
Computers Math. Applic. Vol. 31, No. 3, pp. 33-42, 1996
P e r g a m o n Copyright~)1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0898-1221/96 $15.00 + 0.00

0898-1221 (95) 00204-9

A Parallel Poisson Generator
Us ing Parallel Prefix

T A N - C H U N Lu, Y u - S O N G H O U AND R O N G - J A Y E C H E N *
Department of Computer Science and Information Engineering

National Chiao Tung University
1001 TA Hsueh Road

Hsinchu 300, Taiwan, R.O.C.
rj chen@csie, nctu . edu. tw

(Received May 1993; revised and accepted May 1995)

A b s t r a c t - - I n this paper, we use the renewal theory to develop a Poisson random number al-
gorithm without restart. A parallel Poisson random number generator is designed based on this
algorithm and prefix computation. This generator iteratively produces m Poisson random numbers
with mean # in average time complexity O([mtt/n]f(n,p)) on EREW PRAM, where f(n,p) is the
time for computing an n-element parallel prefix on p processors in each iteration, assuming that
parallel uniform random numbers can be generated at the rate of one number per unit time per
processor. If n is selected near mtt, it achieves linear speedup when p is small and the average time
complexity is O(log(mp)) when p is O(mtt).

U e y w o r d s - - R a n d o m number generator, Poisson distribution, Parallel prefix computation.

1. I N T R O D U C T I O N

Recent ly , m a n y uni form r a n d o m number genera to r s have been presen ted for para l le l machines .

M a t t e i s and P a g n u t t i p a r t i t i o n e d a single p seudo - r a ndom sequence among the avai lable processors

in [1] and used one l inear congruent ia l genera to r for each processor in [2]. De£k [3] i m p l e m e n t e d

Genera l Feedback Shift Regis te r (G F S R) for the Connec t ion mach ine and the T series, while

A l u r u et al. [4] used G F S R on para l le l compu te r s where the number of processors is a power of

two.

Poisson d i s t r i bu t i on represents the number of occurrences pe r uni t t ime , and an event can

occur a t any ins t an t of t ime. For example , the number of a lpha par t ic les e m i t t e d by a r ad ioac t ive

subs t ance in a single second, or the number of arr ivals in an M/M/1 Queue in a single second

has a Poisson d i s t r ibu t ion . K n u t h [5] in t roduced a s imple s tochas t ic mode l to genera te Poisson

r a n d o m var iab les us ing exponen t i a l r a n d o m numbers .

In th i s pape r , we presen t a new a lgor i thm to genera te Poisson r a n d o m numbers , based on

un i form numbers . In Sect ion 2, we descr ibe th is s tochas t ic model , and ex tend it to gene ra t e

m a n y Poisson r a n d o m numbers . In Sect ion 3, we in t roduce a para l le l Poisson r a n d o m n u m b e r

genera to r . F inal ly , Sect ion 4 concludes t he p a p e r wi th a note on the poss ible para l le l mode l s of

the Poisson r a n d o m n u m b e r genera tor .

The authors wish to thank the referee for his detailed and valuable comments on the paper.
*Author to whom all correspondence should be sent.

33

34 T.-C. LU et al.

2. P O I S S O N G E N E R A T O R S

2.1. A Simple Po isson Generator

A Poisson random variable Z has probability density

y z (z) = z! ' z = O, l . . .

and represents the number of events per unit time in a Poisson process with mean #. The
interarrival time, Xi, is an exponential distribution with mean 1/#. Thus, Z is the number of
complete and independent exponential random variables Xi that can be fitted into a unit time
interval. The following notation is used through this paper.

DEFINITION 1.

Zi : Poisson distr ibuted random variable with mean #;

X i : exponent ial ly distributed random variable with mean 1/#;

= E =I x j , So = 0;

N (t) = m a x n [Sn <_ t, N(O) = O;

Ri : uni formly distr ibuted random variable between 0 and I.

The relationship between exponential distribution and Poisson distribution is illustrated in
Figure 1.

Xl X2 XN(1)+I

)()()([)(

0 $1 $2 SN(1) 1 SN(D+I

Figure 1. The relationship between exponential distribution and Poisson distribution.

