packets arrive at the same time.

The design of the arbiter in the two-level FIFO buffer
depends on the characteristic of the routing algorithm. For
deterministic routing algorithms, the arbiter can decide the
packet order based on the traffic information in the next
router. Figure 12 give an example of the arbitration policy.
Both packets A and packet B are routed from the left router
to the right router. However, the output channel of packet
B is congested. If the priorities of packet A and B are at

2418
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

Fig. 13 Different associations between the distributed level-1 FIFO and
the centralized level-2 FIFO for 8 output channels.

the same level, the order of packet A is in front of packet
B. For adaptive routing algorithms, the output of next router
cannot be determined in this router. To avoid starvation with
low-priority packets and ensure transmission speed of high-
priority packets, the two-level FIFO buffer architecture uses
the time division multiple access (TDMA) arbitration algo-
rithm, which can be implemented by a counter to transfer
priorities for successive input ports. Packet priority deter-
mines the position of a packet in the output channel.

5. Associated Two-Level FIFO Buffer Architecture

The two-level FIFO buffer architecture has a unified shared
buffer to eliminate head-of-line problems by the data-link-
based FIFO and multiple-access mechanism. However,
based on the register-based buffer, the power and area over-
head of multiple accesses for the centralized level-2 FIFO
increases rapidly as the number of output channels in-
creases. Therefore, a trade-off exists between buffer utili-
ties and the power overhead of multiple accesses. That is,
the centralized level-2 FIFO can be divided into subgroups
for specific output channels. Figure 13 shows the different
associations between the distributed level-1 FIFO and cen-
tralized level-2 FIFO for 8 output channels. The central-
ized level-2 FIFO can be deconstructed into different sub-
groups — two-way association, four-way association, full
association or hybrid association. The higher association be-
tween the level-2 FIFO and level-1 FIFO will increase buffer
utilities of the two-level FIFO buffer. That is, each output
channel can access an increased number of buffers in the
higher association. Moreover, the physical size of the linker
field decreases with the increasing association. Assume the
number of available buffers in the centralized level-2 FIFO
is k slots. For the m-way association two-level FIFO buffer
in an n-port router, the total size of the linker fields is as
Eq. (1).

Total Linker Size =
n
m

log2

(
k

n/m

)
(1)

Fig. 14 Router architecture with distributed shared buffer(DSB) [31].

6. Simulation Results

In this section, a cycle-driven simulator is used to evaluate
different buffer architectures in SystemC, including output
buffer, middle buffer, ViChaR [24], distributed shared buffer
(DSB) [31] and the proposed two-level FIFO buffer. The
middle buffer architecture establishes multiple virtual chan-
nels during switching to reduce head-of-line problems via
static virtual channel allocation. The ViChaR architecture
provides unified buffer structures at input ports as dynami-
cal virtual channels. Rather than buffering data at the out-
put ports, a DSB router as shown in Fig. 14 uses two cross-
bar stages with buffering sandwiched in between. Incoming
packets are assigned to one of the middle memory buffers
with two constraints. First, incoming packets that are arriv-
ing at the same time must be assigned to different buffers.
Second, an incoming packet cannot be assigned to a buffer
that already holds a packet with the same departure time.
Additionally, different buffer architectures are also evalu-
ated with different routing algorithms, including XY rout-
ing, DyXY [36] and an adaptive routing [37]. Moreover, the
proposed data-linked two-level FIFO buffer is implemented
using UMC 65 nm standard performance CMOS technology
to demonstrate the power consumption and area.

