
All-to-All Personalized Exchange Algorithms
in Generalized Shuffle-exchange Networks

Well Y. Chou, Richard B. Chen, and Chiuyuan Chen
Department of Applied Mathematics

National Chiao Tung University
Hsinchu 300, Taiwan

Email of corresponding author: cychen@mail.nctu.edu.tw

Abstract

All-to-all personalized exchange (ATAPE) occurs in many
parallel applications. Previous ATAPE algorithms were
mainly developed for hypercube, mesh, and torus networks.
Recently, Yang and Wang [8] and also Massini [4] proposed
an alternative approach to ATAPE by using multistage
interconnection networks (MINs); they proposed new ATAPE
algorithms for a class of unique-path, self-routable MINs
(for example, baseline, shuffle-exchange (or omega), banyan
network, and the reverse networks of these networks). How-
ever, the algorithms in [4] and [8] require that the given
MIN must have unique-path property and satisfy N = 2n,
in which N is the number of inputs (outputs) and n is
the number of stages in the MIN. In [5], Padmanabhan
proposed the generalized shuffle-exchange network (GSEN),
which allows N to be any even number. Since the GSEN is
not a unique-path MIN, the algorithms in [4] and [8] do not
work on it. The purpose of this paper is to consider ATAPE
in MINs without unique-path property. To our knowledge,
no one has studied ATAPE in this type of MINs. We prove
that under stage control technique, ATAPE algorithms for
GSENs require at least 2n rounds. We propose an algorithm
which uses a variation of stage control and works for all
N ≡ 2 (mod 4). We will prove that our algorithm takes N
rounds and therefore is optimal.

1. Introduction

Processors in parallel/distributed computing system often
need to communicate with other processors. The communi-
cation among these processors could be one-to-one, one-to-
many, or all-to-all. All-to-all communication can be further
classified into all-to-all broadcast (ATABR) and all-to-all
personalized exchange (ATAPE). In ATABR, each processor
sends the same message to all other processors; while in
ATAPE, each processor sends a specific message to every
other processor. For convenience, in the remaining part of
this paper, ATA means all-to-all communication and it can
be either ATABR or ATAPE.

ATAPE occurs in many important applications (for ex-
ample, matrix transposition and fast Fourier transform) in
parallel and distributed computing. The ATAPE problem
has been extensively studied for hypercubes, meshes, and
tori. As was mentioned in [8], although the algorithm for
a hypercube achieves optimal time complexity, a hypercube
suffers from unbounded node degrees and therefore has poor
scalability; on the other hand, although a mesh or torus has a
constant node degree and better scalability, its algorithm has
a higher time complexity. In [8], Yang and Wang proposed
an alternative approach for ATAPE by using MINs and
showed that an MIN is a better choice due to its shorter
communication delay and better scalability.

Given N processors P0, P1, . . . , PN−1, an N × N MIN
can be used for communication among these processors as
shown in Fig. 1 and Fig. 2, where N ×N means N inputs
and N outputs. A column in an MIN is called a stage and
the nodes in an MIN are called switches. Throughout this
paper, N denotes the number of processors and n denotes
the number of stages. Also, all the switches are assumed to
be of size 2 × 2 since switches of size 2 × 2 are the most
commonly used ones; see also [1], [3]. It is well known that
a 2 × 2 switch has only two possible states: straight and
cross, as shown in Fig. 3.

N x N

MIN

P0

P1

PN-1

I0

I1

IN-1

O0

O1

ON-1

… …

…

Figure 1. Communications among processors using an MIN.