According to this relationship, we can produce a Poisson variable Z by first generating inde-
pendent exponential random variables Xx, X2 , . . . with mean 1/#, stopping generating as soon as
X1 + X2 + " " + X m _> 1, and then Z = m - 1. The random variable X 1 -~- X 2 -{- . - . -[- X m is a
gamma random variable of order m. The probability that X1 + X2 + . . . + Xm _> 1 is actually
f 2 t m - l e - t d t / (m - 1)!, and the probability that Z = n is

l ~ ° ° t n e _ t 1 ~ e -~'#n > 0 . -~. dt (n - 1)[t n - l e - t dt = n! ' n

This generating method is summed up in the following theorem [5].

THEOREM 1. Let Xi be an exponential random variable with mean 1/#, and m is the largest
integer satisfying X1 + X2 + . . . + X m <_ 1. Then Z = m is a Poisson random variable with
mean/~.

An exponential random variable, Xi, can be obtained by the inversion method [6], which uses
a uniform random variable Ri,

Xi = F~I(P,~) = _1_ in(1 - P,~),

where FR(x) = Jo Ae-~t dt = 1 - e -~x and 1 - Tl~ is also a uniform random number in [0, 1), so
we take Xi -- - (1 / #) l n (R i) .

Parallel Poisson Generator 35

From Theorem 1, given a sequence of random numbers {R~}, we require the largest integer Z

to satisfy

(l n R l + l n R 2 + . . . + l n R z) < 1 or R I * R 2 * . . . * R z >_e -~,

so we obtain the following corollary [5].

COROLLARY 1. Let {Ri} be a sequence of uniform random variables, Z be the largest integer to

satisfy

l l n R i < _ l or R i > e - " .
~=i # i=l

Then Z is a Poisson random variable with mean #.

Using Corollary 1, we come up with a simple algorithm to generate m Poisson random variables

as follows.

PROGRAM 1.
PROCEDURE Sequential_Poisson_with_restart(m, #)
/* Procedure Uniform(R) generates a randomnumber R-U(O, 1) */

F O R I : - - 1 T O m D O
Z := 0 ;RR := 1;
WHILE (RR > e -~) DO

Uniform(R);
RR := RR * R;
Z : = Z + I

END WHILE
OUTP UT(Z - 1)

END FOR
END PROCEDURE

This method requires generating a mean of m(# + 1) uniform random numbers for m Poisson
random variables. For large #, it will not be efficient in time.

2.2. A N e w G e n e r a t o r w i t h o u t R e s t a r t

Consider two consecutive sequences of the generation of Poisson random variables, Z1 and Z2.
By the method in 2.1, we require Z1 + 1 independent uniform random numbers to generate Poisson
random variable Z1 and another Z2 + 1 independent uniform random numbers to generate Poisson
random variable Z2. Indexing these two sequences of uniform random numbers together, we need
Z1 + Z2 + 2 independent uniform random variables to generate Poisson random variables Z1
and Z2 (see Figure 2).

XZ1 +1 Xz1 +z2+2
• . • q D • .. ~

I × I >< × I ×
0 SN(t) 1 •N(1)+I 1 -~ SN(1)+I

Figure 2. Two consecutive sequences of the generation of Poisson random variables Z1 and Z2.

XzI+I is the interarrival which crosses the time 1. Can we use it as an exponential random
number to generate Z2? The answer is NO because Z1, Xzl+t is not independent by

Pr Xz~+l > 1 - Xi = 1.

36 T.-C. Lu et al.

Furthermore, the interarrival time X z , +i is selected by the inspection of time 1. The distribution
of X z , + l is not exponential anymore. This is an inspection paradox in renewal theory [6].
However, we can still use XZl+l tactically to generate the next Poisson random number as
discussed below. We need the following definition before the discussion.

DEFINITION 2.

A(1): the t ime from the N(1) th arrival to t ime 1;

E(1): the time between 1 and the (N(1) + 1) th arrival.

In Figure 3, X z l + l = XNO)+I = A(1) + E(1) where

g(1)
A (1) = 1 - x , = 1 - S N (1) ,

i=1

N(1)-{-1

i=1

XN(1)+I

A(1) E(1)

)(I)(
SN(1) 1 SN(1)+I

Figure 3. The interarrival time crosses the time 1.

