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Abstract—We develop an accurate source model, one-sided
ρ-generalized Gaussian distribution (GGD), for approximating
the residual signals in scalable wavelet video coding. An ef-
ficient piecewise linear expression is suggested to estimate the
shape parameter of the one-sided ρ-GGD. We also improve the
model accuracy in matching the real data by modifying the ρ
parameter estimation formula. Continuing our previous work
on developing the motion information gain metric to measure
the motion information efficiency, we now incorporate the one-
sided ρ-GGD model in the cost function, which is used for
deciding the motion vectors and motion estimation mode in
scalable wavelet video coding. Compared with the conventional
Lagrangian optimization, our simulation results show that the
new mode decision method generally improves the peak signal-
to-noise ratio performance in the combined signal-to-noise ratio
and temporal scalability cases.

Index Terms—Interframe wavelet video, motion information
gain (MIG), one-sided ρ-GGD, scalable wavelet video.

I. Introduction

DUE TO THE growing popularity of broadband net-
work, multimedia communication systems become an

important class of network applications. The video content
transmits over the wired/wireless networks, such as 3 G/4 G
cellular system and WiMAX, may suffer from the band-
width fluctuation or the receiver capability variation problems.
Therefore, a video coder is expected to support several kinds of
scalabilities, e.g., transmission bitrate, image resolution, and
frame rate scalabilities; they are, in codec terminology, the
so-called signal-to-noise ratio (SNR), spatial, and temporal
scalabilities, respectively. The current standard scalable video
coder, H.264 scalable video coding extension, is a representa-
tive of the discrete cosine transform (DCT)-based solution and
was standardized in 2007 [1]. On the contrary, the wavelet-
based coding scheme also shows its potential and advan-
tages [2] during the MPEG scalable codec standardization
competition. The most attractive feature of the wavelet video
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coding is using only one fully embedded bitstream to satisfy
the aforementioned three coding requirements simultaneously.
However, to solve the rate-distortion optimization problem
for multiple operation points in wavelet coding is a big
challenge.

A. Introduction to Interframe Wavelet Video Coding

Discrete wavelet transform (DWT) has been successfully
applied to image compression, e.g., the well-known image cod-
ing standard JPEG2000 [3]. DWT decomposes image pixels
into 2-D spatial subbands. The multiresolution representation
of wavelet transform allows a natural way to provide spatial
scalability. The same concept can be extended to decompose
video frames. By adopting the motion-compensated temporal
filtering (MCTF) technique, the video frames can also have
multiresolution representation and thus temporal scalability is
realized. The interframe wavelet coding structure that includes
MCTF has been explored by Ohm [4], Hsiang and Woods
[5], and Secker and Taubman [6]. The most popular coding
structure of interframe wavelet video coder is the so-called
“t+2-D” structure shown in Fig. 1. The notion of “t+2-D”
indicates the encoding operation order: first, the temporal
analysis, MCTF, and then the spatial analysis, 2-D DWT, is
applied. After both the temporal and spatial analyses are done,
the image frames of a group of pictures (GoP) are transformed
to several spatio-temporal subbands. In the meanwhile, the
motion information is produced by the MCTF process. By
reducing the intersubband or intrasubband redundancy, these
subbands can be efficiently compressed to one scalable bit-
stream by a context-based entropy coder, such as EZW [7],
SPIHT [8], and EBCOT [9]. After the entropy coding stage
in Fig. 1, the coded bitstream consists of two parts, s and v,
representing separately the texture subband information and
the motion information.

In most existing schemes, only the texture subband bit-
stream is scalable, and the motion bitstream is non-scalable. In
accordance with the application requirements, such as channel
bandwidth and device capability, the texture bitstream is
truncated and the motion bitstream remains intact. Therefore,
in Fig. 1, the output bitstreams of the bitstream extractor
consist of {s′

0, v}, {s′
1, v} . . . {s′

n, v} according to the scalable
bitrate requirements r0, r1, . . . , rn, respectively. The trunca-
tion mechanism is designed to match the scalable entropy
coder.

1051-8215/$26.00 c© 2011 IEEE
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Fig. 1. t + 2-D coding structure of interframe wavelet video coder.

B. Rate-Distortion Optimization Problem in Scalable Wavelet
Video Coding

In Fig. 1, the coded output bitstream {s, v} is lossless. The
original images can be reconstructed when the entire bitstream
is received and decoded. Given n scalable requirements, n
sub-bitstreams are to be produced by the bitstream extractor.
For a well-designed codec, an increased bitrate would lower
the coding distortion. An optimal rate-distortion operation
point thus exists for each sub-bitstream. In general, a single
bitstream {s, v} cannot match all the optimal rate-distortion
operation points of all sub-bitstreams simultaneously. The
bitstream extractor truncates the coded (fixed) bitstream after
the coding process is completely done. In other words, it
operates outside the coding loop, and this causes the so-
called “open-loop” problem [11]. The conventional DCT-based
H.264 video coder has a closed-loop coding structure. The
motion-compensated prediction errors are controlled by the
quantizer inside the loop. The rate-distortion optimization
process adjusts parameters targeting at one goal each time.
Therefore, the rate-constrained motion estimation is well for-
mulated [12], [13]. However, because of the open-loop coding
structure, the scalable wavelet video coder has no feedback
path that confines the residual signal quantization errors during
encoding. Hence, the motion information bitrate cannot be
precisely controlled. Girod [13] showed that (1) warrants
the optimal tradeoff between the motion bitrate and texture
residual bitrate. That is

∂D

∂Rrcs

=
∂D

∂Rmv

(1)

where D is the distortion, and Rres and Rmv are the texture
residual and the motion bitrates, respectively. However, in our
case, the requested multiple bitrates are given after encoding;
(1) alone is not sufficient to derive the best motion bitrates for
multiple operation points.