An MIN is unique-path if there is only one path between
each pair of input and output. An MIN is self-routable if the
routing decision at a switch depends only on the addresses
of the source processor and the destination processor. In [8],
Yang and Wang proposed an ATAPE algorithm for a class
of unique-path, self-routable MINs; for example, baseline,
omega, banyan networks, and the reverse networks of these

2009 Eighth International Conference on Networks

978-0-7695-3552-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ICN.2009.58

185

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

1 0 1 0

stage 0 stage 1 stage 2 stage 3

Figure 2. A 10×10 GSEN with network configuration (1010)2.

sub port 0

sub port 1

sub port 0

sub port 1

(a) (b)

switch straight cross

Figure 3. (a) A 2× 2 switch and its sub ports. (b) Two states.

networks. Yang and Wang’s algorithm [8] uses stage control,
which is a commonly used technique to reduce the cost of
the network setting for ATA. Stage control means that the
states of all the switches of a stage must be identical. With
stage control a single control bit (0 for straight and 1 for
cross), or in other words, a single electronic driver circuit,
can be used to control all the switches of a stage so that the
network const can be reduced.

Recently, Massini [4] observed that Yang and Wang’s
algorithm depends on the network topologies and requires
pre-computation and memory allocation for a Latin square.
Massini proposed a new ATAPE algorithm, which is inde-
pendent of the network topologies and does not require pre-
computation or memory allocation for a Latin square.

The shuffle-exchange network has been proposed as a
popular architecture for MINs. ATAPE of this network can
be realized using algorithms in [4] or [8]. The generalized
shuffle-exchange network (GSEN) is a generalization of
shuffle-exchange network and was proposed by Padman-
abhan in [5]. More precisely, let N be an even number,
n = �log2 N� and 2n−1 < N ≤ 2n. An N × N GSEN
is an N × N MIN with exactly n stages such that each
stage consists of the perfect shuffle on N terminals followed
by N/2 switches. The N terminals in an N × N GSEN
are numbered 0, 1, . . . , N − 1 and the perfect shuffle
operation on the N terminals is the permutation π defined
by π(i) = (2i +

⌊
2i
N

⌋
) mod N , 0 ≤ i < N . See Fig. 2.

Do notice that the algorithms in [4] and [8] require the
given MIN must have unique-path property and satisfy N =
2n. A GSEN may not satisfy N = 2n and may not have
unique-path property. Consequently, the ATAPE algorithms
in [4] and [8] do not work on a GSEN. The purpose of this
paper is to consider ATAPE in MINs without unique-path
property. We will prove that under stage control technique,
ATAPE algorithms for GSENs need at least 2n rounds. We

will propose an algorithm using a variation of stage control
and works for all N ≡ 2 (mod 4). We will prove that our
algorithm takes only N rounds and therefore is optimal.

This paper is organized as follows: Section 2 gives prelim-
inaries. Section 3 is a lower bound for the ATAPE problem
when the stage control technique is assumed. Section 4 is
our ATAPE algorithm for GSENs with N ≡ 2 (mod 4).
Concluding remarks are given in the final section.

2. Preliminaries

In the paper, a MIN means an N ×N MIN and a GSEN
means an N×N GSEN. In a GSEN, the switches are aligned
in n stages: stage 0, stage 1, . . ., stage n−1, with each stage
consists of N/2 switches. The network configuration of a
MIN is defined by the states of its switches. Since a GSEN
has (N/2) × n switches, its network configuration can be
represented by an (N/2)× n matrix in which each entry is
defined by the state of its corresponding switch.

When stage control technique is assumed, the network
configuration of a GSEN can be represented by a number
as follows. Let c� = 0 (c� = 1) if the state of all switches at
stage n−1−� is 0 (1). The network configuration can be rep-
resented by the number C = cn−12n−1 + cn−22n−2 + · · ·+
c121 + c020 or by binary number (cn−1 cn−2 . . . c1 c0)2.
See Fig. 2 for an example. Clearly, 0 ≤ C < 2n.

