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A b s t r a c t - - I n  this paper, we use the renewal theory to develop a Poisson random number al- 
gorithm without restart. A parallel Poisson random number generator is designed based on this 
algorithm and prefix computation. This generator iteratively produces m Poisson random numbers 
with mean # in average time complexity O([mtt/n]f(n,p)) on EREW PRAM, where f(n,p) is the 
time for computing an n-element parallel prefix on p processors in each iteration, assuming that 
parallel uniform random numbers can be generated at the rate of one number per unit time per 
processor. If n is selected near mtt, it achieves linear speedup when p is small and the average time 
complexity is O(log(mp)) when p is O(mtt). 

U e y w o r d s - - R a n d o m  number generator, Poisson distribution, Parallel prefix computation. 

1. I N T R O D U C T I O N  

Recent ly ,  m a n y  uni form r a n d o m  number  genera to r s  have been  presen ted  for para l le l  machines .  

M a t t e i s  and  P a g n u t t i  p a r t i t i o n e d  a single p seudo - r a ndom sequence among  the  avai lable  processors  

in [1] and  used one l inear  congruent ia l  genera to r  for each processor  in [2]. De£k [3] i m p l e m e n t e d  

Genera l  Feedback  Shift  Regis te r  ( G F S R )  for the  Connec t ion  mach ine  and  the  T series,  while  

A l u r u  et al. [4] used G F S R  on para l le l  compu te r s  where  the  number  of  processors  is a power  of  

two. 

Poisson d i s t r i bu t i on  represents  the  number  of  occurrences  pe r  uni t  t ime ,  and  an  event  can 

occur  a t  any  ins t an t  of  t ime.  For  example ,  the  number  of  a lpha  par t ic les  e m i t t e d  by  a r ad ioac t ive  

subs t ance  in a single second,  or  the  number  of arr ivals  in an M/M/1  Queue  in a single second 

has  a Poisson d i s t r ibu t ion .  K n u t h  [5] in t roduced  a s imple  s tochas t ic  mode l  to  genera te  Poisson 

r a n d o m  var iab les  us ing exponen t i a l  r a n d o m  numbers .  

In  th i s  pape r ,  we presen t  a new a lgor i thm to  genera te  Poisson r a n d o m  numbers ,  based  on 

un i form numbers .  In  Sect ion 2, we descr ibe  th is  s tochas t ic  model ,  and  ex tend  it to  gene ra t e  

m a n y  Poisson r a n d o m  numbers .  In  Sect ion 3, we in t roduce  a para l le l  Poisson r a n d o m  n u m b e r  

genera to r .  F inal ly ,  Sect ion 4 concludes  t he  p a p e r  wi th  a note  on the  poss ible  para l le l  mode l s  of 

the  Poisson r a n d o m  n u m b e r  genera tor .  

The authors wish to thank the referee for his detailed and valuable comments on the paper. 
*Author to whom all correspondence should be sent. 
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2. P O I S S O N  G E N E R A T O R S  

2.1. A Simple  Po isson  Generator  

A Poisson random variable Z has probability density 

y z ( z )  = z! ' z = O, l . . . 

and represents the number of events per unit time in a Poisson process with mean #. The 
interarrival time, Xi, is an exponential distribution with mean 1/#. Thus, Z is the number of 
complete and independent exponential random variables Xi that  can be fitted into a unit time 
interval. The following notation is used through this paper. 

DEFINITION 1. 

Zi : Poisson distr ibuted random variable with mean #; 

X i  : exponent ial ly  distributed random variable with mean 1/#;  

= E =I x j ,  So = 0; 

N ( t )  = m a x n  [ Sn <_ t, N(O) = O; 

Ri  : uni formly distr ibuted random variable between 0 and I. 

The relationship between exponential distribution and Poisson distribution is illustrated in 
Figure 1. 

Xl  X2 XN(1)+I 

)( )( )( [ )( 

0 $1 $2 SN(1) 1 SN(D+I 

Figure 1. The relationship between exponential distribution and Poisson distribution. 