The Lagrangian multiplier is a popular and effective method
for identifying the optimal motion bitrate (versus the residual
texture bitrate). We briefly review its process. The Lagrangian
cost function is defined by

J = D + ∧ · (R + �R) (2)

where �R is the motion bitrate, and D and R are the distor-
tion and bitrate of the motion-compensated residual signals,
respectively. In a modern hybrid video coding system, many
possible prediction modes are available. We choose the best
prediction mode by minimizing the Lagrangian cost function
in (2). For a fixed �R, the Lagrange parameter � in (2) can
be theoretically derived if the rate-distortion relationship of D

and R is known [15]. To control the motion bitrate, �R in (2),
another Lagrangian cost function is adopted. If the prediction
error is measured by the mean of absolute difference (MAD)
metric, the rate-constrained motion estimation target is given
by

Ĵ = MAD + �̂ · �R (3)

where �̂ is chosen empirically as the square root of � in (2)
[15]. In fact, � controls the tradeoff between the prediction
error and the motion bitrate. Evidence [15] has shown that
the value of � strongly depends on the quantization step size.
Therefore, to obtain the optimal motion bitrate allocation, �

should be adjusted at each quantization step size in the encod-
ing process. However, for the scalable wavelet video codec, the
encoder performs motion estimation operation without residual
quantization information because the quantization step starts
after MCTF is done. Hence, the relationship between � and
quantization step size cannot be exploited in the encoding
process. Therefore, the Lagrangian multiplier approach cannot
fit into the scalable wavelet video coding structure.

In summary, the optimal motion bitrate allocation problem
is a big challenge to the scalable wavelet open-loop coding
structure. The conventional Lagrangian optimization process
is bitrate dependent. It is hard to adjust it to match the goal
of multiple operation points imposed on a single bitstream.
To solve the rate-distortion optimization problem of multiple
operation points, a new method is needed.

C. Our Previous Papers and Objective of this Paper

In our previous paper [16], we derived a quantitative metric,
motion information gain (MIG), for measuring the motion
vector efficiency. Based on this metric, we proposed a new cost
function for selecting motion vectors and choosing the coding
mode. In [17], we found that this metric can also be derived
from the entropy definition based on the Laplacian source
model. The related encoding parameters are also optimized in
[17] by a statistical fitting method. In a separate paper [18], we
proposed a ρ-generalized Gaussian distribution (GGD) source
model to better approximate the probability distribution of the
residual signals (the high-pass spatio-temporal subbands after
MCTF). In this paper, these two concepts are integrated into a
complete and working algorithm with significant refinements
on the proposed process. For example, adaptive schemes for
identifying the probability model and the C0 parameter are
designed to match the time-varying characteristics of image
sequences. Also, the theoretical foundations of the key pa-
rameters are added.

In this paper, we develop a new source model, called as
“one-sided ρ-GGD,” to approximate the probability distri-
bution of the motion-compensated absolute-valued residual
signals. The metric for measuring motion prediction efficiency,
so-called MIG in [16] and [17], can now be extended to the
more general and accurate one-sided ρ-GGD model for, par-
ticularly, the high-pass subbands. In this paper, we also derive
a theoretical interpretation of the MIG factor from the entropy
viewpoint. Based on the MIG concept, we propose a new cost
function to perform rate-distortion optimization, which leads
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to a peak signal-to-noise ratio (PSNR) improvement over the
conventional Lagrangian optimization method.

This paper is organized as follows. In Section II, the
one-sided ρ-GGD source model is investigated for video
compression systems. Also, we propose efficient estimation
methods for calculating the shape parameter and the ρ pa-
rameter with better match. In Section III, we derive the rate-
distortion function based on the one-sided ρ-GGD model.
The MIG factor is also extended to cover the one-sided ρ-
GGD model. Thus, a MIG-based cost function is proposed.
The rate-distortion optimization procedure for choosing coding
parameters is described in Section IV. Section V shows the
experimental results. At the end, a few concluding remarks
are given in Section VI.

II. One-Sided ρ-GGD Source Modeling for

Motion-Compensated Residual Signal

In the study of motion estimation efficiency, an accurate
source model on the motion-compensated residual signal is
critical and essential. The results in [18] show that the ρ-GGD
source model is more accurate than the Laplacian model. Be-
cause we use, typically, a non-negative metric on the prediction
errors such as MAD or sum of squared difference, we propose
the so-called one-sided ρ-GGD model to approximate the
probability distribution of the absolute-valued residual signals.
In the modeling process, we propose an efficient linear method
to estimate the shape parameter. Furthermore, we increase the
modeling accuracy on the real data by proposing an improved
ρ value selection method.

A. One-Sided ρ-GGD Function

The probability distribution of the motion-compensated
residual signal can be approximated by a zero mean and
symmetric probability density function (pdf), and the GGD
model is a good example [19]. The GGD pdf is given by

P(x) =
1

2

(
α · η(α, σ)

	(α−1)

)
exp(−[η(α, σ) · x]α) (4)

where

η(α, σ) = σ−1

√
	(3α − 1)

	(α−1)
(5)

and α is the shape parameter; 	(·) and exp(·) are the Gamma
function and the exponential function, respectively. The σ

parameter represents the standard deviation of the residual
signal. We now like to approximate the probability distribution
of the absolute values of the residual signals. Let the source
sample be denoted as x ∈ X, where X is the source alphabet
set. Because (4) is a zero-mean and symmetric pdf and X

is non-negative, we modify the GGD model to the one-sided
GGD with the pdf as follows:

P(x) =

(
α · η(α, σ)

	(α−1)

)
exp(−[η(α, σ) · x]α), x ≥ 0. (6)

The shape parameter α in (6) can be estimated by using
the variance and kurtosis of the source signal [19] but the

Fig. 2. Solid line and the dashed line are the curves of 
(α) and its
approximating function 
e(α), respectively. 
e(α) is made of 20 line segments
in this example.

complexity of this approach is very high. We will derive an
alternative expression that can be computed from the data
samples with much less computation.

We denote the probability of zero in (6) by ρ. That is

ρ � α · η(α, σ)

	(α−1)
= P(0). (7)

And then (6) can be rewritten as

Pρ−GGD(x) = ρ · exp
(−(ρα−1	(α−1) · xα)

)
, x ≥ 0. (8)

We name (8) the one-sided ρ-GGD. There is an interesting
property of the proposed one-sided ρ-GGD. From (5) and (7),
the product of ρ2 and σ2 can be rewritten as

ρ2σ2 = α2 · 	(3α−1)

	(α−1)3
· (9)

That is, the product of the square of zero-value probability
and the variance is a function of α. We denote this function
as


(α) � α2 · 	(3α−1)

	(α−1)3
. (10)

This functional relationship is useful in estimating the shape
parameter. As Fig. 2 shows, the mapping between 
(α) and α

is one-to-one. Therefore, the inverse function of 
(α) exists.
According to (9) and (10), α can be obtained by

α = 
−1(ρ2σ2). (11)

Different from the conventional approach, we develop a new
and fast method to estimate the shape parameter based on the
expression of (11). That is, we use the zero-value probability
and the variance value to estimate α.