A permutation of a MIN is one-to-one mapping be-
tween inputs and outputs of the MIN. If there is a per-
mutation that maps input i to output p(i), where p(i) ∈
{0, 1, . . . , N − 1} for i = 0, 1, . . . , N − 1, then we simply
use p(0) p(1) . . . p(N−1) to denote the permutation. Given
the network configuration of a MIN, a permutation can be
obtained. For example, the network configuration shown in
Fig. 2 obtains permutation 1 4 6 0 7 2 9 3 5 8. It is obvious
that there are N ! possible permutations. However, not all of
the N ! permutations are realizable. Permutations realizable
by a MIN are called admissible permutations of that MIN.

In the paper, terminal i (j) is assumed on the left-hand
(right-hand) side of the network and therefore is an input
(output) processor. Consider a message sending from i to
j; see Fig. 4. The path can be described by a sequence of
labels that label the successive links on this path. Such a
sequence is called a forward control tag or tag. The control
tag may be used as a header for routing a message.

stage 0 stage n-1- stage n-1
1nb

1nf b f
0b

0fi
j

Figure 4. The sub ports on the path P between i and j.

When a message is sent from i to j along a path P , the
message enters a switch at stage n − 1−� via sub port b�

and leaves the switch via sub port f�. Conversely, when a

186

message is sent from j to i along P , the message enters
a switch at stage n − 1−� via sub port f� and leaves the
switch via sub port b�. We use F = fn−12n−1+fn−22n−2+
· · ·+ f121 + f020 to denote a forward control tag. Let B =
bn−12n−1 + bn−22n−2 + · · ·+ b121 + b020. B is called the
backward control tag. For example, in Fig. 2, i = 2 can
get to j = 6 by using F = 14 = (1110)2; conversely,
j = 6 can get to i = 2 by using the backward control tag
B = 4 = (0100)2. Note that 0 ≤ F < 2n and 0 ≤ B < 2n.

Let P (i, F) denote the path started from i by using the
forward control tag F ; note that the destination processor
j of P (i, F) can be determined by Lemma 3 in the next
section. Let B(i, F) denote the backward control tag of
P (i, F) and let BF = {B(i, F) | i = 0, 1, . . . , N − 1}.

In this paper, ⊕ denotes the bitwise XOR operation. As a
reference, 0⊕0 = 0, 0⊕1 = 1, 1⊕0 = 1, 1⊕1 = 0. If U =
(un−1 un−2 . . . u0)2 and V = (vn−1 vn−2 . . . v0)2, then
we define U⊕V = (un−1⊕vn−1 un−2⊕vn−2 . . . u0⊕v0)2.

Let R(N) denote the minimum number of network con-
figurations required to realize ATA in an N × N GSEN.
Also, let Rsc(N) denote the minimum number of network
configurations required to realize ATA in an N ×N GSEN
when stage control technique is assumed. A round is the
process of transmitting all the messages from the input stage
to the output stage.

3. A lower bound when stage control technique
is assumed

The main result of this section is to prove that Rsc(N)
has a lower bound 2n. We first prove a theorem.

Theorem 1: In a GSEN,

N ≤ R(N) ≤ Rsc(N) ≤ 2n.

Proof: Given a network configuration, at most N mes-
sages can be sent simultaneously. N ≤ R(N) thus follows
from that fact that N2 messages have to be sent to fulfill ATA
and each network configuration can send only N of them.
R(N) ≤ Rsc(N) is obvious. Rsc(N) ≤ 2n follows from
the fact that a GSEN has at most 2n network configurations
when stage control technique is assumed.

In [2], Lan et al. considered a GSEN with switches of
size k× k. By setting k = 2, we have the following results.

Theorem 2: [2] In a GSEN, the four parameter i, j, F,B
of a path satisfy 2ni + F = BN + j.

Lemma 3: [2] Given i and F in a GSEN, the destination
processor j is determined by j = (i · 2n + F) mod N .

Lemma 4: [2] In a GSEN, the backward control tag B of
the path P (i, F) is given by B =

⌊
i·2n+F

N

⌋
.

See Fig. 2 for an illustration. Suppose i = 2 sends a
message by using the forward control tag F = 14. By
Lemma 3, the destination is j = (2 · 16 + 14) mod 10 = 6;
by Lemma 4, the corresponding B is B =

⌊
2·16+14

10

⌋
= 4.