Since X~ is the interarrival time with exponential distribution, N(t) , t >_ 0 is a Poisson process.
From the memoryless property of Poisson process, the time from t = 1 to the next arrival is
exponentially distributed and is independent of all that has previously occurred, so A(1) and
E(1) are independent, and E(1) is an exponential random variable with mean 1/#. Since E(1) is
an exponential random variable with mean l / i t , we can use E(1) to generate Z2 (see Figure 4).

A(1) E(1) A(2) E(2)

i x J x x i x
0 SN(1) 1 SN(1)-{- 1 •N(2) 2 SN(2) +1

Figure 4. The memorylees property in interarrivM time.

In turn, we can prove E(n) is an exponential random variable with mean 1/it, and it can be
used to generate Poisson random variable Zn+l, so we have the following theorem.

THEOREM 2. Let

E(n) = SN(n)+I -- n, n = 1 , 2 . . . ,

A(n) = n - SN(n), n = 1 , 2 . . . ;

then

i . E (n) is exponential distribution with mean 1~it;
2. A(n) and E(n) are independent.

Parallel Poisson Generator 37

From Theorem 2, we can improve the sequential algorithm in Section 2.1 to get Z 1 , . . . , Zm

in a sequence of uniform random variables R1, R 2 , . . . , Rj without restart , where j = min{k I
R1 * R2 * . . . * Rk <_ e-mU}. The resulting algorithm is presented below.

PROGRAM 2.
P R O C E D U R E Sequential_Poisson_without_restart(rn, #)
/* Procedure Uni]orm(R) generates a randomnumber R-U(O, 1) */

R R := 1; Z := 0; T := e-U; count := 0;

W H I L E (count < m) DO
W H I L E (R R > T) DO

Uniform(R);
R R := R R * R;

Z : = Z + I ;
END W H I L E

WHILE (R R <_ T) DO
O U T P U T (Z - 1);

R R := R R / T ;
Z := 1 ; / * From Theorem 2, R R / T is a new random variable */

count := count + 1;

END W H I L E
END W H I L E

END P R O C E D U R E

By Theorem 2, E(n) is an exponential distribution with mean 1/#, and so N (n) - N (n - 1)
is the number of the exponential arrivals between t ime n - 1 and n (see Figure 5). Thus,

Zn = N (n) - N (n - 1) is a Poisson distribution random variable with mean # (N(0) = 0 by

definition), so the following corollary is obtained.

COROLLARY 2. Let Zn be the n th Poisson random variable we generated; then Zn = N (n) -

N (n - 1), n = 1 , . . . , m .

A(n - 1)E(n - 1) A(n) E(n)

x I x x I x

N (n - 1) th arrival N(n) th arrival

Figure 5. E(n) is an exponential distribution random variable with mean 1/~.

k We therefore can compute Sk = ~ i = l - (1 / #) l n R ~ , k = 1 , . . . j . I f i - 1 < Sk <_ i, the
k th arrival is in the t ime interval (i - 1, i]. Counting the arrivals in each interval (i - 1, i], we

can get the Poisson random variable Z~. We develop the following algorithm using this method
to get m Poisson random variables. And the paxallelization of the algorithm is discussed in the

next section.

PROGRAM 3.
P R O C E D U R E Pseudo_code_of_Poisson(m, ~u)

S t e p 1: Generate "sufficient" uniform randomnumbers such that m Poisson numbers can be
generated by using them. Assume them to be R1 , Rj.

S t e p 2: Compute X 1 , . . . ,X j where Xi = - (1 / #) lnR~.

38 T.-C. Lu et al.

k S t e p 3: Compute Sk = ~-~i=1Xi for k = 1 , . . . , j .

S t e p 4: Parti t ion {Sk I k -- 1 , . . . , j} to U~=IT~ where Ti -- {Sk I i - 1 < Sk _< i}, the cardinality
of Ti is the number of arrivals in the time segment (i - 1, i].

S t e p 5: Count the cardinality of Ti for i -- 1 , . . . , m, and output them.

END PROCEDURE

3. A P A R A L L E L P O I S S O N G E N E R A T O R

We develop a parallelization for the algorithm in Program 3 on EREW PRAM model. We are
concerned with the following key problems in parallelization:

1. How to generate "sufficient" uniform random numbers in parallel (Step 1).
k 2. How to compute Sk -~ ~i=1 X i for k -- 1 , . . . , j concurrently (Step 3).