The number of pipeline stages in a router depends
on the buffer architecture. Figure 15 presents the pipeline
stages of different buffer architectures, and the link traver-
sal (LT) stage indicates flits traverse the link wires to arrive
at the downstream router. The middle buffer and ViChaR
are realized in 4-stage pipeline routers comprising router
computing (RC), virtual channel allocation (VC), switch-
ing allocation (SA) and switch traversal (ST). The difference
between the middle buffer and ViChaR is in the VC stage.
The output buffer router also realizes a 4-stage pipeline con-
sisting of RC, arbitration, SA and ST. The DSB provides
a centralized shared buffer to increase performance, and an
extra pipeline stage is added into the DSB router to pro-
vide high throughput (3 GHz claimed in [31] if using Intel’s
65 nm process). Therefore, the DSB router has a five-stage
pipeline comprising RC, timestamping (TS), conflict reso-
lution (CR) and VA, first switching traversal (ST1) and mid-
dle memory writing (MM WR), and middle memory read-

HUANG and HWANG: TWO-LEVEL FIFO BUFFER DESIGN FOR ROUTERS IN ON-CHIP INTERCONNECTION NETWORKS
2419

Fig. 15 Pipeline stages of the generic router, DSB router and two-level
FIFO buffer router.

ing (MM RD) and second switching traversal (ST2). How-
ever, the delay of link wires within two routers (LT stage)
dominates the operation frequency of the network while
the frequency of network is increased up to 1 GHz and the
length of link wires is larger than 2 mm [38]. Therefore,
the proposed data-link two-level FIFO buffer also provides
a centralized shared buffer without inserting extra pipeline
stage, but lower frequency. The 4 pipelining stages include
RC, arbitration and write wordlines generating & encoding
(W Gen), data buffer writing (Data W) and data link creat-
ing (Link W), and data buffer reading (Data R) and linker
reading (Link R). Moreover, the switching circuit is con-
cealed in write wordlines generating and data link creating
as described in Sect. 4.

6.1 Performance Evaluation

According to the cycle-driven simulation in SystemC,
Fig. 16 shows the performance of output buffer, middle
buffer, ViChaR, DSB and two-level FIFO buffers (including
2-3 hybrid association and full association) with different
buffer sizes. The simulation environment is an 8 × 8 mesh
network with an X-Y routing algorithm and uniform traf-
fic patterns. Each packet contains 2, 4 or 8 flits randomly.
In a mesh network, each router has 5 inputs and 5 outputs.
In a ViChaR router, each input channel has a unified buffer
structure with the same buffer size of the input/output buffer.
For the middle buffer, each input port has 4 virtual channels.
Therefore, the depth of each virtual channel is from 2-flit to
16-flit in this simulation. For the two-level FIFO buffers, the
distributed level-1FIFO is set as 2-flit for each output chan-
nel. The 2-3 hybrid associated two-level FIFO buffer di-
vides the centralized level-2 FIFO into two subgroups. One
is shared by the east and west ports, and the other is shared
by the north port, south port and processor element. Fig-

Fig. 16 Normalized performance versus FIFO sizes with different buffer
organizations in (a) low injection load (b) medium injection load (c) high
injection load.

ures 16(a)–(c) show the simulation results under different in-
jection loads of low (0.15), medium (0.25) and high (0.35),
respectively. Performance is normalized to the throughput
of infinite buffers within constant cycles under the same in-
jection load. Therefore, the required buffer sizes with differ-
ent buffer organizations can be easily compared under the
same performance. For example, when the normalized per-
formance is 0.7 under the low injection load, the required

2420
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

buffer sizes of the two-level FIFO buffer and middle buffer
are 40 flits and 200 flits, respectively. The two-level FIFO
buffer architecture performs best with the same size of other
buffer architectures regardless of injection loads. For the
ViChaR, the unified buffer structure shares buffers in vir-
tual channels for each input port. Thus, the unified control
logic controls arriving/departing pointers and virtual chan-
nel allocation of each virtual channel through virtual chan-
nel control tables and dispensers. However, when the shared
buffer of an input port is full, the ViChaR does not provide a
mechanism for accessing buffers of other virtual channels in
other input ports. For the centralized shared buffer, the per-
formance of the DSB buffer is similar to that of the fully as-
sociated two-level FIFO buffer. Moreover, the operation fre-
quency of the DSB buffer is higher than the two-level FIFO
buffer due to an extra pipeline stage. Additionally, when
the total buffer size is small, the performance of the middle
buffer is worse than that of the output buffer. The reason
of this phenomenon is due to shallow virtual channels. In
high injection load, the throughput of different buffer archi-
tectures is quite smaller than that of infinite buffers because
the performance is dominated the heavy congestion of the
network. Compared to the traditional router with middle
buffers, the total buffer size of the two-level FIFO buffer
can be reduced to 20%–25% for achieving the same per-
formance.