According to this relationship, we can produce a Poisson variable Z by first generating inde- 
pendent exponential random variables Xx, X2 , . . .  with mean 1/#, stopping generating as soon as 
X1 + X2  + " "  + X m  _> 1, and then Z = m - 1. The random variable X 1 -~- X 2 -{- . - .  -[- X m is a 
gamma random variable of order m. The probability that  X1 + X2 + . . .  + Xm _> 1 is actually 
f 2  t m - l e - t  d t / ( m  - 1)!, and the probability that  Z = n is 

l ~ ° ° t n e _  t 1 ~ e -~'#n > 0 .  -~. dt (n - 1)[ t n - l e  - t  dt = n! ' n 

This generating method is summed up in the following theorem [5]. 

THEOREM 1. Let  Xi  be an exponential  random variable with mean 1/#, and m is the largest 
integer satisfying X1 + X2 + . . .  + X m  <_ 1. Then  Z = m is a Poisson random variable with 
mean/~. 

An exponential random variable, Xi, can be obtained by the inversion method [6], which uses 
a uniform random variable Ri, 

Xi = F~I(P,~) = _1_ in(1 - P,~), 
# 

where FR(x) = Jo Ae-~t  dt = 1 - e -~x and 1 - Tl~ is also a uniform random number in [0, 1), so 
we take Xi -- - ( 1 / # ) l n ( R i ) .  
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From Theorem 1, given a sequence of random numbers {R~}, we require the largest integer Z 

to satisfy 

( l n R l + l n R 2 + . . . + l n R z )  < 1  or R I * R 2 * . . . * R z  >_e -~, 
# 

so we obtain the following corollary [5]. 

COROLLARY 1. Let {Ri} be a sequence of uniform random variables, Z be the largest integer to 

satisfy 

l l n R i < _ l  or R i > e - " .  
~=i # i=l 

Then Z is a Poisson random variable with mean #. 

Using Corollary 1, we come up with a simple algorithm to generate m Poisson random variables 

as follows. 

PROGRAM 1. 
PROCEDURE Sequential_Poisson_with_restart(m, #) 
/* Procedure Uniform(R) generates a randomnumber R-U(O, 1) */  

F O R I : - - 1  T O m D O  
Z := 0 ;RR := 1; 
WHILE ( RR > e -~ ) DO 

Uniform(R); 
RR := RR * R; 
Z : = Z + I  

END WHILE 
OUTP UT(  Z -  1 ) 

END FOR 
END PROCEDURE 

This method requires generating a mean of m(# + 1) uniform random numbers for m Poisson 
random variables. For large #, it will not be efficient in time. 

2.2.  A N e w  G e n e r a t o r  w i t h o u t  R e s t a r t  

Consider two consecutive sequences of the generation of Poisson random variables, Z1 and Z2. 
By the method in 2.1, we require Z1 + 1 independent uniform random numbers to generate Poisson 
random variable Z1 and another Z2 + 1 independent uniform random numbers to generate Poisson 
random variable Z2. Indexing these two sequences of uniform random numbers together, we need 
Z1 + Z2 + 2 independent uniform random variables to generate Poisson random variables Z1 
and Z2 (see Figure 2). 

XZ1 +1 Xz1 +z2+2 
• . • q D • .. ~ 

I × I >< × I × 
0 SN(t) 1 •N(1)+I 1 -~ SN(1)+I 

Figure 2. Two consecutive sequences of the generation of Poisson random variables Z1 and Z2. 

XzI+I is the interarrival which crosses the time 1. Can we use it as an exponential random 
number to generate Z2? The answer is NO because Z1, Xzl+t is not independent by 

Pr  Xz~+l > 1 -  Xi = 1. 
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Furthermore, the interarrival time X z ,  +i is selected by the inspection of time 1. The distribution 
of X z , + l  is not exponential anymore. This is an inspection paradox in renewal theory [6]. 
However, we can still use XZl+l tactically to generate the next Poisson random number as 
discussed below. We need the following definition before the discussion. 

DEFINITION 2. 

A(1): the t ime from the N(1) th arrival to t ime 1; 

E(1): the time between 1 and the (N(1) + 1) th arrival. 