The reason of introducing the forward control tag F and
the backward control tag B of a given path is to carry out
the configuration C containing that path by bitwise XOR
operation.

Lemma 5: When the stage control technique is assumed,
F and B together uniquely determine the network configu-
ration C and C = B ⊕ F .

Proof: Consider stage n− 1−�. Since the stage control
technique is assumed, all switches in stage n − 1− � are
of the same state. Let C = cn−12n−1 + cn−22n−2 + · · · +
c121 + c020 be the network configuration and see Fig. 4. At
stage n− 1−�, a message enters sub port b� and leaves sub
port f�. If b� = f�, then the state of the switch is straight;
hence c� = 0 = b� ⊕ f�. If b� differs from f� (in this case,
(b�, f�) is (0, 1) or (1, 0)), then the state of the switch is
cross; hence c� = 1 = b� ⊕ f�. So C = B ⊕ F .

Before bring out the main result of this section, we need
a little more information about the unique-path: how can we
tell if a path is unique or not from F directly?

Lemma 6: In a GSEN, a path P (i, F) is a unique-path if
and only if 2n −N ≤ F < N . (See Fig. 5 for illustration.)

Proof: Suppose there are two different paths P (i, F1),
P (i, F2) joining i to j. By Lemma 3, the difference between
F1 and F2 is N . Without loss of generality, let F2−F1 = N .
Since F1 ≥ 0, we have F2 ≥ N . Since F2 < 2n, F1 <
2n −N . When 2n −N ≤ F < N , F is neither F1 nor F2;
thus P (i, F) must be a unique-path.

0 1 2 2 1n N 2n N 1N

F

N 1N 2 1n……
…………

2N

multi-paths unique-paths

Figure 5. Unique paths and multiple paths joining i to j.

Lemma 7: P (i, 2n−1) and P (i,2n−1+1) are unique paths.
Proof: Follows from Lemma 6.
Lemma 8: In a GSEN, B2n−1 = B2n−1+1.
Proof: The binary representations of 2n−1 and 2n−1 +1

differ only at their rightmost bits. Thus for i = 0, 1, . . . , N−
1, paths P (i, 2n−1) and P (i, 2n−1 + 1) differ only at their
destination processors; so B(i, 2n−1) = B(i, 2n−1 + 1).
Consequently, B2n−1 = B2n−1+1.

For convenience, if a number is in {0, 1, 2, . . . , 2n − 1}
but is not in BF , then we call it a hole of BF . The following
lemma shows that the elements of BF are spread very evenly
on the set {0, 1, 2, . . . , 2n−1}.

Lemma 9: For any F ∈ {0, 1, 2, . . . , 2n − 1}, BF has no
two consecutive holes.

Proof: We prove this lemma by showing B(0, F)≤ 1,
B(i−1, F)+1≤B(i, F)≤B(i−1, F)+2 for i=1, 2,. . . ,N−1,
and B(N−1, F) ≥ 2n−2. By Lemma 4, B(0, F) =

⌊
F
N

⌋ ≤
1. Also, B(N − 1, F) =

⌊
(N−1)·2n+F

N

⌋
≥

⌊
(N−1)·2n

N

⌋
≥

2n−2. Finally, consider i = 1, 2, . . . , N−1. By Lemma 4,

187

B(i−1, F) + 1 =
⌊

(i−1)·2n+F
N

⌋
+1 =

⌊
i·2n+F

N − 2n

N

⌋
+1 ≤

⌊
i·2n+F

N

⌋
=B(i, F)=

⌊
(i−1)·2n+F

N + 2n

N

⌋
≤

⌊
(i−1)·2n+F

N

⌋
+

2 = B(i−1, F) + 2.
Now we are ready to give the main result of this section.
Theorem 10:

Rsc(N) = 2n.