Different buffer architectures are evaluated by another
metric of network performance, namely average latency.
Figures 17(a) and 17(b) present the average latencies of dif-
ferent buffer architectures with uniform patterns and hotspot
patterns, respectively. The simulation environment is an
8 × 8 mesh network with an X-Y routing algorithm, and
each packet contains 4 or 8 flits randomly. In addition, the
total buffer size is set as 160 flits. In hotspot traffic, uniform
traffic is applied, but then 30% of the packets change their
destination to one of six nodes (2, 3), (2, 4), (3, 3), (3, 4),
(6, 5), (6, 6) equally. Compared with the conventional out-
put buffer and middle buffer, the ViChaR, DSB and two-
level FIFO buffer architectures can achieve the lower aver-
age latencies no matter what the injection load is. In lower
injection load, the average latencies of the DSB buffer are
larger than those of ViCharR and two-level FIFO buffer be-
cause of inserting one extra pipelining stage. With the in-
creasing injection load, the average latencies of the DSB
buffer are reaching those of two-level FIFO buffer because
the latencies are dominated the heavy congestion of the net-
work. Moreover, the fully associated two-level FIFO buffer
can realize the lowest average latencies compared to other
buffers. Nevertheless, the boundaries of shared buffers, in-
cluding ViChaR and two-level FIFO buffer, decrease signif-
icantly in hotspot patterns. Restated, the shared mechanism
cannot lighten the traffic with hotspots efficiently.

After comparing the buffer architectures of different
routing algorithms, Fig. 18 presents the average latency un-
der different routing algorithms with the middle buffer and
fully associated two-level FIFO buffer architectures. The
routing algorithms are XY routing and DyXY [36] routing

Fig. 17 Average latencies of different buffer architectures in (a) uniform
patterns (b) hotspot patterns.

algorithms and an adaptive congestion-aware routing algo-
rithm [37]. In DyXY and adaptive routing algorithms, the
two-level FIFO buffer uses the TDMA arbiter described in
Sect. 4. These graphs follow the same trend as the latency
simulations. Figures 18(a) and 18(b) show the average laten-
cies with uniform random patterns and 6 hotspots in the cen-
ter region, respectively. The two-level FIFO buffer reduces
the influence of performance on average latencies induced
by the routing algorithms. In addition, the DyXY routing
algorithm with a two-level FIFO buffer performs better than
the adaptive algorithm with a two-level FIFO buffer. More-
over, the adaptive routing algorithm increases the average
latencies when the injected load is low. However, the adap-
tive algorithm can achieve the lowest average latencies with
high injected load in hotspot patterns.

6.2 Area/Power Analysis

The two-level FIFO buffer architecture is implemented via
Synopsys Design Compiler and PrimePower to estimate the
area and power consumption based on UMC 65 nm CMOS
technology at 1.0 V. Table 1 lists the area, power consump-
tion and maximum operation frequency of routers with dif-
ferent buffer architectures for similar buffer sizes. The

HUANG and HWANG: TWO-LEVEL FIFO BUFFER DESIGN FOR ROUTERS IN ON-CHIP INTERCONNECTION NETWORKS
2421

Fig. 18 Average latencies of XY, DyXY and adaptive routing algorithms
in (a) uniform patterns (b) hotspot patterns.

Table 1 Area and power comparisons between different buffer
architectures in the same buffer size.

power consumption is simulated at 1 GHz under low in-
jection load (0.15). These buffer architectures include the
middle buffer using the static virtual channel allocation, a
dynamic virtual channel regulator (ViChaR), DSB and two-
level FIFO buffer architectures. The middle buffer architec-
tures are implemented as the Bus-In MUX-Out and Bus-In
Bus-Out registers, respectively. The middle buffer is imple-

Fig. 19 Breakdown of area and power consumption of two-level FIFO
buffer and DSB.

