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A 124 Mpixels/s VLSI Design for Histogram-Based
Joint Bilateral Filtering

Yu-Cheng Tseng, Student Member, IEEE, Po-Hsiung Hsu, and Tian-Sheuan Chang, Senior Member, IEEE

Abstract—This paper presents an efficient and scalable design
for histogram-based bilateral filtering (BF) and joint BF (JBF) by
memory reduction methods and architecture design techniques
to solve the problems of high memory cost, high computational
complexity, high bandwidth, and large range table. The presented
memory reduction methods exploit the progressive computing
characteristics to reduce the memory cost to 0.003%–0.020%, as
compared with the original approach. Furthermore, the architec-
ture design techniques adopt range domain parallelism and take
advantage of the computing order and the numerical properties to
solve the complexity, bandwidth, and range-table problems. The
example design with a 90-nm complementary metal–oxide–semi-
conductor process can deliver the throughput to 124 Mpixels/s
with 356-K gate counts and 23-KB on-chip memory.

Index Terms—Bilateral filtering (BF), integral histogram (IH),
very-large-scale-integration (VLSI) design.

I. INTRODUCTION

B ILATERAL filtering (BF) is widely adopted in image and
video processing such as denoising, texture editing and re-

lighting tone management stylization, and optical flow estima-
tion due to its texture preserving capabilities during processing
[1]. BF, originated in [2], is to smooth an image and is defined
as

BF (1)

where is the target pixel and is the support pixel surrounding
. The support pixel is in a square filter window , and its in-

tensity is in the range domain from 0 to 255 for the gray
level. In this equation, values are accumulated and normal-
ized with the space kernel and the range kernel . Both and

are usually Gaussian functions with the arguments of space
distance and intensity difference , respectively.
If is close to or is similar to , the impact of will be
raised. On the contrary, is regarded as an outlier. Because of
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the additional range kernel , BF can smooth an image without
the overblurring of traditional Gaussian filtering.

Based on BF, Eiseman and Durand [3] and Petschnigg et al.
[4] developed joint BF (JBF) to blend a pair of flash and no-flash
photos into a clear one. JBF is defined as

JBF (2)

where is a guidance image and is another source image.
Through the range kernel , the guidance image could iden-
tify and suppress outliers for denoising the source image . With
this characteristic, JBF has been adopted in image denosing [5]
and disparity-map fusion [6], [7]. Further extending the applica-
tions of JBF, Kopf et al. [8] proposed the joint bilateral upsam-
pling that employs high-resolution to enlarge low-resolution

for various image processing, such as tone mapping, coloriza-
tion, disparity maps [9], [10], demosaicing [11], and texture
synthesis [12]. A variety of JBF is the adaptive support weight
(ADSW), i.e., a matching cost aggregation approach, proposed
by in [13] for disparity estimation in 3-D image processing. The
ADSW employs the space and range kernels to deliver better
disparity maps than the traditional box filter with a constant co-
efficient. The concept of the ADSW is further advanced in the
disparity estimation algorithms in [14]–[16] and is also adopted
by the developing Motion Pictures Expert Group standard, i.e.,
3-D video coding [17].

As previously mentioned, both BF and JBF are effective for
various applications, but their operation speed is severely lim-
ited by their nonlinear calculations. A brute-force calculation
would need the computational complexity of for each
pixel, where is the filter window size. To speed up the cal-
culation, several approaches have been proposed in [22]–[32].
The state-of-the-art approaches proposed in [22] and [23] can
achieve constant-time complexity. Thus, this paper will adopt
Porikli’s constant-time approach.

Porikli’s approach consists of two steps, i.e., histogram cal-
culation for obtaining the histogram of a filter window and
1-D convolution for convoluting the histogram with a range
kernel. Since the histogram calculation occupies most of the
complexity, Porikli applied the integral histogram (IH) approach
[24] that accumulates histogram for each pixel by traversing
the whole image and then extracts the histogram of the target
filter window by adding and subtracting the accumulated his-
tograms at four corners. The accumulated histogram is called the
IH that still needs high memory cost and high bandwidth. For
the example of the 1920 1080p resolution (i.e., HD1080p),
the IH approach needs the memory cost of 829 MB and the
bandwidth of 106 Gb/frame, as shown later in Table V. In ad-
dition, Porikli’s approach still suffers from the high compu-
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY AND MEMORY COST IN THE RELATED WORK

� : frame height;� : frame width; ���: filter window width; ���: intensity range; � : quantization factor for �; � : quantization factor for�; �: extension pixel
count

tational complexity of 2262 million operations for processing
an HD1080p image, even if it has been accelerated by the IH
approach. Moreover, the 1-D convolution needs a large range
table with 256 items for the range kernel. Due to above prob-
lems, it is hard to achieve a real-time performance and thus de-
mands very-large-scale-integration (VLSI) hardware accelera-
tion. However, the previous VLSI implementations could not
achieve high throughput for the large filtering window [18], [21]
or achieve high throughput only for the small filtering window
[19], [20] because they adopted the brute-force calculation of
BF, instead of the acceleration approaches.