Proof: It suffices to prove that when stage control tech-
nique is assumed, each of 2n network configurations is
required for every processor to receive N messages. By The-
orem 1, Rsc(N) ≤ 2n. It remains to prove Rsc(N) ≥ 2n.

When stage control technique is assumed, the network
configuration C can be determined by an arbitrary path P
set up by C. In particular, if F is the control tag used by
P , and B is the the backward control tag of P (see Fig. 4),
then by Lemma 5, C = B ⊕ F . If P is a unique path, then
C must be used in ATA. Recall that 0 ≤ C < 2n. Our idea
used in proving Rsc(N) ≥ 2n is to prove that for each C
in {0, 1, . . . , 2n− 1}, at least one of the paths set up by C
is a unique path and hence C must be used in ATA.

Suppose to the contrary there is a Ĉ in {0, 1, . . . , 2n− 1}
such that none of the paths set up by Ĉ is a unique path.
Then consider 2n−1 ⊕ Ĉ and let B̂ = 2n−1 ⊕ Ĉ; consider
(2n−1 + 1)⊕ Ĉ and let B̂′ = (2n−1 + 1)⊕ Ĉ. Since none
of the paths set up by Ĉ is a unique path, we claim that
B̂ 	∈ B2n−1 and B̂′ 	∈ B2n−1+1. Suppose this clam is not
true. Then B̂ ∈ B2n−1 or B̂′ ∈ B2n−1+1. Without loss of
generality, suppose B̂ ∈ B2n−1 holds. Then Ĉ = B̂⊕ 2n−1.
By Lemma 7, Ĉ conducts a unique path, a contradiction.

By Lemma 8, B2n−1 =B2n−1+1. Thus B̂ 	∈ B2n−1 andB̂′ 	∈
B2n−1 . Since B̂ and B̂′ differ by 1, they are two consecutive
holes in B2n−1 ; this contradicts with Lemma 9. Thus for each
network configuration C in {0, 1, . . . , 2n−1}, at least one
of the paths set up by C is a unique path; hence C must be
used in ATA. So Rsc(N) ≥ 2n.

4. ATAPE of GSENs with N ≡ 2 (mod 4)

We now introduce a variation of stage control technique,
called alternating stage control (ASC), meaning that the
states of the switches of a stage alternate between straight
and cross. See Fig. 6 for an illustration.

When alternating stage control is used, the network con-
figuration of a GSEN can be represented by a number as
follows. Let a� denotes the states of the switches at stage
n− 1− � such that

• a� = 0 means the states are 0, 1, 0,
• a� = 1 means the states are 1, 0, 1,

The network configuration of the GSEN can be represented
by the number A = an−12n−1 + an−22n−2 + · · ·+ a121 +
a020 or (an−1 an−2 . . . a1 a0)2 in the binary form; see
Fig. 6. Clearly, 0 ≤ A < 2n. We will call A an alternat-
ing configuration. When N ≡ 2 (mod 4) and alternating

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

1 100

Figure 6. Applying alternating stage control A = 9 = (1001)2
on a 10 × 10 GSEN.

stage control is used, the N input terminals and N output
terminals of stage n− 1− � have the following property.

Property (∗): (see Fig. 7 for an illustration)

1) If a� = 0, then Even
0−→ Even, Odd

1−→ Odd. That
is, every even-numbered input terminal is connected to
an even-numbered output terminal via sub port 0, and
every odd-numbered input terminal is connected to an
odd-numbered output terminal via sub port 1.

2) If a� = 1, then Even
1−→ Odd, Odd

0−→ Even.

1

3

5

7

9

0

2

4

6

8

0 0

1

3

5

7

9

0

2

4

6

8

(a) (b)

0

2

4

6

8

1

3

5

7

9

0

2

4

6

8

1 1

1

3

5

7

9

(c) (d)

Figure 7. A stage in a 10 × 10 GSEN. (a) and (b) are for
a� = 0; (c) and (d) are for a� = 1.