B. Piecewise Linear Estimation of Shape Parameter

Fig. 2 shows that 
(α) is an exponentially decreasing
function of the argument α. 
(α) can be divided into a number
of segments and each segment is approximated by a straight
line. The entire range of α is [α0, αn]. We uniformly partition it
into n segments. Thus, 
(α) curve is approximated by n pieces
of line segments; these line segments are specified by the n
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TABLE I

20-Segment Shape Parameter Estimation Table

i 
(αi−1) 
(αi) 
(αi) − 
(αi)−
(αi−1)
αi−αi−1

αi

(αi)−
(αi−1)

αi−αi−1

1 30 11.7 121.3 −182.6
2 11.7 6.12 45.49 −56.25
3 6.12 3.8 22.34 −23.18
4 3.8 2.65 13.01 −11.51
5 2.65 2 8.5 −6.5
6 2 1.6 6.023 −4.023
7 1.6 1.33 4.532 −2.667
8 1.33 1.14 3.568 −1.865
9 1.14 1.01 2.911 −1.359
10 1.01 0.91 2.442 −1.024
11 0.91 0.83 2.096 −0.793
12 0.83 0.76 1.833 −0.629
13 0.76 0.71 1.628 −0.508
14 0.71 0.67 1.464 −0.417
15 0.67 0.64 1.332 −0.348
16 0.64 0.61 1.223 −0.293
17 0.61 0.58 1.132 −0.25
18 0.58 0.56 1.056 −0.215
19 0.56 0.54 0.99 −0.187
20 0.54 0.53 0.934 −0.163

sets of boundary points: {
(α0), 
(α1)}, {
(α1), 
(α2)} . . .,
and {
(αn−1), 
(αn)}. That is, 
(α) is approximated by a
piecewise linear function 
e(α). For the ith segment


e(α) =

(αi) − 
(αi−1)

αi − αi−1
(α − αi) + 
(αi) (12)

where α ∈ [αi−1, αi]. Generally, the approximation is more
accurate for large n. Fig. 2 shows the example of n = 20, and

(α) is rather accurately approximated by 
e(α) in this case.

The linear function defined by (12) clearly has an inverse.
We can thus estimate the shape parameter αe using (11). If
both ρ and σ2 are known, then

αc = 
−1
c (ρ2σ2)

=

(
ρ2σ2 −

(

(αi) − 
(αi) − 
(αi−1)

αi − αi−1
· αi

))
/(


(αi) − 
(αi − 1)

αi − αi−1

)
(13)

for

ρ2σ2 ∈ [
(αi−1), 
(αi)]. (14)

One may notice that the coefficients in (13) are independent
of data and can thus be calculated in advance and recorded
on a table. Table I shows the example of n = 20. Therefore,
for the ith line segment, the coefficients can be retrieved from
Table I, and then the shape parameter can be estimated by
using (13).

C. Improved Estimation of ρ Value

In the above discussion, ρ is defined as the zero-value
probability of the one-sided ρ-GGD. In the one-sided ρ-GGD
model, ρ also represents the highest probability value of the
model. However, for some residual image macroblocks (MBs),
zero is not the most probable value. In this case, using the zero

Fig. 3. Dots are the probability distribution of the residual absolute-valued
signal, xr . The dashed line and the solid line show the approximation results
by one-sided Laplacian and ρ-GGD modeling, respectively. The ρ value of
the ρ-GGD modeling is estimated based on only the zero probability. Two
different cases are shown here; the highest probabilities of the distributions
are located at (a) xr = 0 and (b) xr = 1, respectively.

probability to estimate ρ does not lead to good approximation.
Therefore, we modify the ρ estimation formula for this special
case.

Fig. 3 shows two cases. To plot the probability derived
from data, the residual absolute-valued signal is rounded
to its nearest integer and is denoted by xr; the probability
distribution of xr and its modeling results are shown in Fig. 3.
In the case of Fig. 3(a), the zero probability, P{xr = 0}, is
the highest probability, and thus the one-sided ρ-GGD can
well approximate the data distribution. However, in the case
of Fig. 3(b), because P{xr = 0} is not the peak probability,
it results in poor approximation. Therefore, we propose a
modified estimation formula for ρ. Although the mean of
the real residual signal may not be zero, it is not far away
from zero based on our collected data. We thus use both the
probability of zero, P{xr = 0}, and the probability of one,
P{xr = 1}, to estimate ρ, i.e., ρ is the linear combination of
two probabilities as follows:

ρ = a · P{xr = 0} + (1 − a) · P{xr = 1} (15)

and 0 ≤ a ≤ 1. In order to find the opti-
mal a value, we test the following a values, a ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, and ex-
amine the one-sided ρ-GGD modeling results for each a value.
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The a value that leads to the most accurate approximation
is chosen to calculate the ρ value. To evaluate the modeling
accuracy, we use the Kullback–Leibler (K–L) divergence [20]
as the measure, that is

KL(p||q) =
∑
x∈X

P(x) log2

(
p(x)

q(x)

)
+

∑
x∈X

q(x) log2

(
q(x)

p(x)

)
(16)

where p and q are the “true” and “modeling” probability
distribution, respectively. A smaller K–L divergence means
more accurate modeling. Therefore, for each residual MB, we
can choose the best a value, denoted by a* as follows:

a∗ = arg min
a∈A

{KL(P(x)||Pρ−GGD(x; a))} (17)

where P is the probability distribution of the residual absolute-
valued signal; Pρ−GGD is defined by (8) and its ρ value is
estimated using (15). Although (17) can be used in the offline
analysis, it is impractical in processing real data. We thus
develop an efficient method for determining the a* value.

We separate all events into two cases: P{xr = 0} > P{xr =
1} and the opposite. At each temporal level, we collect the a*
values of all MBs, and separate them into two bins according
to the preceding two cases. The probability distributions of
a* of these two cases are shown in Fig. 4. In the case of
P{xr = 0} > P{xr = 1}, the most probable a* value is 1
and its probability is over 90%. Therefore, when the first case
occurs, a* is chosen to be 1. Otherwise, 0 is chosen to be the
value of a*. In other words

a =

{
1 P{xr = 0} > P{xr = 1}
0 otherwise.