In Figure 3, X z l + l  = XNO)+I = A(1) + E(1) where 

g(1) 
A ( 1 )  = 1 - x ,  = 1 - S N ( 1 ) ,  

i=1  

N(1)-{-1 

i=1  

XN(1)+I 

A(1) E(1) 

)( I )( 
SN(1) 1 SN(1)+I 

Figure 3. The interarrival time crosses the time 1. 

Since X~ is the interarrival time with exponential distribution, N(t) ,  t >_ 0 is a Poisson process. 
From the memoryless property of Poisson process, the time from t = 1 to the next arrival is 
exponentially distributed and is independent of all that  has previously occurred, so A(1) and 
E(1) are independent, and E(1) is an exponential random variable with mean 1/#. Since E(1) is 
an exponential random variable with mean l / i t ,  we can use E(1) to generate Z2 (see Figure 4). 

A(1) E(1) A(2) E(2) 

i x J x x i x 
0 SN(1) 1 SN(1)-{- 1 •N(2) 2 SN(2) +1 

Figure 4. The memorylees property in interarrivM time. 

In turn, we can prove E(n)  is an exponential random variable with mean 1/it, and it can be 
used to generate Poisson random variable Zn+l, so we have the following theorem. 

THEOREM 2. Let 

E(n)  = SN(n)+I -- n, n = 1 , 2 . . . ,  

A(n)  = n -  SN(n), n = 1 , 2 . . . ;  

then 

i .  E (n )  is exponential distribution with mean 1~it; 
2. A(n)  and E(n)  are independent. 
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From Theorem 2, we can improve the sequential algorithm in Section 2.1 to get Z 1 , . . . ,  Zm 

in a sequence of uniform random variables R1, R 2 , . . . ,  Rj without restart ,  where j = min{k I 
R1 * R2 * . . .  * Rk <_ e-mU}. The resulting algorithm is presented below. 

PROGRAM 2. 
P R O C E D U R E  Sequential_Poisson_without_restart( rn, # ) 
/*  Procedure Uni]orm(R) generates a randomnumber  R-U(O, 1) */  

R R  := 1; Z := 0; T := e-U; count := 0; 

W H I L E  (count < m) DO 
W H I L E  ( R R  > T)  DO 

Uniform(R); 
R R  := R R  * R; 

Z : = Z + I ;  
END W H I L E  

WHILE ( R R  <_ T)  DO 
O U T P U T (  Z - 1 ); 

R R  := R R / T ;  
Z := 1 ; / *  From Theorem 2, R R / T  is a new random variable */  

count := count + 1; 

END W H I L E  
END W H I L E  

END P R O C E D U R E  

By Theorem 2, E(n)  is an exponential distribution with mean 1/#, and so N ( n )  - N ( n  - 1) 
is the number  of the exponential arrivals between t ime n - 1 and n (see Figure 5). Thus,  

Zn = N ( n )  - N ( n  - 1) is a Poisson distribution random variable with mean # (N(0) = 0 by 

definition), so the following corollary is obtained. 

COROLLARY 2. Let  Zn be the n th Poisson random variable we generated; then Zn = N ( n )  - 

N ( n -  1), n = 1 , . . . , m .  

A(n  - 1)E(n  - 1) A(n)  E(n)  

x I x x I x 

N ( n  - 1) th arrival N(n)  th arrival 

Figure 5. E(n) is an exponential distribution random variable with mean 1/~. 

k We therefore can compute Sk = ~ i = l - ( 1 / # ) l n R ~ ,  k = 1 , . . .  j .  I f  i - 1 < Sk <_ i, the 
k th arrival is in the t ime interval (i - 1, i]. Counting the arrivals in each interval (i - 1, i], we 

can get the Poisson random variable Z~. We develop the following algorithm using this method 
to get m Poisson random variables. And the paxallelization of the algorithm is discussed in the 

next section. 

PROGRAM 3. 
P R O C E D U R E  Pseudo_code_of_Poisson( m, ~u ) 

S t e p  1: Generate  "sufficient" uniform randomnumbers  such that  m Poisson numbers can be 
generated by using them. Assume them to be R1 . . . .  , Rj.  