To solve aforementioned problems, this paper adopts Porikli’s
acceleration approach and proposes a VLSI design with memory
reduction methods and architecture design techniques. The con-
tributions of this paper are as follows: First, for the high memory
cost, this paper takes advantage of the progressive computing
order in the histogram calculation to reduce the memory cost
from a frame to a scan line, which is 0.003%–0.020% of the orig-
inal approach. Second, for the high computational complexity,
this paper maximizes the parallelism of Porikli’s approach in the
range domain to decrease its complexity to 0.15%. Third, for
the high bandwidth, this paper exploits the timing relationship of
IHs to reduce the bandwidth to 32%–36%. Fourth, for the large
range table, this paper employs the symmetry and truncation
properties of the range kernel to reduce the size and the number
of the range table. Finally, with the aforementioned methods,
this paper presents an efficient and scalable architecture. An
example implementation can achieve 124 Mpixels/s with the
23-KB memory and 365-K gate counts.

The rest of this paper is organized as follows: Section II re-
views the previous acceleration approaches for BF and JBF, and
Section III focuses on the IH approach and points out its design
challenges. Then, Section IV elaborates three memory reduc-
tion methods, and Section V describes the proposed architec-
ture design techniques and an architecture design with all the

Fig. 1. Classification of acceleration approaches.

previously mentioned methods. Finally, Section VI presents the
result of an implementation example, and Section VII concludes
this paper.

II. RELATED WORK

Various acceleration approaches for BF have been proposed
and can be classified into two categories, i.e., the target-pixel-
first approach and the support-pixel-first approach, according
to their computational characteristics, as illustrated in Fig. 1.
The target-pixel-first approach is an aggregation process that
focuses on a target pixel and accumulates its support pixels
. On the other hand, the support-pixel-first approach is a diffu-

sion process that regards a support pixel as a center to diffuse
for its target pixels . With the classification, the previous ap-
proaches are reviewed here, and their computational complexity
and memory cost are compared in Table I.

A. Support-Pixel-First Approaches

The main idea of the support-pixel-first approaches is to con-
vert the original nonlinear convolution to linear convolution so
that the linear convolution can be accelerated by existing al-
gorithms, such as the fast Fourier transform. To convert (1) to
linear convolution, terms and are
precalculated and stored in memory devices as lookup tables
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(LUT). Hence, the approaches consist of two steps, i.e., LUT
construction and linear convolution. For the implementation is-
sues, the former needs a large storage, and the later needs an
efficient computation.

Durand and Dorsey [25] are the first ones to propose the sup-
port-pixel-first approach for acceleration. This approach con-
tains two schemes, i.e., the piecewise-linear scheme and the sub-
sampling scheme, to quantize by factor and by factor

, respectively. Hence, the memory cost and the computational
complexity can be reduced by the same factors. Based on the
piecewise-linear scheme, Yang et al. [22] adopted a constant-
time approximate Gaussian filtering for the linear convolution
to achieve real-time processing by the graphical-processing-unit
(GPU)-based programming.

Paris and Durand [26], [27] indicates that the piecewise-linear
scheme would suffer from poor approximation on the texture’s
discontinuity since it cannot exactly interpolate dense results. To
address that, the bilateral grid scheme is proposed to perform a
3-D convolution on , instead of the typical 2-D convolution
only on . However, its memory cost and computational com-
plexity are scaled on dimension . Following the bilateral grid
scheme, Chen et al. [28] implemented it by the GPU-based pro-
gramming to achieve real-time processing. In addition, Adams
et al. [29] adopts the Gaussian KD tree to improve its speed.

To sum up, the support-pixel-first approaches can convert
BF and JBF to linear convolution but suffer from high memory
cost for LUTs. Unfortunately, the size of LUTs should be
frame–scale–magnitude since their algorithms iteratively per-
forms on the whole frame.