(18)

In summary, the probability distribution of the residual
absolute-valued signal can be approximated by the proposed
one-sided ρ-GGD source model by the following steps.
Step 1: Calculate the variance σ2 from the motion-

compensated residual signals.
Step 2: Estimate the ρ value using (15) and (18).
Step 3: Compute the product of ρ2 and σ2.
Step 4: Using Table I, we can find the interval [
(αi−1),


(αi)] that the ρ2σ2 value belongs to.
Step 5: Pick up the ith segment coefficients from Table I. The

shape parameter αe is estimated by using (13).
Step 6: Insert αe and ρ into (8). The one-sided ρ-GGD

modeling is done.

III. MIG for One-Sided ρ-GGD Source Model

In this section, we study the coding efficiency of the motion
information when the codec has multiple operation points.
Extending our previous work in [16] and [17], we derive
the rate-distortion function based on the one-sided ρ-GGD
source model. We define the so-called MIG to measure motion
efficiency in [16] and [17]. Now in this paper, a similar metric
is defined for the one-sided ρ-GGD source model and in fact,
it leads to a more general theoretical implication than our
previous paper [16], [17]. Based on this metric, we propose
a new cost function to perform motion estimation and mode
decision procedures.

A. Prediction Efficiency for Rate-Constrained Motion
Estimation

We start with the conventional rate-constrained motion
estimation case. It is obvious that the motion information
rate affects the rate-distortion behavior of the residual signal.
Here D0(R) and Dv(R) denote the rate-distortion functions
at rate R for the residual signals produced by zero motion
vector and motion vector v, respectively. For a target coding
rate RT , if the predicted frame is directly compensated from
the reference frame without motion information, i.e., motion
vector is zero, then the maximum available rate allocated to
the residual signal is RT . In this case, we denote the residual
signal distortion as D0(RT ). On the contrary, if the motion
vector v is used in prediction, the maximum available rate
allocated to the residual signal is RT −�R, where �R is the
motion information rate, and the residual signal distortion is
denoted as Dv(RT −�R). Apparently, reducing the available
rate of residual signal is worthwhile if its distortion after
motion compensation can be reduced. Therefore, an efficient
rate-constrained motion compensation case should satisfy the
condition as follows:

Dv(RT − �R) < D0(RT ). (19)

B. Rate-Distortion Function of One-Sided ρ-GGD Source
Model

Now we will derive the rate-distortion function for the one-
sided ρ-GGD source model. The source signal is denoted
by x ∈ X with probability distribution function Pρ−GGD(x)
defined by (8). According to the Shannon’s rate-distortion
theory [10], the Shannon lower bound for the magnitude-error
criterion is

RL(D) = �(X) − log(2eD) (20)

where D is the distortion, e is the Euler’s number, log(·) is
the natural logarithm function, and �(X) is the differential
entropy of X. Based on (66) in the appendix, the differential
entropy of the one-sided ρ-GGD source model can be written
as

�(X) = ρα−1
(
ρα−1	(α−1)

)−1
	(α−1)(α−1 − log ρ).

= α−1 − log ρ
(21)

where α and ρ are the shape parameter and the zero-value
probability of the source model, respectively. Replace �(X)
in (20) by (21) as follows:

RL(D) = α−1 − log ρ − log(2eD)
= − log(2ρe(1−α−1)).D.

(22)

If the conditions given in [10] are satisfied, RL(D) becomes
R(D), the true rate-distortion function, and can be rewritten
as follows:

D(R) =
e−R

2ρe(1−α−1)
. (23)
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Fig. 4. Solid line and dashed line are the probability distributions of the best a value, denoted by a*, of the following two cases. The first case is (solid)
and the second case is the opposite (dashed). The five figures show the results at five temporal levels. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4.
The test sequence is Foreman (CIF, 30 f/s).

TABLE II

Average Frame-Level C Values Using the

Proposed Adaptive Scheme

Test Sequence Average C Value
Tempete 7.75
Mobile 7.43
Foreman 7.37
Container 7.99
Waterfall 7.12
Irene 6.43

C. MIG

We now try to find relationship connection between the
residual signal statistics and the motion bitrate. As discussed
earlier, ρv and αv denote, respectively, the zero-value prob-
ability and the shape parameter in one-sided ρ-GGD model
of the residual signal using motion vector v. Thus, ρ0 and α0

are the residual signal statistics when v = 0. We substitute (23)
into (19) with the corresponding parameters, and (19) becomes

e−(R−�R)

2ρv · e(1−α−1
v )

<
e−R

2ρ0 · e(1α−1
0 )

. (24)

Equation (19) can be simplified to (25) as follows:

α−1
0 − α−1

v + log(ρv/ρ0)

�R
> 1. (25)

Interestingly, the target coding rate term, RT , in (19) is elimi-
nated. This elimination implies that (25) is a rate-independent
criterion for checking the motion prediction efficiency. There-
fore, in theory, this criterion is applicable in the multiple
operation rate situations, such as scalable interframe wavelet

coding. However, this criterion needs to be adjusted to match
the real video data.

We can examine (25) from a different perspective. Let the
residual signal produced by using motion vector v be x ∈ Xv.
Similar to the derivation of (21), the differential entropies of
X0 and Xv are expressed, respectively, as

�(X0) = α−1
0 − log ρ0

�(Xv) = α−1
v − log ρv.

(26)

If motion vector v results in good motion compensation, the
differential entropy of the residual signal should be smaller
than that obtained by using the zero motion vector. The
positive difference of the differential entropies of X0 and Xv
is as follows:

��(Xv) = �(X0) − �(Xv)

= α−1
0 − α−1

v + log(ρv/ρ0). (27)

We can find that (27) is exactly the numerator of the left
term in (25). Thus, (25) is reduced to

��

�R
> 1. (28)

This formula, (28), is equivalent to the efficiency criterion (19).
Furthermore, from the entropy viewpoint, the left term of (28)
has the interpretation as follows:

��

�R
∼ Decrease of residual signal information

Increase of motion information
. (29)

Ideally, the optimal motion compensation method can re-
duce the maximum residual signal by the minimum motion
rate. Therefore, �� and �R represents a “reward” and “cost”
relationship during the motion estimation process. Also, (29)
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can also be regarded as normalizing �� by �R, i.e., the
residual signal entropy reduction per motion bit. Hence, the
ratio of �� to �R can be viewed as a gain factor of motion
information. Therefore, we define the ratio of �� to �R as
MIG, denoted by ϕ, that is

ϕ � ��

�R
. (30)

In [17], a similar conclusion was obtained based on the
Laplacian source assumption. Now, we show that the MIG
definition is also valid for the higher dimensional cases such
as one-sided ρ-GGD source model.