mented as 5 input ports with 4 virtual channels for the input
port; each virtual channel has 8 flits and each flit size is 64
bits. Therefore, the total number of flits for each router is
160 flits (5 × 4 × 8). The ViChaR has a unified buffer struc-
ture that dynamically allocates virtual channels and buffer
resources according to network traffic patterns. The ViChaR
is composed of a unified buffer structure and unified con-
trol logics, which are the arriving/departing pointers and the
VC control table. In each input port, the size of the unified
buffer structure is 32 flits. For fully associated two-level
FIFO buffer architecture, the centralized level-2 FIFO is im-
plemented as Bus-MUX-in MUX-out registers; the central-
ized level-2 FIFO is 128 flits (words) deep and 64 bits wide.
For the 2-3 hybrid associated centralized level-2 FIFO, the
depth is 64 flits (words) and width is 64 bits for each sub-
group. In order to obtain the same size of two-level FIFO
buffers for different buffer architectures, each distributed
level-1 FIFO has 6 flits with 64 bits that linearly increase
FIFO sizes to determine the fixed sizes of the centralized
level-2 FIFO. Therefore, the total number of flits in the fully
associated and 2-3 hybrid association is 158 flits (128+6×5,
64 × 2 + 6 × 5). The maximum operation frequency of the
two-level FIFO buffer is 1 GHz that is smaller than those of
the conventional buffer architectures. The DSB can achieve
the same frequency as that of the middle buffer via an extra
pipeline stage.

For a similar number of flits, the DSB occupies the
largest area compared with those of other buffer architec-
tures because of two switch circuits, complex arbitration
and a great number of lookup tables. Furthermore, Fig. 19
presents the breakdown of area and power consumption of
the two-level FIFO buffer and DSB. The proposed two-level
FIFO buffer architecture induces 38.2% area overhead due
to multiple accesses of the centralized level-2 FIFO. Nev-
ertheless, the two-level FIFO buffer architecture dissipates
the smaller power than the DSB and ViChaR because the

2422
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

Fig. 20 Power and area analysis of the different associated two-level
FIFO buffers in an 8input/8output router.

Table 2 Area and power comparisons between different buffer
architectures under similar performance.

VC control table dissipates more power than the data-link
scheduler.

Although the size of the linked field in the hybrid as-
sociated two-level FIFO buffer is larger than that in the
fully associated two-level FIFO buffer, the hybrid associ-
ation uses less power and area overhead by reducing the
number of multiple accesses. This is a trade-off between
performance and power consumption. Therefore, Fig. 20
presents the power and area analysis of different associated
two-level FIFO buffers corresponding to an 8input/8output
router. Both the power and area are reduced when the asso-
ciation decreases. With the decreasing association, the num-
ber of multiple accesses in each sub-group also decreases
but the size of linker fields increases. Therefore, the power
and area overheads of the linker fields are both smaller than
those of the multiple-access mechanism.

The proposed fully associated two-level FIFO buffer
can achieve performance similar to that of the conventional
virtual channels, while using 20–25% of the buffers. There-
fore, the area and power consumption of the middle buffer,
ViChaR, DSB and two-level FIFO buffer are also analyzed
under similar performance as listed in Table 2. The power
consumption is simulated at 1 GHz under low injection load
(0.15). The ViChaR uses half buffers (80 flits) to real-
ize the similar performance. Consequently, the DSB and
two-level FIFO buffer achieve the similar performance us-
ing one-fourth buffers (40 flits), and each flit size is 64
bits. Based on UMC 65 nm CMOS technology at 1.0 V
and 1 GHz, the ViChaR, DSB and proposed two-level FIFO
buffer can achieve 9.3%, 19.2% and 22.3% power reduction,
respectively.