3. How to compute the cardinality of Ti for i -- 1 , . . . , m effectively (Step 5).

These three problems will be dealt with in the following sections one by one.

3.1. A P a r a l l e l U n i f o r m R a n d o m N u m b e r G e n e r a t o r

In a parallel computing model, a parallel uniform random number generator (PURNG for
short) is to produce a sequence of random real numbers in [0, 1) on each processor. On an
EREW PRAM, a common memory can be accessed by each processor. We can implement the
GFSR algorithm presented in [7] on an EREW PRAM directly as follows.

The GFSR algorithm consists of two phases: the initialization phase and the random generating
phase. In the first phase, a table is constructed in the common memory. In the second phase,
each processor reads two words from the table, and then makes an XOR operation to obtain a
uniform random number.

When the number of processors is a power of two, the GFSR algorithm can be implemented
without the common memory [4]. It can avoid communication costs.

The total number of "sufficient" uniform random numbers has no upper bound. We generate
and process these random numbers iteratively. The algorithm generates n uniform random num-
bers in each iteration with each processor sharing n ip numbers and stops when Skn > m after
the k th iteration. For the ith iteration, X(i -1)n+ l , . . . , Xi×n are computed and the prefix compu-
tation is applied to obtain S(i-1)n+l, • •., Si×n and the cardinalities of Ti,'s (the cardinality of Ti,
is the number of arrivals in the time segment (i' - 1, i')). In Sections 3.2 and 3.3, we describe
how to compute them in parallel.

3.2. T h e P a r a l l e l P r e f i x A l g o r i t h m

k We use the parallel prefix computation to compute Sk -- ~ = 1 Xi for k -- 1 , n concurrently.
Given X1 , Xn, the prefix computation problem is to evaluate all products X1 ®)(2 ®.- • @ X~,
for i -- 1 , n, with an associative operation ®. There have been a few parallel algorithms to
solve this problem under different architectures. Kruskai et al. [8] developed a parallel prefix
algorithm on an EREW PRAM model with time complexity O(n/p + logp) where p is the
number of processors. Dekel et al. [9] and Chen et al. [10] designed O(log n) algorithms on an
n-leaf complete binary tree model. Moreover, E~ecio~lu et al. [11] presented an O(n /p + logp)
algorithm in hypercube, and Chen et al. [12] designed an O(nW9) algorithm on two-dimensional
mesh-connected computers with multiple broadcasting (2-MCCMB's).

The prefix algorithm in [8] is adopted to construct our Poisson number generator. Accordingly,
the computation model and the syntax style to specify the generator are similar to [8]. The
following syntax appears frequently in our algorithm:

Parallel Poisson Generator 39

FORALL i E A DO IN PARALLEL
BODY.

This syntax indicates that the B O D Y is executed once for each processor i in the index set A.

3.3. C o u n t i n g t h e Ca rd ina l i t i e s o f Ties in Para l l e l

To count the total number of elements in each segment Ti, we define an operator @ as follows.

DEFINITION 3.
(a ,b+d) i r a = c ,

(a, b) @ (c, d) = (c, d) i f a < c,
(a,b) ira > c.

It is easy to check whether @ is associative. By the definition of Ti, we have s -- i for s in
(i - 1, i]. We define an array T T with TT[k] -- Sk for k -- 1 , . . . , n ; then the frequency that
i appears in array T T is the cardinality of Ti. Since T T is nondecreasing, a _< c is always true.
Define W[i] to be (TT[i], 1), for i -- 1 , . . . , n, and call the procedure Parallel_Prefix_G to compute
all prefixes of array W and store them in array U. The second coordinate of the last element in
each corresponding segment of array U represents the total number of elements in this segment.
The above is summarized in the following theorem.

THEOREM 3. I f T T is nondecreasing and TT[k] ~ TT[k + 1], i.e., TT[k] is the last dement of
the segment TTT[k], then

(TT[1], 1) @ (TT[2], 1) @. . . (9 (TT[k], 1) = (TT[k], the cardinality of TTT[k]).