S t e p  2: Compute  X 1 , . . .  ,X j  where Xi = - ( 1 / # )  lnR~. 
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k S t e p  3: Compute Sk = ~-~i=1Xi for k = 1 , . . .  , j .  

S t e p  4: Parti t ion {Sk I k -- 1 , . . .  , j}  to U~=IT~ where Ti -- {Sk I i - 1 < Sk _< i}, the cardinality 
of Ti is the number of arrivals in the time segment (i - 1, i]. 

S t e p  5: Count the cardinality of Ti for i -- 1 , . . . ,  m, and output  them. 

END PROCEDURE 

3.  A P A R A L L E L  P O I S S O N  G E N E R A T O R  

We develop a parallelization for the algorithm in Program 3 on EREW PRAM model. We are 
concerned with the following key problems in parallelization: 

1. How to generate "sufficient" uniform random numbers in parallel (Step 1). 
k 2. How to compute Sk -~ ~i=1 X i  for k -- 1 , . . . ,  j concurrently (Step 3). 

3. How to compute the cardinality of Ti for i -- 1 , . . . ,  m effectively (Step 5). 

These three problems will be dealt with in the following sections one by one. 

3.1. A P a r a l l e l  U n i f o r m  R a n d o m  N u m b e r  G e n e r a t o r  

In a parallel computing model, a parallel uniform random number generator (PURNG for 
short) is to produce a sequence of random real numbers in [0, 1) on each processor. On an 
EREW PRAM, a common memory can be accessed by each processor. We can implement the 
GFSR algorithm presented in [7] on an EREW PRAM directly as follows. 

The GFSR algorithm consists of two phases: the initialization phase and the random generating 
phase. In the first phase, a table is constructed in the common memory. In the second phase, 
each processor reads two words from the table, and then makes an XOR operation to obtain a 
uniform random number. 

When the number of processors is a power of two, the GFSR algorithm can be implemented 
without the common memory [4]. It can avoid communication costs. 

The total number of "sufficient" uniform random numbers has no upper bound. We generate 
and process these random numbers iteratively. The algorithm generates n uniform random num- 
bers in each iteration with each processor sharing n ip  numbers and stops when Skn > m after 
the k th iteration. For the ith iteration, X( i -1 )n+ l , . . . ,  Xi×n are computed and the prefix compu- 
tation is applied to obtain S(i-1)n+l, • •., Si×n and the cardinalities of Ti,'s (the cardinality of Ti, 
is the number of arrivals in the time segment (i' - 1, i')). In Sections 3.2 and 3.3, we describe 
how to compute them in parallel. 

3.2. T h e  P a r a l l e l  P r e f i x  A l g o r i t h m  

k We use the parallel prefix computation to compute Sk -- ~ = 1  Xi for k -- 1 . . . .  , n concurrently. 
Given X1 . . . .  , Xn, the prefix computation problem is to evaluate all products X1 ®)(2 ®.-  • @ X~, 
for i -- 1 . . . .  , n, with an associative operation ®. There have been a few parallel algorithms to 
solve this problem under different architectures. Kruskai et al. [8] developed a parallel prefix 
algorithm on an EREW PRAM model with time complexity O(n/p  + logp) where p is the 
number of processors. Dekel et al. [9] and Chen et al. [10] designed O(log n) algorithms on an 
n-leaf complete binary tree model. Moreover, E~ecio~lu et al. [11] presented an O(n /p  + logp) 
algorithm in hypercube, and Chen et al. [12] designed an O(nW9) algorithm on two-dimensional 
mesh-connected computers with multiple broadcasting (2-MCCMB's). 

The prefix algorithm in [8] is adopted to construct our Poisson number generator. Accordingly, 
the computation model and the syntax style to specify the generator are similar to [8]. The 
following syntax appears frequently in our algorithm: 
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FORALL i E A DO IN PARALLEL 
BODY. 

This syntax indicates that  the B O D Y  is executed once for each processor i in the index set A. 

3.3. C o u n t i n g  t h e  Ca rd ina l i t i e s  o f  Ties in Para l l e l  

To count the total number of elements in each segment Ti, we define an operator @ as follows. 