Notice that if N 	≡ 2 (mod 4), Property (∗) does not hold.
We now give other properties of alternating stage control.

Lemma 11: Suppose N ≡ 2 (mod 4), alternating stage
control is used, and A = (an−1 an−2 . . . a1 a0)2 is the
network configuration. Then: (1) the forward control tags
of even-numbered inputs are identical, and (2) the forward
control tags of odd-numbered inputs are identical.

Proof: By Property (∗), messages from even-numbered
inputs are via the same sub port at every stage n − 1 − �,
(� = n−1, n−2, . . . , 0). Since the control tag is the sub ports
passed by a message, (1) holds. Similarly, (2) also holds.

Theorem 12: Suppose N ≡ 2 (mod 4), alternating stage
control is used, and A is the network configuration. Let F
and F denote the forward control tags of even-numbered
inputs and odd-numbered inputs, respectively. Then:

(1) F ⊕ F = (11 . . . 11)2;
(2) A = F ⊕ ⌊

F
2

⌋
;

(3) F = A⊕ ⌊
A
2

⌋⊕ ⌊
A
22

⌋⊕ · · · ⊕ ⌊
A

2n−1

⌋
.

188

Proof: (1) Let F = (fn−1 fn−2 . . . f1 f0)2 and A =
(an−1 an−2 . . . a1 a0)2. By Property (∗), if messages from
even-numbered inputs are via sub port f� at stage n−1− �,
then messages from odd-numbered inputs are via sub port
1 − f� at stage n − 1 − �, (� = n − 1, n − 2, . . . , 0). Thus
F ⊕ F = (11 . . . 11)2.

(2) Clearly, an−1 = fn−1. For � = n − 2, n − 3, . . . , 0,
by Property (∗), we have:

• If a� = 0, then f� = 0 whenever f�+1 = 0 and f� = 1
whenever f�+1 = 1.

• If a� = 1, then f� = 0 whenever f�+1 = 1 and f� = 1
whenever f�+1 = 0.

Thus, a� = f� ⊕ f�+1, (� = n− 2, n− 3, . . . , 0). Therefore,

A = (an−1 an−2 . . . a1 a0)2

= (fn−1 fn−2⊕fn−1 fn−3⊕fn−2 . . . f0⊕f1)2

= (fn−1⊕0 fn−2⊕fn−1 fn−3⊕fn−2 . . . f0⊕f1)2

= (fn−1 fn−2 fn−3 . . . f0)2 ⊕ (0 fn−1 fn−2 . . . f1)2

= F ⊕ ⌊
F
2

⌋
.

(3) f� = a�⊕a�+1⊕· · ·⊕an−1, (� = n−2, n−3, . . . , 0).
Thus, F = A⊕ ⌊

A
2

⌋⊕ ⌊
A
22

⌋⊕ · · · ⊕ ⌊
A

2n−1

⌋
.

The above theorem gives a one-to-one correspondence
between A and F . Let AF be the corresponding alternating
configuration of forward control tag F . By (2) of Theo-
rem 12, Ak = k ⊕ ⌊

k
2

⌋
.

Lemma 13: When N ≡ 2 (mod 4) and the GSEN is set
by the alternating configuration Ak, the forward control tag
of even-numbered inputs is k and the forward control tag of
the odd-numbered inputs is 2n − 1− k.

Proof: By definition of Ak and (1) of Theorem 12.
Let A denote a set of alternating configurations which can

be used to fulfill ATA. We now prove a theorem, which is
the foundation of our optimal ATA algorithm.

Theorem 14: When N ≡ 2 (mod 4), the set of alter-
nating configurations A = {A0, A1, . . . , AN−1} can fulfill
ATA, where Ak = k ⊕ ⌊

k
2

⌋
.