7. Conclusions

On-chip interconnection network (OCIN) designs have been
considered as an effective solution to integrate process-
independent interconnection architectures and multi-core
systems. Additionally, OCIN performance is directly re-
lated to the buffer sizes and utilization. In this paper, a
data-link two-level FIFO buffer architecture is presented as a
good solution for routers in OCINs based on a shared buffer
mechanism and multiple accesses. Additionally, the cen-
tralized level-2 FIFO is realized via a data-link scheduler.
This buffer architecture with a small buffer size reduces the
magnitude of head-of-line blocking problems and performs
well. According to the cycle-accurate simulator, the two-
level FIFO buffer can realize performance similar to that
of the conventional virtual channels, while using 20–25%
of the buffers. Based on UMC 65 nm CMOS technology,
the proposed data-link two-level FIFO buffer can achieve
about 22% power reduction compared with the similar per-
formance of the conventional virtual channels. The two-
level FIFO buffer architecture is very useful as alternative
design that increases the performance of routers in OCINs.

Acknowledgments

This research is supported by National Science Council,
R.O.C., under project NSC 98-2220-E-009-026, NSC 98-
2220-E-009-027. This work also supported by Ministry of
Economic Affairs, R.O.C. The authors would like to thank
ITRI, and TSMC for their support.

References

[1] V. Chandra, A. Xu, H. Schmit, and L. Pileggi, “An interconnect
channel design methodology for high performance integrated cir-
cuits,” Proc. Des. Autom. Test Eur. Conf. Exhib. (DATE), vol.2,
pp.1138–1143, March 2004.

[2] K.-C. Chang, J.-S. Shen, and T.-F. Chen, “Evaluation and de-
sign trade-offs between circuit switched and packet switched NOCs
for application-specific SOCs,” Proc. Des. Autom. Conf. (DAC),
pp.143–148, June 2006.

[3] (2005–2009) International Technology Roadmap for Semicon-
ductors. Semiconductor Industry Assoc. [Online]. Available:
http://public.itrs.net

[4] P.-T. Huang, W.-L. Fang, Y.-L. Wang, and W. Hwang, “Low
power and reliable interconnection with self-corrected green coding
scheme for network-on-chip,” Proc. IEEE Int. Symp. Netwrok-on-
Chip, pp.77–83, April 2008.

[5] L. Benini and G. De-Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol.35, no.1, pp.70–78, Jan. 2002.

[6] L. Benini and G. De Micheli, Network on Chips: Technology and
Tools, Morgan Kaufmann, 2006.

[7] W.J. Dally and B. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann, 2004.

[8] Y. Qian, Z. Lu, W. Dou, and Q. Dou, “Analyzing credit-based router-
to-router flow control for on-chip networks,” IEICE Trans. Electron.,
vol.E92-C, no.10, pp.1276–1283, Oct. 2009.

[9] R. Beidas and Z. Jianwen, “A queuing-theoretic performance model
for context-flow system-on-chip platforms,” Proc. Workshop of Em-
bedded Syst. for Real-Time Multimedia, pp.21–26, 2004.

HUANG and HWANG: TWO-LEVEL FIFO BUFFER DESIGN FOR ROUTERS IN ON-CHIP INTERCONNECTION NETWORKS
2423

[10] Y. Qian, Z. Lu, and W. Dou, “Worst-case flit and packet delay
bounds in workhole networks on chip,” IEICE Trans. Fundamentals,
vol.E92-A, no.12, pp.3211–3220, Dec. 2009.

[11] J. Kim, “Low-cost router microarchitecture for on-chip net-
works,” Proc. IEEE/ACM Int. Symp. Microarchitecture (MICRO-
42), pp.255–266, 2009.

[12] G. Varatkar and R. Marculescu, “Traffic analysis for on-chip net-
works design of multimedia applications,” Proc. Des. Autom. Conf.
(DAC), pp.795–800, June 2002.

[13] J. Hu, U.Y. Ogras, and R. Marculescu, “Application-specific
buffer space allocation for networks-on-chip router design,” Proc.
IEEE/ACM Int. Conf. of Comput.-Aided Des., pp.354–361, 2004.

[14] J. Hu, U.Y. Ogras, and R. Marculescu, “System-level buffer alloca-
tion for application-specific network-on-chip router design,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.25, no.12,
pp.2919–2933, Dec. 2007.

[15] M. Coenen, S. Murali, A. Radulescu, and K. Goossens, “A buffer-
sizing algorithm for networks on chip using TDMA and credit-based
end-to-end flow control,” Proc. IEEE Int. Conf. Hardware/Software
Codesign and Syst. Synthesis, pp.130–135, 2006.