An efficient rate-constrained motion compensation case
should satisfy (19). In our previous discussions, by replacing
the distortion term in (19) with the rate-distortion function in
(23), we derive the MIG lower bound, which is 1, in (28).
However, this result does not match the real-world situation
due to at least two factors: one is that a practical coder
cannot achieve the rate-distortion bound predicted by the
information theory and the other factor is that the real video
data do not completely satisfy the mathematical assumptions
in theory such as stationarity and probability distribution.
Thus, the theoretically derived rate-distortion function may
not accurately represent the relationship between the produced
coding rate and the real distortion. Therefore, we modified (28)
as follows:

��

�R
> C (31)

where C is the MIG lower bound in the real world. Due to
this divergence problem, C is not 1 for a practical wavelet
coder applied to the test video data. Therefore, two parameters
are introduced and inserted into (19) to reflect the model
divergence problem. We rewrite (19) as

Dreal,v(RT − �R) < Dreal,0(RT ) (32)

where Dreal,v is the “real distortion” measured from the
quantized residual signal compensated using motion vector v,
Dreal,v is the “ideal distortion” derived from the rate-distortion
function of the source model in (19), and a new parameter βv
is introduced to compensate for the difference between Dreal,v

and Dreal,v. In other words, βvDideal,v = Dreal.v or

βv =
Dreal,v

Dideal,v
. (33)

Here, we assume that a (nearly) constant multiplication
factor is adequate for compensating the model divergence.
Since this factor is introduced to bridge the gap between the
ideal case and the real-world case, it is to be verified by the
test data. Then, Dreal,0 Dideal,0 and β0 are similarly defined
for using the 0 motion vector. Hence, (32) can be rewritten as

βv · Dideal,v(RT − �R) < β0 · Dideal,0(RT ). (34)

By replacing Dreal,v by the rate-distortion function in (23),
(34) gives

��

�R
> 1 +

log2(βv/β0)

�R
. (35)

Equation (35) is very similar to (28). In the ideal case, the
“ideal distortion” would be equal to the “real distortion,” which

makes βv = 1 and β0 = 1 and (35) would fall back to (28).
Therefore, for the real case, the MIG lower bound C becomes

C = 1 +
log2(βv/β0)

�R
. (36)

Let X∗
v denote the quantized residual signal. According to

(23), Dreal,v is calculated by

Dideal,v =
2−H(X′

v)

2ρve(1−α−1
v )

(37)

where H(X
′
v) is the entropy of the quantized residual signal.

Using (33) and (37), (36) can be rewritten as

C = 1 +
1

�R

(
α−1

0 − α−1
v + log

(
ρv

ρ0

)
− H(X′

0) + H(X′
v)

+log2

(
Dreal,v

Dreal,0

))
. (38)

Based on (38), the C value can be found using statistical
analysis. How to obtain the quantized residual signal X

′
v

and X
′
0 is an issue. The scalable encoder does not have the

bitstream extraction condition at the MCTF stage. Due to this
reason, it becomes very tricky to select a quantization step size
to generate X

′
v and X

′
0. However, the purpose of generating

the quantized residual signal is to simulate the divergence
problem of the rate-distortion function. We conjecture that
there exists a certain range of the quantization step sizes that
are representative. Therefore, we take an engineering solution
to find a proper quantization step size for deriving the C value.
We ran exhaustive experiments for all sequences and found
that 8 is generally a good quantization step size for estimating
C in (38).

Therefore, we design an adaptive C-value updating scheme.
In our scheme, there are two levels in the C value adaptation:
frame level and GoP level. In the frame level, we collect
the statistics of the MBs with nonzero motion vector and
calculate the frame-level C value using (38). This new C

value is then used for the next frame. If the encoding frame
is the last frame of the GoP, the GoP-level C value is updated
by averaging all frame-level C values in that GoP. Then, we
explain the connection between the frame-level and the GoP-
level adaptations. The newly derived frame-level C value is
limited to the range of [CGoP −�C.CGoP + �C], where CGoP

is the current GoP-level C value and is used to prevent from
the extreme values due to noise or insufficient data in the
adaptation process. Also, the GoP-level C value is also limited
in the same rage in the adaptation process. For example, if the
newly derived GoP-level C value is larger than the previous
CGoP plus �C, the new GoP-level C value is set to CGoP +�C.
In our experiments, �C is chosen to be 0.5 empirically.

Table II shows the average frame-level C values using
this adaptive approach. We can see that the average C value
is around 7, which is consistent with our previous finding
[17]—in the range of [4, 10]. The proposed adaptive scheme
verifies that our previously used offline-trained C value is
adequate. Now we compare the rate-distortion performance of
the adaptive C scheme and fixed C scheme. We pick up four
common intermediate format (CIF) test sequences: Mobile,
Container, Waterfall, and Irene. The test bitrate points are
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TABLE III

Average PSNR Results of Two Different C Value Scheme

Test Sequence Offline-Trained C Value Adaptive C Value
Mobile 33.625 33.631
Container 45.347 45.351
Waterfall 41.038 41.046
Irene 41.441 41.461

256 kb/s, 384 kb/s, 512 kb/s, 800 kb/s, 1024 kb/s, 1200 kb/s,
and 1500 kb/s. The average PSNR results of seven test points
of these two schemes are shown in Table III. As Table III
shows, their PSNR performances are very similar. However,
from (38), we can see that the adaptive scheme requires a lot
of additional encoding operations. In the experiment section of
this paper, the results are obtained using the offline-trained C

value, which is 7, and it still outperforms the conventional
Lagrangian method.

D. Proposed MIG Cost Function

Let us assume ϕ ≥ C, C is the target lower bound of ϕ.
If the ϕ value produced by a motion vector (MV) is smaller
than C, this MV is not cost-effective. We substitute (27) for
ϕ. Then ϕ ≥ C becomes(

α−1
0 − log ρ0

) ≥ (
α−1

v − logρv
)

+ C · �R

⇒ 2 · log
(
eα−1

0 /ρ0

)
≥ 2 · log

(
eα−1

v +C·�R/ρv

)
⇒ e2/α0

ρ0
2

≥ e2/αv

ρv
2

· e2·C·�R. (39)

When an MV produces a smaller right-side term in (39),
it leads to a larger ϕ. Hence, we look for the best MV that
achieves the minimum right term value in (39). Also, when
�R equals to zero, the right term reaches its maximum value
and there is no singular problem. Therefore, for source signal
s and motion vector v, the proposed MIG cost function is
defined as

J(s, v|C) =
e2/αs

ρs
2

· e2·C·�R(v) (40)

where αs and ρs are the shape parameter and zero-value
probability of the source signal s and �R(v) is the MV bitrate.
On the contrary, from (9) and (10), we have

ρs
2σs

2 = 
(αs) (41)

where σ2
s is the residual signal variance. Hence, (40) can be

rewritten as

J(s, v|C) =
e2/αs


αs
· σs

2 · e2·C·�R(v). (42)

Let us define a new weighting function τ(α) as

τ(α) =
e2/α


(α)
(43)

and thus

J(s, v|C) = τ(αs) · σs
2 · e2·C·�R(v). (44)

Fig. 5. Cost weighting function τ(α) for α ∈ [0.5, 2.5].