B. Target-Pixel-First Approaches

The main idea of the target-pixel-first approaches is to ag-
gregate the support pixels with kernels, which need the com-
putational complexity of . To accelerate it, Pham and
van Vliet [30] proposed the separable BF that directly changes
the original 2-D aggregation to two-step 1-D aggregation for
columns and a row. Thus, it can reduce the computational com-
plexity to , but it suffers from the axis-aligned artifact.

On the other hand, the histogram-based approaches could re-
duce computation without significant quality degradation. In the
approaches, the space kernel is simplified to a box filter with
constant coefficient, so that (1) is rewritten as

BF

hc

hc
(3)

Before convoluting each support pixel with the range kernel
, the support pixels in the filter window are classified into the

pixel count histogram hc , whose subscript refers to the target
pixel . Fig. 2 shows the concept of the classification. According
the support pixel’s intensity , the corresponding bin is ac-
cumulated. For the exact result of the gray level, the number of
bins is set as 256. After classifying all support pixels, the his-
togram bin value hc can refer to the number of support pixels
with intensity in . Then, (3) can be finally calculated by 1-D
convolution in the range domain , instead of the original space

Fig. 2. Concept of histogram-based approaches.

domain . In summary, the histogram-based approaches include
two parts, i.e., histogram calculation and 1-D convolution. The
key point of the histogram-based approaches is that the convolu-
tion can be decreased from the larger to . However, the
major computational complexity is in the histogram
calculation that demands other acceleration techniques.

To speed up the histogram calculation, Huang [31] proposed
the extended histogram approach that calculates multiple
target pixels’ histograms and shares their partial histograms
in runtime. Its computational complexity can be reduced to

, but it spends extra memory cost. Based on the
extended histogram approach, Weiss [32] proposed the dis-
tributed histogram approach that reassembles the histogram
calculation of each row and reduces computational complexity
to . Furthermore, Porikli [23], [24] proposed
the IH approach to decrease computational complexity to

, which is independent of the filter window size. In
addition, factor quantizes the support pixel’s intensity. The
IH approach can be faster than the brute-force approach when

is smaller than . That implies that this approach is
suitable to be applied when BF has a large filter window size.
Based on the IH approach, Ju and Kang [33] modified (3) to

JBF

hi

hc
(4)

to further support JBF. Different from (3), the histogram in the
numerator is the pixel intensity histogram hi that accumulates
the pixel intensity for each bin, instead of the pixel count in hc .

In summary, the IH approach is the state of the art
in target-pixel-first approaches, but its memory cost is
frame–scale–magnitude, like the support-pixel-first approaches.
However, as mentioned above, the memory cost of the sup-
port-pixel-first approach is hard to be reduced due to its iterative
computing, instead of the progressive computing in the IH ap-
proach. Thus, this paper focuses on the IH approach.

III. ANALYSIS OF THE IH APPROACH

Here, we introduce the IH approach in detail and then analyze
the design challenges of JBF, which can be applied to BF as well.

A. IH Approach

Table II presents the computational flow and analysis of the
IH approach for JBF to calculate a 1-pixel result, which consists
of the integration, extraction, kernel calculation, and convolution
processes, in which the first two are for the histogram calculation
step and the latter two are for the 1-D convolution step.
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Fig. 3. Concept of the IH approach: (a) Representation of IH for the region from � to� in area view and memory view; (b) integration process performed by
raster-scan order to compute IH ; (c) extraction process performed to extract histogram � of rectangle ABCD.

TABLE II
COMPUTATIONAL FLOW AND COMPLEXITY ANALYSIS FOR EACH PIXEL IN THE

IH APPROACH FOR JBF

For ease of explanation, we use the area view to show how this
approach operates and the memory view to show the memory
usage, as illustrated in Fig. 3(a). In the area view, IH is a his-
togram of the rectangular area stretched from pixels to .
Thus, the addition and the subtraction of the IH can be regarded
as area merging and cutting, respectively. In the memory view,
the data of IH are stored at , and the gray region represents
occupied memory usage. With these representations, Fig. 3(b)
and (c) illustrate the integration and extraction processes.

First, the integration process progressively calculates the IH
of each pixel using

IH IH IH IH Bin (5)

For the pixel count histogram hc and the pixel intensity his-
togram hi , their IHs (i.e., IH and IH , respectively) are sep-
arately computed, as shown in Table II. For hc , Bin is 1
for the corresponding bin and 0 for others. On the other hand,
for hi , this term is for the corresponding bin and also 0 for
others. After this process, the IH of each pixel is produced and
stored into the memory.