DEFINITION 3. 
(a ,b+d)  i r a = c ,  

(a, b) @ (c, d) = (c, d) i f  a < c, 
(a,b) ira > c. 

It is easy to check whether @ is associative. By the definition of Ti, we have s -- i for s in 
(i - 1, i]. We define an array T T  with TT[k] -- Sk for k -- 1 , . . . , n ;  then the frequency that 
i appears in array T T  is the cardinality of Ti. Since T T  is nondecreasing, a _< c is always true. 
Define W[i] to be (TT[i], 1), for i -- 1 , . . . ,  n, and call the procedure Parallel_Prefix_G to compute 
all prefixes of array W and store them in array U. The second coordinate of the last element in 
each corresponding segment of array U represents the total number of elements in this segment. 
The above is summarized in the following theorem. 

THEOREM 3. I f  T T  is nondecreasing and TT[k] ~ TT[k + 1], i.e., TT[k] is the last dement  of 
the segment TTT[k], then 

(TT[1], 1) @ (TT[2], 1) @. . .  (9 (TT[k], 1) = (TT[k], the cardinality of  TTT[k]). 

EXAMPLE 1. Assume 

{Sk[ k -- 1 , . . . ,  10} = {0.1, 0.3, 0.6, 0.8, 1.2, 1.3, 2.5, 2.8, 2.9, 3.1}; 

then 

T1 -- {0.1,0.3, 0.6, 0.8}, 

T2 = {1.2, 1.3}, 

T3 = {2.5,2.8,2.9}, and 

T4 = {3.1}. 

Therefore, 

TT[1 . . .10]  = [1,1,1,1,2,2,3,3,3,4] ,  and 

W[1 . . .  10] = [(1, 1), (1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1), (3, 1), (3, 1), (4, 1)]. 

After prefix computation, 

U[1 . . .  10] -- [(1, 1), (1, 2), (1, 3), (1,4), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1)]. 

The second coordinates of U[4], U[6], U[9], and U[10] are 4, 2, 3, and 1, respectively, which are 
the cardinalities of T1, T2, T3, and T4. 
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3.4. The Parallel Algorithm 

The parallel algorithm developed from Sections 3.1-3.3 is shown in Program 4. First, each 
processor generates nip uniform random numbers, stores them in array R, and computes array X 
by assigning -(1/#)lnR[i]  to X[i]. Next, accumulate the Sin] value (variable oldS) in the last 
iteration, and call the procedure Parallel_Prefix_+ to compute prefix sums (will be stored in 
array S) in array X based on addition operation. 

We then compute array T T  and W, which were discussed in Section 3.3. Before the procedure 
Parallel_Prefix_@ is called, the U value is accumulated in the last iteration (variable oldU). In 
the next step, we will look for the last element of each segment. This can be done by checking 
whether the T T  value of an element differs from its next element. We then use array V to denote 
these last elements, which are finally output, and save the residual values in this iteration. 

PROGRAM 4. A parallel Poisson number generator. 
PROCEDURE Parallel_Poisson(m, #) 
/* The procedure produces m Poisson numbers with mean # */ 
/* Procedure Init_Uniform 0 constructs the initial table that is used in GFSR algorithm. Proce- 
dure Uniform(R) generates a random number R " U(0, 1); Procedure Parallel_Prefix_®(n, p, X, S) 
compute S[k] = ~-~k=l X[i] for k = 1 , . . . ,  n under operator ® on p processors EREW PRAM. */ 
/* Initialization */ 

Init_Uniform0; 
oldS := 0; 
a := n/p; 

/* Begin iteration */ 
WHILE (oldS <_ ra) DO 

/* Step 1 and Step 2 */ 
FORALL i ~ (1, . . .  ,p} DO IN PARALLEL 

FOR j := 1 TO a DO 
Uniform(R[/]); 
X[(i - 1) . a  + j] := - lnR[ i] /~  

END FOR 
END FORALL 

/* Accumulate the S value in the last iteration */ 
X[I] := X[1] + oldS; 

/* Step 3 */ 
Parallel_Prefix_+ (n, p, X, S); 