EXAMPLE 1. Assume

{Sk[k -- 1 , . . . , 10} = {0.1, 0.3, 0.6, 0.8, 1.2, 1.3, 2.5, 2.8, 2.9, 3.1};

then

T1 -- {0.1,0.3, 0.6, 0.8},

T2 = {1.2, 1.3},

T3 = {2.5,2.8,2.9}, and

T4 = {3.1}.

Therefore,

TT[1 . . .10] = [1,1,1,1,2,2,3,3,3,4] , and

W[1 . . . 10] = [(1, 1), (1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1), (3, 1), (3, 1), (4, 1)].

After prefix computation,

U[1 . . . 10] -- [(1, 1), (1, 2), (1, 3), (1,4), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1)].

The second coordinates of U[4], U[6], U[9], and U[10] are 4, 2, 3, and 1, respectively, which are
the cardinalities of T1, T2, T3, and T4.

40 T.-C. Lu et al.

3.4. The Parallel Algorithm

The parallel algorithm developed from Sections 3.1-3.3 is shown in Program 4. First, each
processor generates nip uniform random numbers, stores them in array R, and computes array X
by assigning -(1/#)lnR[i] to X[i]. Next, accumulate the Sin] value (variable oldS) in the last
iteration, and call the procedure Parallel_Prefix_+ to compute prefix sums (will be stored in
array S) in array X based on addition operation.

We then compute array T T and W, which were discussed in Section 3.3. Before the procedure
Parallel_Prefix_@ is called, the U value is accumulated in the last iteration (variable oldU). In
the next step, we will look for the last element of each segment. This can be done by checking
whether the T T value of an element differs from its next element. We then use array V to denote
these last elements, which are finally output, and save the residual values in this iteration.

PROGRAM 4. A parallel Poisson number generator.
PROCEDURE Parallel_Poisson(m, #)
/* The procedure produces m Poisson numbers with mean # */
/* Procedure Init_Uniform 0 constructs the initial table that is used in GFSR algorithm. Proce-
dure Uniform(R) generates a random number R " U(0, 1); Procedure Parallel_Prefix_®(n, p, X, S)
compute S[k] = ~-~k=l X[i] for k = 1 , . . . , n under operator ® on p processors EREW PRAM. */
/* Initialization */

Init_Uniform0;
oldS := 0;
a := n/p;

/* Begin iteration */
WHILE (oldS <_ ra) DO

/* Step 1 and Step 2 */
FORALL i ~ (1, . . . ,p} DO IN PARALLEL

FOR j := 1 TO a DO
Uniform(R[/]);
X[(i - 1) . a + j] := - lnR[i] /~

END FOR
END FORALL

/* Accumulate the S value in the last iteration */
X[I] := X[1] + oldS;

/* Step 3 */
Parallel_Prefix_+ (n, p, X, S);

/* Output or accumulate the U value in the last iteration */
FORALL i E {1,... ,p} DO IN PARALLEL

FOR j := 1 TO a DO
T T [(i - 1) * a + j] := S [(i - 1) * a + j] ;
W[(i - 1) * a + j] := (TT[(i - 1) * a + j], 1)

END FOR
END FORALL
IF (oldS ~ 0 and oldTT ¢ TT[1]) THEN

OUTPUT(oldU)
END IF
IF (oldS ¢ 0 and oldTT = TT[1]) THEN

W[1] := (TT[1], 1+ second_coordinate of oldU)
END IF

/* Step 5 */
Parallel_Prefix_@ (n, p, W, U);
FORALL i E (1 , . . . ,p} DO IN PARALLEL

Parallel Poisson Generator 41

FOR j := 1 T O a DO
V [(i - 1) . a + j] : - -0

END FOR

END FORALL
/* Find the last element of each segment */

FORALL i E {1 , . . . ,p} DO IN PARALLEL
F O R j : = I T O a - 1 DO

IF (TT[(i - 1) , a + j] ~ TT[(i - 1) * a + j + 1]) THEN
y [(i - 1) , a + j] := 1

END IF

END FOR
END FORALL
FORALL i e {1 , . . . , p - 1} DO IN PARALLEL

IF (TT[i * a] ¢ TT[i * a + 1]) T H E N

Vii • a] := 1
END IF

END FORALL

/* Outpu t U */
FOR j := 1 T O a DO

FORALL i • {1 , . . . ,p} DO IN PARALLEL
IF (V[(j - 1) * p + i] = 1 and TT[(j - 1) * p + i] _< m) T H E N