Proof: Let i be an arbitrary input. To prove this theorem,
it suffices to prove that when A0, A1, . . . , AN−1 are used, i
can get to every output. Let jk be the destination processor
when the network configuration is Ak. First consider the case
that i is even. By Lemmas 3 and 13, j = (i·2n+k) mod N ;
since k varies from 0 to N − 1, i can get to every output.
Now consider the case that i is odd. By Lemmas 3 and 13,
j = (i ·2n +2n−1−k) mod N ; again, since k varies from
0 to N − 1, i can get to every output.

As an illustration, for a 10 × 10 GSEN, A =
{0, 1, 3, 2, 6, 7, 5, 4, 12, 13} can fulfill ATA. We now obtain
R(N) for N ≡ 2 (mod 4).

Theorem 15:

For GSENs with N≡2 (mod 4), R(N)=N.

Proof: Follows from Theorems 1 and 14.
Note that A0, A1, . . . , AN−1 are not the only way to fulfill

ATA. In fact, any consecutive N integers in 0, 1, . . . , N − 1

can fulfill ATA. Now we are ready to propose our ATA
algorithms for GSENs with N ≡ 2 (mod 4). The first
algorithm (Algorithm 1) generates a set of configurations
that can fulfill ATA. The second algorithm (Algorithm 2)
uses the output of the first algorithm to fulfill ATABR.

Algorithm 1 Generate-Configurations-using-ASC

Input: A number N such that N ≡ 2 (mod 4).
Output: A setA of alternating configurations that can fulfill

ATA in an N ×N GSEN.
1: A ← ∅
2: for k = 0 to N − 1 do
3: Ak ← k ⊕ ⌊

k
2

⌋
4: A ← A∪ {Ak}
5: end for
6: return A

Algorithm 2 ATABR-using-ASC
Input: The set A of alternating configurations.
Output: Fulfilling ATABR in a GSEN.

1: Each processor i (0 ≤ i < N) prepare a broadcast
message

2: for each round k = 0 to N − 1 do
3: Set the configuration of the GSEN to be Ak

4: Transmit messages
5: end for

In ATAPE, messages sent to different destinations are
different. By constructing a matrix D=(di,k) where di,k =j
means processor j (the destination) will receive a personal-
ized message from processor i at round k, we can fulfill
ATAPE. Algorithm 3 prepares such a matrix.

Algorithm 3 Generate-Destination-Matrix-using-ASC

Input: A number N such that N ≡ 2 (mod 4).
Output: Constructing the destination matrix D=(di,k).

1: n← �log2 N�
2: for each i = 0 to N − 1 do
3: if i is even then
4: mi = (i · 2n) mod N
5: else
6: mi = ((i + 1)2n − 1) mod N
7: end if
8: for each k = 0 to N − 1 do
9: if i is even then

10: di,k = (mi + k) mod N
11: else
12: di,k = (mi − k) mod N
13: end if
14: end for
15: end for

189

For example, the matrix D of a 10× 10 GSEN is below.

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 7 8 9
1 0 9 8 7 6 5 4 3 2
2 3 4 5 6 7 8 9 0 1
3 2 1 0 9 8 7 6 5 4
4 5 6 7 8 9 0 1 2 3
5 4 3 2 1 0 9 8 7 6
6 7 8 9 0 1 2 3 4 5
7 6 5 4 3 2 1 0 9 8
8 9 0 1 2 3 4 5 6 7
9 8 7 6 5 4 3 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that D needs to be constructed only once. It can
be pre-computed and can be used again and again. The
last algorithm uses the outputs (set A and matrix D) of
Algorithms 1 and 3 to fulfill ATAPE.

Algorithm 4 ATAPE-using-ASC
Input: The set A of alternating configurations and the

destination matrix D.
Output: Fulfilling ATAPE in a GSEN.