Second, given the IHs, the extraction process can extract his-
togram hc or hi of the filter window ABCD centered by the
target pixel using

IH IH IH IH (6)

As shown in Fig. 3(c), a histogram with arbitrary filter
window size can be obtained by using the IHs of the four
corners. With this property, the IH approach can reduce compu-
tational complexity to being independent of the filter window
size.

Third, the kernel calculation process computes the range
kernel by a range table, which includes 256 items for the 256
possible values of . Finally, given the range kernel and
histograms hc and hi , the convolution process calculates the
result of the target pixel by (4).

B. Design Challenges

Since the complexities listed in Table II are pixelwise, as well
as bin-number dependent, they will quickly grow as the resolu-
tion and the bin number grow. The detailed design challenges
are described below.

1) High Memory Cost for IHs: During the integration
process, all the IHs of the whole image are stored in the
memory. BF needs a frame–scale–magnitude memory for hc ,
and JBF additionally needs another one for hi . Therefore, the
total memory cost of JBF is

(7)
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where the former term is for hc and the later term is for hi .
and are the frame height and width, respectively, is the
number of bin, and is the bit width of a bin. Note that is
related to the maximal area of integration, and its value is equal
to . In addition, the bit width of hi is more than hc
by 8 bits because the intensity of a pixel requires 8 bits.

The aforementioned memory cost would be 829.4 MB
for the HD1080p resolution (i.e., , ,

, and ). For a VLSI design, these massive
data could be configured into off-chip memory [i.e., dynamic
random-access memory (RAM)] or on-chip memory (i.e., static
RAM). However, as compared with the on-chip memory, the
off-chip memory suffers from longer access latency due to
its complicated controlling mechanism [34] and from limited
bandwidth usage due to being shared by multiple masters.
Hence, our strategy for the high memory cost is to reduce the
memory requirement and enable data to be stored in the on-chip
memory for fast implementation.

2) High Computational Complexity in All Processes:
According to the complexity in Table II, generating a 1-pixel
result needs additions, multiplications, and 1
division. If is 64, the total complexity will be 2262.3 million
operations for an HD1080p image. To meet the aforementioned
demands, a VLSI design with sufficient parallel operators is
necessary.

3) High Bandwidth in Integration and Extraction: In
Table II, the bandwidth for the IH requires for a 1-pixel
result, and that will reach 106.168 Gb for an HD1080p image,
as shown in Table V. That is because the IHs are frequently
accessed. With the strategy for the memory-cost problem, the
IHs are stored in the on-chip memory, and its data bus should
be increased to address the high bandwidth problem. However,
it results in overpartitioned memory and increased area. Thus,
a method to reduce the bandwidth is needed.

4) Large Range Table in Kernel Calculation: In the kernel
calculation process, a range table with 256 items is needed.
However, with the parallel operations for the computational
complexity problem, this table should be duplicated. Thus, both
the size and the number of the range table results in a large area.

In summary, the IH approach can speed up JBF and BF well
but suffers from the previously mentioned design challenges. To
address them, a VLSI design with suitable memory reduction
and architecture design techniques is necessary.

IV. PROPOSED MEMORY REDUCTION METHODS

To solve the high-memory-cost problem, this paper takes
advantages of the raster-scan computing order to reduce the
memory cost from a frame to a multiple scan line region, named
the runtime updating method (RUM). We further reduce the
memory cost by slicing each region into stripes, named the
stripe-based method (SBM), to avoid frame wide buffer cost.
Finally, the origin of each IH stripe is progressively moved
with computing. It is advanced to reduce the stripe high buffer
to only one-line high buffer, named the sliding origin method
(SOM). With these memory methods, the memory cost can
be reduced to 0.003%–0.020%. The details of the proposed
methods are described below.

Fig. 4. RUM: (a) Extraction for � ; (b) integration to �; (c) extraction
for � .

Fig. 5. SBM.

A. RUM

The concept of the RUM is to perform the integration and ex-
traction processes at the same time, instead of two separate iter-
ations in the original flow. Fig. 4 illustrates its memory configu-
ration in the memory view. In Fig. 4(a), the integration process
is from pixels to . Meanwhile, the extraction process can ex-
tract histogram . From the data lifetime analysis, all the
IHs before pixel are unnecessary. Hence, only the IHs from
pixels to have to be stored and require memory space. Thus,
the memory cost is

(8)

where in (7) is replaced by the filter window width .
Fig. 4(b) and (c) illustrate that the memory is updated when

the two processes moves to the next pixel . In Fig. 4(b), the in-
tegration process calculates the new IH using IH , IH , and
IH , and then, the new IH can overwrite the memory position
of the discarded IH . In Fig. 4(c), the extraction process can ex-
tract .