O U T P U T (U [(j - 1) , p ÷ i])
END IF

END FORALL

END FOR
/* Save values in this iteration */

oldS := X[n];

oldTT := TT[n];
oldU := U[n]

END W H I L E
END P R O C E D U R E

The t ime complexity of the algorithm is not deterministic. The algorithm uses O(1) preprocess-
ing t ime if the initial t ime of the parallel uniform random number generator is not considered. In
average, to generate m Poisson numbers needs m # uniform random numbers and Fm~/nl itera-
tions. Since each iteration takes O(n /p + logp) time, the average t ime complexity of the parallel
Poisson algorithm is O(F m #/ n 1 (n/p + logp)). It is not time-effective when n > m # because it
is worse than the case where n = m#. If n is near m#, the time complexity is O (m # / p ÷ logp).
This algorithm achieves linear speedup for small p (the sequential algorithm takes O(m#) t ime
in average), and takes O(logm#) time where p = O(m#). The space complexity is clearly O(n).

EXAMPLE 2. Given m ---- 6, # -- 10/3, n = 12. The following table shows the process of this

algorithm:

R X S T T U V

0.010559 1.365222 1.365222 2 (2, 1) 1
0.003967 1.658893 3.024115 4 (4, 1) 0
0.335154 0.327949 3.352064 4 (4, 2) 1
0.033265 1.020973 4.373037 5 (5, 1) 0
0.355724 0.310080 4.683117 5 (5, 2) 1
0.217200 0.458081 5.141198 6 (6, 1) 0
0.536973 0.186542 5.327740 6 (6, 2) 0

OVql~ 31:3-D

42 T.-C. Lu et al.

The output sequence is (2, 1), (4, 2), (5, 2), (6, 5). It represents the Poisson number sequence:
0, 1,0,2,2,5.

4. C O N C L U S I O N

In this paper, we combine the memoryless property of Poisson process with the prefix compu-
tation to parallelize a simple sequential Poisson number generator. It seems to be hard to develop
parallel generators without the memoryless property.

The parallel algorithm developed in this paper is based on EREW PRAM, and we can easily
modify the generator on popular architectures such as the binary tree, hypercube and 2-MCCMB.

R E F E R E N C E S
1. A. De Matteis and S. Pagnutti, Parallelization of random number generators and long-range correlations,

Numer. Math. 53, 595-608 (1988).
2. A. De Matteis and S. Pagnutti, A class of parallel random number generators, Parall. Comput. 13 (2),

193-198 (1990).
3. I. De, Uniform random number generators for parallel computers, ParaU. Comput. 15 (1-3), 155-164 (1990).
4. S. Aluru, G.M. Prabhu and J. Gustafson, A random number generator for parallel computers, Parall. Comput.

18 (8), 839-847 (1992).
5. D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2 ad edition, Addi-

son-Wesley, New York, (1981).
6. S.M. Ross, Introduction to Probability Models, Academic Press, London, (1985).
7. T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number algorithm, J. ACM

20 (3), 456-468 (1973).
8. C.P. Kruskal, L. Rudolph and M. Snir, The power of parallel prefix, IEEE Tran. Comput. C-34 (10), 965-968

(1985).
9. E. Dekel and S. Sahni, Binary trees and parallel scheduling algorithms, IEEE Tran. Comput. C-32 (3),

307-315 (1983).
10. R.J. Chen and Y.S. Hou, Non-associative parallel prefix computation, Inform. Process. Lett. 44 (2), 91-94

!.1992).
11. O. E~ecio~lu, O.K. Koq and A.J. Lanb, A recursive doubling algorithm for solution of tridiagonal systems

on hypercube multiprocessors, J. Comput. Applic. Math. 27 (1/2), 95-108 (1989).
12. Y.C. Chen, W.T. Chen, G.H. Chen and J.P. Sheu, Designing efficient parallel algorithms on mesh-connected

computers with multiple broadcasting, IEEE Tran. Parall. Distrib. Sys. 1 (2), 241-246 (1990).