[16] W.J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection network,” Proc. Des. Autom. Conf. (DAC), pp.684–689,
June 2001.

[17] A.K. Kodi, A. Sarathy, and A. Louri, “iDEAL: Inter-router dual-
function energy and area-efficient links for network-on-chip (NoC),”
Proc. Int. Symp. Comput. Architecture (ISCA), pp.241–250, 2008.

[18] D. Kim, K. Kim, J.-Y. Kim, S. Lee, and H.-J. Yoo, “Memory-centric
network-on-chip for power efficient execution of task-level pipeline
on a multi-core processor,” IET Comput. & Digit. Tech., vol.3, no.5,
pp.513–524, 2009.

[19] T.-C. Huang, U.Y. Ogras, and R. Marculescu, “Virtual channels
planning for network-on-chip,” Proc. Int. Symp. Quality Electron.
Des., pp.879–884, 2007.

[20] J. Park, B.W. Okrafka, S. Vassiliadis, and J. Delgado-Frias, “Deign
and evaluation of a DAMQ multiprocessor network with self-
compacting buffers,” Proc. Supercomput., pp.713–722, 1994.

[21] N. Ni, M. Pirvu, and L. Bhuyan, “Circular buffered switch design
with wormhole routing and virtual channels,” Proc. IEEE Int. Conf.
Comput. Des., pp.466–473, 1998.

[22] J. Liu and J.G. Delgado-Frias, “A shared self-compacting buffer for
network-on-chip systems,” Proc. IEEE Int. Midwest Symp. Circuits
Syst., pp.26–30, 2006.

[23] M.A.J. Jamali and A. Khademzadeh, “A new method for improving
the performance of network on chip using DAMQ buffer schemes,”
Proc. Int. Conf. Application Information Comm. Tech., pp.1–6,
2009.

[24] C.A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M.S. Yousif,
and C.R. Das, “ViChaR: A dynamic virtual channel regulator for
network-on-chip routers,” Proc. IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO-39), pp.333–346, 2006.

[25] M. Lai, Z. Wang, L. Gao, H. Lu, and K. Dai, “A dynamically-
allocated virtual channel architecture with congestion awareness for
on-chip routers,” Proc. Des. Autom. Conf. (DAC), pp.630–633, June
2008.

[26] M. Lai, L. Gao, W. Shi, and Z. Wang, “Escaping from blocking a dy-
namic virtual channel for pipelined routers,” Proc. Int. Conf. Com-
plex, Intelligent and Software Intensive Syst., pp.795–800, 2008.

[27] M.H. Neishaburi and Z. Zilic, “Reliability aware NoC router archi-
tecture using input channel buffer sharing,” Proc. 19th ACM Great
Lakes Symp. on VLSI, pp.511–516, 2009.

[28] A.K. Kodi, A. Sarathy, A. Louri, and J. Wang, “Adaptive inter-
router links for low-power, area-efficient and reliable network-on-
chip (NoC) architectures,” Proc. Asia and South Pacific Des. Autom.
Conf., pp.1–6, 2009.

[29] P.-T. Huang and W. Hwang, “2-Level FIFO architecture design for
switch fabrics in network-on-chip,” Proc. IEEE Int. Symp. Circuits
and Systems, pp.4863–4866, May 2006.

[30] L. Wang, J. Zhang, X. Yang, and D. Wen, “Router with centralized
buffer for network-on-chip,” Proc. 19th ACM Great Lakes Symp. on
VLSI, pp.469–474, 2009.

[31] R.S. Ramanujam, V. Soteriou, B. Lin, and L.-S. Peh, “Design of a
high-throughput distributed shared-buffer NoC router,” Proc. IEEE
Int. Symp. on Network-on-Chip, pp.69–78, 2010.

[32] W.J. Dally and C.L. Seitz, “The torus routing chip,” J. Distributed
Computing, vol.3, no.4, pp.267–286, 1979.

[33] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar, “An 80-Tile sub-100-W Ter-
aFLOPS processor in 65-nm CMOS,” IEEE J. Solid-State Circuits,
vol.43, no.1, pp.29–41, Jan. 2008.