The function values of τ(α) are shown in Fig. 5. It increases
as α increases but saturates at about α = 2.

In the preceding discussions, the entropy function value is
in the unit of “nat.” In practice, “bit” is the most common
unit used for sending digital data. If the motion rate, �R(v), is
measured in “bit,” (44) has another equivalent form as follows:

J(s, v|C) = τ(αs) · σs
2 · 22·C·�R(v). (45)

In the case of Laplacian source model in [16], (45) is
reduced to

JLaplacian(s, v|C) = σs
2 · 22·C·�R(v). (46)

The difference between (45) and (46) is τ(αs). It represents
the impact of the pdf shape parameter on the MIG cost
function. If the residual signals cluster around the zero value,
which implies effective motion compensation and the shape
parameter, α, in the one-sided ρ-GGD model becomes small.
As Fig. 5 shows, when α is small, so is τ(α). Thus, the
proposed MIG cost function in the form of (45) provides a
richer interpretation, which links to the pdf shape.

The temporal wavelet decomposition has a tree structure,
and, therefore, the coding error propagates along the inversed
motion vector direction during decoding. Let us look at an
MCTF example at temporal level t. After motion estimation,
the high-pass and low-pass frames are generated by using the
chosen motion vectors. The low-pass frames will be used in the
next stage (t+1) temporal decomposition. At the decoder side,
the temporal frames are synthesized by the quantized high-
pass and low-pass frames along the inversed motion vector
direction. Obviously, the quantization error at temporal level
t + 1 propagates to temporal level t in the synthesis process.
Therefore, in the same GoP, the error propagates from the
bottom to the top (in the MCTF tree) and thus affects the
MCTF coding performance (image quality). This phenomenon
is called the “quantization noise propagation” problem. In [14],
Wang and van der Schaar proposed an analytic model based on
the Lagrangian multiplier method to model this phenomenon
for the single bitrate case. However, this technique is hard to
extend and apply to the multi-bitrate operating case, especially
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under the open-loop coding structure. Therefore, we take a
different but feasible approach.

In (45), C controls the tradeoff between the residual signal
and the motion information. By adjusting C at different
temporal levels, the quality loss due to error propagation can
be compensated. To emphasize different C value at level t, we
denote it as Ct . Therefore, (45) is rewritten as

J(s, v|Ct) = τ(αs) · σs
2 · 22·Ct ·�R(v). (47)

Because the decoding bitrate is not pre-specified at the
encoding time, it is very difficult to solve this problem at
the encoder side. To solve this problem, the rate-distortion
behavior at the decoder side has to be considered. Because the
synthesis gain is used to allocate the bitrate among different
subbands so that the overall distortion can be minimized [22],
Ct in (47) is highly related to the so-called synthesis gain.
Let gL denote the synthesis gain of the temporal low-pass
frame. If the high-pass frame is losslessly decoded, the mean-
squared distortion after the inverse MCTF is a function of
gL times the mean-squared distortion of the temporal low-
pass frame. Following the spirit of [14], because the MIG
definition consists of the magnitude-error, we conjecture that
the same relationship between the MIG values of different
temporal levels would exist. Therefore, at temporal level t, (3)
is modified to

��

�R
· (

√
gL)

t
> C0 (48)

where C0 is the target MIG lower bound at the first temporal
level (t = 0). Or, (48) can be rewritten to an equivalent form
as follows:

��

�R
> Ct (49)

where

Ct =

(
1√
gL

)t

· C0 = wtC0. (50)

For example, if the 5/3 wavelet filter is used for temporal
decomposition

gL = (0.5)2 + (1)2 + (0.5)2 = 1.5. (51)

Thus, ω = 1/
√

1.5 = 0.817. This theoretically derived ω

value is consistent with the finding in our previous work:
ω value generally falls in the range of [0.6, 0.9]. In the
experiment section of this paper, the results are obtained using
the offline-trained ω value in [17], which is 0.8. In summary,
(47) is now the cost function used for both motion estimation
and mode decision. Their detailed steps are described in the
next section.

IV. Prediction Mode Decision Procedure

In the previous section, we propose an MIG cost function
which is nearly bitrate independent. It is the target function in
our multi-operation-point optimization procedure. The inter-
prediction process in a scalable wavelet video codec is very
similar to that in H.264/AVC. We take the well-known scalable

Fig. 6. Flow chart of the proposed mode decision procedure.

wavelet codec, Vidwav [23], as an example. The basic predic-
tion unit is MB. Its motion compensation mode consists of a
MB partition. The sub-block size can be 16×16, 16×8, 8×16,
8 × 8, 8 × 4, 4 × 8, and 4 × 4 for a MB in the Vidwav coder.
Therefore, for mode m, there are Nm sub-blocks in a MB.
The motion-compensated MB residuals and the associated
motion vectors can be expressed by two Nm-tuple vectors as
follows:

bm = (b1, · · · , bNm
)

vm = (v1, · · · , vNm
) (52)

where bi and vi represent the ith sub-block residual signal and
its MV, respectively. Assume M is the mode candidate set, i.e.,
m ∈ M. As Fig. 6 shows, there are six steps in deciding the
best prediction mode.

Step 1: Select the MIG cost function parameters: The pro-
posed MIG cost function (47) contains one param-
eter, Ct . According to (50), Ct is further split to
two parameters, C0 and ω. As discussed earlier, we
empirically choose C0 and ω from the range of
[4, 10] and [0.6, 0.9], respectively.
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Fig. 7. Dotted, dashed, and solid lines show the K–L divergence between the probability distributions of the absolute-valued signal and three approximations.
These three approximations are Laplacian distribution (dotted), one-sided ρ-GGD (dashed), and one-sided ρ-GGD with the improved ρ estimation (solid),
respectively. Figures (a)–(e) are the results at different temporal levels (t). (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4. The test sequence is Foreman
(CIF, 30 f/s).