1: for each round k = 0 to N − 1 do
2: Each processor i (0 ≤ i < N) prepare a personalized

message for di,k

3: Set the configuration of the GSEN to be Ak

4: Transmit messages
5: end for

An example of Algorithm Algorithm 4 is shown in Fig. 8.
By Theorem14, Algorithms 1 and 2 are correct; each of
them takes N rounds and takes O(N) time. Algorithm 3 is
correct if we can show that at round k, the message sent
by processor i will reach processor (mi + k) mod N if i
is even and reach (mi − k) mod N if i is odd. We only
prove the case that i is odd. By Lemma 13, at round k,
the messages sent by processor i uses forward control tag
2n − 1 − k. By Lemma 3, the destination processor is be
j = (i·2n+2n−1−k) mod N = ((i+1)·2n−1−k) mod N =
(mi−k) mod N . Thus Algorithm 3 is correct. It is not
difficult to see that the algorithm takes O(N2) time. The
correctness of Algorithm 4 follows from that of Algorithm 3;
the algorithm takes N rounds and takes O(N) time.

5. Concluding remarks

In this paper, we consider the generalized shuffle-
exchange network (GSEN), which is not necessarily a
unique-path MIN. We have proposed an optimal ATAPE
algorithm for GSENs. Unlike the algorithms in [4] and [8],
we abandon the requirement on the unique-path property.
Our algorithm use alternating stage control and works for
all N ≡ 2 (mod 4). By Theorems 10 and 15, for GSENs
with N ≡2 (mod 4), we have N = R(N) < R(N) = 2n.
It remains open to determine R(N) for N ≡ 0 (mod 4).

0
1

2
3
4
5

6
7
8
9

Round 0

0 0 0 0

Round 1

0 0 0 1
1
0

3
2
5
4

7
6
9
8

Round 2

0 0 1 1
2
9

4
1
6
3

8
5
0
7

Round 3

0 0 1 0
3
8

5
0
7
2

9
4
1
6

Round 4

0 1 1 0
4
7

6
9
8
1

0
3
2
5

Round 5

0 1 1 1
5
6

7
8
9
0

1
2
3
4

Round 6

0 1 0 1
6
5

8
7
0
9

2
1
4
3

Round 7

0 1 0 0
7
4

9
6
1
8

3
0
5
2

Round 8

1 1 0 0
8
3

0
5
2
7

4
9
6
1

Round 9

1 1 0 1
9
2

1
4
3
6

5
8
0
7

Figure 8. An example of Algorithm 4.

References

[1] C. Chen and J. K. Lou, “An efficient tag-based routing al-
gorithm for the backward network of a bidirectional general
shuffle-exchange network,” IEEE Commun. Lett., vol. 10, no.
4, pp. 296-298, 2006.

[2] J. K. Lan, W. Y. Chou, and C. Chen, “Efficient routing algo-
rithms for the bidirectional general shuffle-exchange network,”
submitted for possible publication.

[3] V. W. Liu, C. Chen, and R. B. Chen, “Optimal all-to-all person-
alized exchange in d-nary banyan multistage interconnection
networks,” J. Comb. Optim., vol. 14, pp. 131-142, 2007.

[4] A. Massini, “All-to-all personalized communication on mul-
tistage interconnection networks,” Discrete Appl. Math., vol.
128, no. 2, pp. 435-446, 2003.

[5] K. Padmanabham, “Design and analysis of even-sized binary
shuffle-exchange networks for multiprocessors,” IEEE Trans.
Parallel Distrib. Syst., vol. 2, no. 4, pp. 385-397, Oct. 1991.

[6] Y. Yang, J. Wang, “All-to-all personalized exchange in banyan
networks,” Proc. Parallel and Distributed Computing and
Sysetems (PDCS’99), Cambridge, MA, pp. 78-86, 1999.

[7] Y. Yang, J. Wang, “Optimal all-to-all personalized exchange
in multistage networks,” Proc. Seventh International Confer-
ence on Parallel and Distributed Systems (ICPADS’00), Iwale,
Japan, 2000.

[8] Y. Yang, J. Wang, “Optimal all-to-all personalized exchange
in self-routable multistage networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 11, no. 3, pp. 261-274, 2000.

190