/* Output or accumulate the U value in the last iteration */ 
FORALL i E {1,... ,p} DO IN PARALLEL 

FOR j := 1 TO a DO 
T T [ ( i -  1 ) * a + j ]  := S [ ( i -  1) * a + j ] ;  
W[(i - 1) * a + j] := (TT[(i - 1) * a + j], 1) 

END FOR 
END FORALL 
IF (oldS ~ 0 and oldTT ¢ TT[1]) THEN 

OUTPUT(oldU) 
END IF 
IF (oldS ¢ 0 and oldTT = TT[1]) THEN 

W[1] := (TT[1], 1+ second_coordinate of oldU) 
END IF 

/* Step 5 */ 
Parallel_Prefix_@ (n, p, W, U); 
FORALL i E (1 , . . . ,p}  DO IN PARALLEL 
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FOR j := 1 T O  a DO 
V [ ( i - 1 ) . a  + j] : - -0  

END FOR 

END FORALL 
/* Find the last element of each segment */  

FORALL i E {1 , . . .  ,p} DO IN PARALLEL 
F O R j : = I T O a - 1  DO 

IF (TT[(i - 1 ) ,  a + j] ~ TT[(i  - 1) * a + j + 1]) THEN 
y [ ( i - 1 ) , a + j ]  := 1 

END IF 

END FOR 
END FORALL 
FORALL i e {1 , . . .  , p -  1} DO IN PARALLEL 

IF (TT[i * a ] ¢  TT[i  * a + 1]) T H E N  

Vii • a] := 1 
END IF 

END FORALL 

/* Outpu t  U */  
FOR j := 1 T O  a DO 

FORALL i • {1 , . . .  ,p} DO IN PARALLEL 
IF (V[(j - 1) * p + i] = 1 and TT[( j  - 1) * p + i] _< m) T H E N  

O U T P U T ( U [ ( j  - 1 ) ,  p ÷ i]) 
END IF 

END FORALL 

END FOR 
/* Save values in this iteration */ 

oldS := X[n]; 

oldTT := TT[n]; 
oldU := U[n] 

END W H I L E  
END P R O C E D U R E  

The t ime complexity of the algorithm is not deterministic. The algorithm uses O(1) preprocess- 
ing t ime if the initial t ime of the parallel uniform random number generator is not considered. In 
average, to generate m Poisson numbers needs m #  uniform random numbers and Fm~/nl itera- 
tions. Since each iteration takes O(n /p  + logp) time, the average t ime complexity of the parallel 
Poisson algorithm is O(F m #/ n  1 (n/p + logp)). It  is not time-effective when n > m #  because it 
is worse than the case where n = m#.  If n is near m#,  the time complexity is O ( m # / p  ÷ logp). 
This algorithm achieves linear speedup for small p (the sequential algorithm takes O(m#)  t ime 
in average), and takes O( logm#)  time where p = O(m#).  The space complexity is clearly O(n). 

EXAMPLE 2. Given m ---- 6, # -- 10/3, n = 12. The following table shows the process of this 

algorithm: 

R X S T T  U V 

0.010559 1.365222 1.365222 2 (2, 1) 1 
0.003967 1.658893 3.024115 4 (4, 1) 0 
0.335154 0.327949 3.352064 4 (4, 2) 1 
0.033265 1.020973 4.373037 5 (5, 1) 0 
0.355724 0.310080 4.683117 5 (5, 2) 1 
0.217200 0.458081 5.141198 6 (6, 1) 0 
0.536973 0.186542 5.327740 6 (6, 2) 0 

OVql~ 31:3-D 
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The output sequence is (2, 1), (4, 2), (5, 2), (6, 5). It represents the Poisson number sequence: 
0, 1,0,2,2,5. 

4.  C O N C L U S I O N  

In this paper, we combine the memoryless property of Poisson process with the prefix compu- 
tation to parallelize a simple sequential Poisson number generator. It seems to be hard to develop 
parallel generators without the memoryless property. 

The parallel algorithm developed in this paper is based on EREW PRAM, and we can easily 
modify the generator on popular architectures such as the binary tree, hypercube and 2-MCCMB. 
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