Step 2: Perform motion estimation for mode m: Given a
candidate mode m, the current MB is partitioned to
Nm sub-blocks. Thus, we have to find the best motion
vector for each sub-block and combine them into the
motion vector set for this MB. For the ith sub-block,
we test motion vector v for motion compensation
and obtain the residual sub-block bi. The residual
signal variance is calculated and denoted as σbi

2(v);
the zero-value probability of the one-sided ρ-GGD
model is estimated by (15) and (18) and is denoted
as ρbi

. According to (13), the shape parameter of the
sub-block bi can be obtained by

αbi
= 
e

−1
(
ρbi

2(v) · σbi

2(v)
)
. (53)

Therefore, the MIG cost for motion vector v is

Jmv(bi, v|Ct) = τ(αbi
) · σbi

2(v) · 22·Ct ·�R(v) (54)

where �R(v) is the motion bitrate. If the entire MV
candidate set (search range) is denoted as S, for all
motion vector v ∈ S, the best motion vector for the
sub-block bi can be found by

v∗
i = arg min

v∈s
{Jmv(bi, v|Ct)}. (55)

This is the most time-consuming process in our
procedure. Repeating the same process for all Nm

sub-blocks, we obtain all the MVs needed for mode
m. The resultant motion vector set of mode m is

v∗
m = (v∗

1, · · · , v∗
Nm

). (56)

Step 3: Calculate the residual MB statistics and the motion
rate: The MB residual signal bm for mode m is
obtained in Step 2 after performing motion compen-
sation using the MV set v∗

m. To construct the one-
sided ρ-GGD model for bm, we need to calculate the
variance and estimate the zero-value probability. Let
ρbm

and ρbm

2 denote the zero-value probability and
the variance of bm, respectively. σbm

2 is computed by

σbm

2(v∗
m) =

1

Nm

Nm∑
i=1

σbi
2(v∗

i ) (57)

where V∗
m is the best motion vector set for mode m in

Step 2; ρbm(v∗
m) is estimated by (15) and (18). Next,

the motion bitrate for this MB is given by

�R(v∗
m) =

1

Nm

Nm∑
i=1

�R(v∗
i ) + rm (58)

where �R(v∗
i ) is the bitrate of encoding MV, and v∗

i

and rm is the average bitrate for recording the MB
mode information.

Step 4: Estimate the shape parameter from MB residuals:
According to (13), the shape parameter of bm is
estimated by

αbm
= 
e

−1
(
ρbm

2(v∗
m) · σbm

2(v∗
m)

)
. (59)

Step 5: Calculate the MIG cost for mode m: Using the
parameter values calculated in Steps 1–5, we can
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Fig. 8. Dotted, dashed, and solid lines show the K–L divergence between the probability distributions of the absolute-valued signal and three approximations.
These three approximations are Laplacian distribution (dotted), one-sided ρ-GGD (dashed), and one-sided ρ-GGD with the improved ρ estimation (solid),
respectively. Figures (a)–(e) are the results at different temporal levels (t). (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4. The test sequence is Mobile (CIF,
30 f/s).

compute the MIG cost for mode m as follows:

Jmode(bm, v∗
m|Ct) = τ(αbm

) · σbm

2(v∗
m) · 22·Ct ·�R(v∗

m). (60)

If mode m is the last mode in M, go to Step 6 to
decide the best prediction mode; if not, go to Step 2
to perform the same operation for the next candidate
mode.

Step 6: Choose the best mode m∗ with the minimum cost:
After all MIG costs for all m ∈ M are obtained, the
best mode m∗ is obtained by

m∗ = arg min
m∈M

{
Jmode(bm, v∗

m)|Ct

}
. (61)

V. Experimental Results and Discussions

In this section, we conduct two experiments: 1) the source
modeling performance of the proposed one-sided ρ-GGD, and
2) the rate-distortion performance of the proposed MV selec-
tion and mode decision scheme. We implement our methods on
the Vidwav reference software [23]. Other than the MV/mode
decision part, all the other parts of Vidwav are not altered.

A. Source Modeling Performance of the Proposed One-Sided
ρ-GGD

In Section II-B, we propose the one-sided ρ-GGD model
and an efficient estimation method on the shape parameter.
Furthermore, an improved ρ estimation method is proposed
in Section II-C. In this experiment, we compare the model-
ing results using three different methods; they are one-sided

Laplacian, the proposed one-sided ρ-GGD, and the proposed
one-sided ρ-GGD with improved ρ estimation. We use the
K–L divergence to measure the modeling accuracy. A small
K–L divergence value means a more accurate approximation.
For each MB in a frame, the K–L divergence between the
probability distribution of the residual absolute-valued signal
and its approximation is calculated. Then, we take the average
of the K–L divergences of all MBs in one frame. Figs. 7(a) and
8(a) show the average K–L divergences of all residual frames
at the first temporal level of two test sequences, Foreman and
Mobile, respectively (CIF format, and 30 f/s). From Figs. 7(a)
and 8(a), the proposed one-sided ρ-GGD shows a better
modeling accuracy than Laplacian. Also, with the improved
ρ estimation, the approximation accuracy of the one-sided
ρ-GGD is further improved. Because the low-pass frame
quality degrades after temporal decompositions, the motion
compensation efficiency is also reduced at deep temporal level.
In the meanwhile, modeling the probability distribution of
residual signal becomes more difficult. Figs. 7(b)–(e) and 8(b)–
(e) show the modeling performance of the residual frames
for the rest of temporal levels. We can see that the proposed
one-sided ρ-GGD with the improved ρ estimation consistently
maintains good approximation accuracy at all temporal levels.

B. Rate-Distortion Performance of the Proposed MV Selection
and Mode Decision Scheme

In this experiment, we compare the rate-distortion per-
formance of the proposed MV selection and mode decision
scheme with that of the conventional Lagrangian method in
the original Vidwav. Based on the one-sided ρ-GGD source
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Fig. 9. PSNR comparison between the proposed MIG cost method (solid line) and the conventional Lagrangian method (dashed line). The test sequences
are (a) Container, (b) Irene, (c) Foreman, (d) Tempete, (e) Waterfall, and (f) Mobile. (CIF, 30 f/s.)

model, we derive its MIG cost function and use it to decide
the best MV and prediction mode. The MCTF parameters of
the conventional Lagrangian method are given in Table IV.
Our proposed method uses the same motion search range and
motion vector accuracy settings in Table IV. The parameters,
C0 and ω, are empirically selected and will be given below.
We focus on the mid bitrate to high bitrate cases. There are
two scenarios in this experiment.