[34] K.-M. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power network-on-chip
for high performance SoC design,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol.14, no.2, pp.148–160, Feb. 2006.

[35] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M.
Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K.
Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De1, R.V.D. Wijn-
gaart, and T. Mattson, “A 48-Core IA-32 message-passing processor
with DVFS in 45 nm CMOS,” Proc. IEEE Int. Solid-State Circuits
Conf., pp.108–110, Feb. 2010.

[36] M. Li, Q.-A. Zeng, and W.-B. Jone, “DyXY — A proximity
congestion-aware deadlock-free dynamic routing method for net-
work on chip,” Proc. Des. Autom. Conf. (DAC), pp.849–852, June
2006.

[37] P.-T. Huang and W. Hwang, “An adaptive congestion-aware routing
algorithm for mesh network-on-chip platform,” Proc. IEEE System-
on-Chip Conf. (SOCC), pp.375–378, Sept. 2009.

[38] C. Hernandez, F. Silla, and J. Duato, “A methodology for the char-
acterization of process variation in NoC links,” Proc. Des. Autom.
Test Eur. Conf. Exhib. (DATE), pp.685–690, 2010.

Po-Tsang Huang is a student member of the
IEEE. He received his B.S. degree from the De-
partment of Electronics Engineering, National
Chiao-Tung University, Taiwan, in 2002. He
is a Ph.D. student at the Institute of Electron-
ics Engineering, National Chiao-Tung Univer-
sity. His research interests focus on memory
system design and low power SoC design with
particular emphasis on on-chip interconnection
network platform.

2424
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

Wei Hwang (Fellow IEEE 2001) received
the B.Sc. degree from National Cheng Kung
University, Taiwan, the M.Sc. degree from Na-
tional Chiao Tung University, Taiwan and the
M.Sc. and Ph.D. degrees in electrical engineer-
ing from the University of Manitoba, Winnipeg,
MB, Canada, in 1970 and 1974, respectively.
From 1975 to 1978, he was an Assistant Pro-
fessor with the department of Electrical Engi-
neering, Concordia University, Montreal, QC,
Canada. From 1979 to 1984, he was an Asso-

ciate Professor with the department of Electrical Engineering, Columbia
University, New York, NY, USA. From 1984 to 2002, he was a Research
StaffMember with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, USA. In 2002, he joined National Chiao Tung University
(NCTU), Hsinchu, Taiwan, as the Director of Microelectronics and Infor-
mation Systems Research Center until 2008, where he currently holds a
Chair Professor with the Department of Electronics Engineering. During
2003 to 2007, he served as Co-principal Investigator of National System-
on-Chip (NSoC) Program, Taiwan. From 2005 to 2007, he also served as
a Senior Vice President and Acting President of NCTU, respectively. He
is the coauthor of the book “Electrical Transports in Solids-With Particu-
lar Reference to Organic Semiconductors”, Pergamon Press, 1981, which
has been translated into Russian and Chinese. He has authored or coau-
thored over 200 technical papers in renowned international journals and
conferences, and holds over 150 international patents (including 65 U.S.
patents). Prof. Hwang was a recipient of several IBM Awards, including 16
IBM Invention Plateau Invention Achievement Awards, 4 IBM Research
Division Technical Awards, and was named an IBM Master Inventor. He
was also a recipient of the CIEE Outstanding Electrical Engineering Pro-
fessor Award in 2004 and Outstanding Scholar Award from the Foundation
for the advancement of Outstanding Scholarship for 2005 to 2010. He has
served several times in the Technical Program Committee of the ISLPED,
SOCC, and A-SSCC. He has also served as the General Chair of 2007 IEEE
SoC Conference (SOCC 2007) and 2007 IEEE International Workshop on
Memory Technology, Design and Testing (MTDT 2007). Currently, he is
serving as Founding Director of Center of Advanced Information Systems
and Electronics Research (CAISER) of University System of Taiwan, the
Director of ITRI and NCTU Joint Research Center, and a Supervisor of
IEEE Taipei Section. He is a Life Fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