The first scenario is the SNR scalability test. We select six
test sequences: Container, Irene, Foreman, Tempete, Waterfall,
and Mobile. All are in the CIF format and 30 f/s. In this
scenario, C0 and ω of the MIG cost function are 7 and
0.8, respectively. The operation bitrates are 256 kb/s, 384 kb/s,
512 kb/s, 800 kb/s, 1024 kb/s, 1.2 Mb/s, and 1.5 Mb/s. For each
test sequence, seven bitstreams are extracted according to the
bitrate conditions from the same losslessly coded bitstream,
and then each extracted bitstream is decoded to obtain the

TABLE IV

Default Parameter Settings [24] of MCTF in Vidwav Coder

Motion Motion Vector Lagrange
Search Range (pel) Accuracy (pel) Parameter

CIF 4 CIF CIF 4 CIF
t = 0 32 1/4 1/4 16 16
t = 1 64 1/2 1/2 32 50
t = 2 128 1/2 1 64 150
t = 3 128 1/2 1 64 150
t = 4 128 1/2 1 64 150

PSNR at various selected bitrate points. Fig. 9 shows the
PSNR comparison between the two coding methods for the six
test sequences. Compared with the conventional Lagrangian
method, our method shows 0.1–0.9 dB PSNR improvements.

The second scenario is the combined temporal and SNR
scalability test. In this scenario, in addition to the CIF videos
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TABLE V

PSNR Comparison Between the Proposed MIG Cost Method and the Conventional Lagrangian Method in Combined

Temporal and SNR Scalability Test for Five Test Sequences (4 CIF, 60 f/s)

Sequence
(4 CIF)

GoP
Size

Mode
Decision
Method

750 kb/s
15 f/s

1024 kb/s
15 f/s

1200 kb/s
30 f/s

1500 kb/s
30 f/s

2048 kb/s
60 f/s

3000 kb/s
60 f/s

City 32 Lagrangian 36.39 37.33 37.42 37.98 38.49 39.33
Proposed 36.72 37.70 37.81 38.42 38.86 39.63

Crew 32 Lagrangian 36.39 37.30 36.74 37.34 37.18 38.20
Proposed 36.41 37.35 36.87 37.50 37.38 38.34

Harbor 32 Lagrangian 33.91 34.97 34.96 35.59 36.25 37.50
Proposed 33.94 35.02 34.99 35.65 36.29 37.53

Soccer 32 Lagrangian 36.28 37.22 36.92 37.61 38.00 39.20
Proposed 36.52 37.52 37.18 37.94 38.20 39.42

Ice 16 Lagrangian 40.51 41.65 41.25 42.00 42.41 43.62
Proposed 40.88 42.05 41.75 42.51 42.84 44.06

in the first scenario, we also test five high-resolution test
sequences: City, Crew, Harbour, Soccer, and Ice. All are
in the 4 CIF format and 60 f/s. The operation points include
six bitrates combined with three frame rates. The C0 value
is empirically selected within [7] and [10], and ω is 0.8.
Table V lists the PSNR results of the proposed MIG and
the conventional Lagrangian methods. Our proposed method
shows 0.1 to 0.5 dB PSNR improvements on all 30 test points.

VI. Conclusion

The main theme of this paper was to develop the “one-
sided ρ-GGD” source model to approximate the probability
distribution of the residual signals in the scalable wavelet video
codec. Extended from our earlier findings, we suggested a
fast scheme that constructs the one-sided ρ-GGD based on
the zero-value probability (ρ) and the source signal variance.
Also, we proposed a piecewise linear expression to estimate
the shape parameter of the source model. Furthermore, an
improved ρ estimation scheme is proposed to increase the
model accuracy.

In the second half of this paper, we followed our previous
approach [17] to derive the rate-distortion function for the
wavelet video coder based on the one-sided ρ-GGD model.
The notion of MIG in [17] is carried over and a similar
mode decision procedure is developed. This mode decision
procedure is less bitrate dependent and thus is suitable for
solving the multi-operation-point problem in scalable wavelet
video coding. Our simulation results showed that the one-
sided ρ-GGD-based mode decision algorithm provided a 0.1–
0.5 dB PSNR improvements over the conventional Lagrangian
method on both the SNR scalability and the combined SNR
and temporal scalability tests.

Appendix

Differential Entropy of the High-Order Exponential

pdf

Let p(x) be a high-order exponential probability distribution
function given by

p(x) = γexp(−βxα), x ≥ 0 (62)

where exp(·) is the exponential function. α, β, and γ are
positive constants. By definition, the differential entropy of
x ∈ X is

�(X) = −
∫

X

p(x) · log(p(x))dx (63)

where log(·) is the natural logarithm function. �(X) can be
derived as

�(X) = −
∫ ∞

0
γexp(−βxα) · log(γexp(−βxα))dx.

= γ

(
β

∫ ∞

0
xαexp(−βxα)dx−logγ ·

∫ ∞

0
exp(−βxα)dx

)
.

(64)

Here, we rewrite �(X) as

�(X) = γ(β · A − logγ · B) (65)

where

A =
∫ ∞

0
xα · exp(−βxα)dx

B =
∫ ∞

0
exp(−βxα)dx. (66)

Let us derive A and B first, and then substitute the results
into �(X) in (65). We use a new variable t = −βxα to replace
the variable x in A. Thus, A is derived as

A =
∫ ∞

0
β−1t exp(−t)α−1β−1/αt1/α−1dt

= α−1β−(1/α+1)
∫ ∞

0
exp(−t)t(1/α+1)−1dt

= α−1β−(1/α+1) · 	(α−1 + 1) (67)

where 	(·) is the standard Gamma function. With the similar
procedure, B in (66) is derived as

B = α−1β−1/α

∫ ∞

0
exp(−t) · t1/α−1dt

= α−1β−1/α · 	(α−1). (68)
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By using (67) and (68), �(X) can be rewritten as

�(X) = γ
(
βα−1β−(1/α+1)	(α−1 + 1) − logγ · α−1β−1/α	(α−1)

)
= γα−1β−1/α

(
	(α−1 + 1) − logγ · 	(α−1)

)
= γα−1β−1/α	(α−1)(α−1 − logγ·)(nat). (69)

Therefore, the differential entropy of the high-order expo-
nential probability distribution function is derived.
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