With the proposed RUM, the memory cost could be reduced
from a full frame to a partial frame. This method can gain con-
siderable reduction since is usually much smaller than .

B. SBM

The main idea of the SBM is to slice the whole frame
into many vertical stripes, and the integration and extraction
processes are performed stripe by stripe. Fig. 5 illustrates a
whole frame partitioned into stripes. Note that the integration
process should be additionally carried out on the extended
region, which contains the surrounding support pixels for the
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Fig. 6. SOM: (a) Extraction process with sliding origin �; (b) integration process to next pixel �; (c) modified integration process to next pixel �.

target pixels on the stripe boundary. Thus, the total memory
cost of the SBM is

(9)

where is the stripe width and is equal to
. Compared with the original cost in (7), the SBM could

reduce significant memory if is much smaller
than .

The overhead of the SBM is that the extended regions result in
extra computation and bandwidth in the integration process due
to repeated performing on these regions. Thinner stripes can re-
duce memory cost more, but that leads to more overheads. Thus,
the selection of is a tradeoff between memory reduction and
overheads. That will be discussed in Section VI.

C. SOM

The concept of the SOM is to vertically slide the origin pixel
with the integration and extraction processes to reduce the

memory cost from a plane to a line, as shown in Fig. 6. With
the sliding origin pixel, the two processes can be simplified, as
described below.

For the extraction process in the area view in Fig. 6(a), the
original IH and IH are zero because the position of is
under and , and they cannot form meaningful histogram
rectangles. Hence, (6) can be simplified as follows:

IH IH IH IH

IH IH (10)

For the integration process in Fig. 6(b), the new IH can be
computed by

IH IH IH IH Bin (11)

However, and are on the previous row of and ,
respectively, and their corresponding origin should be , as
shown in Fig. 6(c), instead of . Therefore, IH and IH in

(11) should be changed to IH and IH , respectively, by the
following derivation, which is corresponding to the area view in
Fig. 6(c):

IH IH IH IH Bin

IH IH IH

IH IH Bin

IH IH IH Bin

IH IH Bin

IH IH Bin IH Bin (12)

With the aforementioned simplification, only the IHs of , ,
, and are associated, and the IHs from to requires

memory space, as shown in the memory view in Fig. 6(c). Thus,
the total memory cost is

(13)

where is equal to since the maximal area of in-
tegration is . Compared with the original cost in (7), the
height dimension is eliminated, and is much smaller.

D. Combination

The proposed memory reduction methods could be simply
combined as follows. First, the SBM partitions a whole frame
into stripes. Then, in each stripe, the RUM and the SOM are per-
formed row by row. This combination can reduce the memory
cost to

(14)

where is equal to . Compared with
the original cost in (7), is decreased to 1 due to the RUM
and the SOM, and is decreased to due to the
SBM. Note that, in this memory cost formulation, and
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TABLE III
MODIFIED COMPUTATIONAL FLOW AND COMPLEXITY ANALYSIS FOR EACH

PIXEL IN THE IH APPROACH FOR JBF

are related to the application quality, and is related to the
hardware performance. The analysis of the parameter selection
will be further presented in Section VI.

V. PROPOSED ARCHITECTURE

With the aforementioned memory reduction methods, the
computational flow of JBF in Table II is changed to that in
Table III. To efficiently implement the architecture, we first
propose the -parallelism method to execute parallel compu-
tations in the range domain to meet the required throughput.
Then, we take advantages of the timing relationship of the data
in the progressive computation to buffer the computed IHs for
on-chip bandwidth reduction, named the delay-buffer method.
The large range table size due to parallelism is further reduced
by exploiting the numerical properties of the Gaussian function.
With these memory reduction methods and architecture design
techniques, an efficient hardware design is proposed, which can
be easily scalable to different performance targets. For ease of
explanation, we use an example for the performance target of
the HD1080p resolution to present the design. The details of
these design techniques are presented below.

A. Overall Architecture

Fig. 7 shows the overall architecture that contains two parts,
i.e., interface and core. In this architecture, the image pixels and
the IHs are stored at the off- and on-chip memory, respectively.
The interface accesses pixels from the off-chip memory through
a 64-bit bus, and the core performs the computation of JBF. The
bus protocol adopts a simple handshaking mechanism, where
the access consists of a request/address phase and a data phase
in a pipelined way. For simplification, our core and an off-chip
memory are only connected to the bus.

Fig. 7. Proposed architecture of JBF. Our design includes the computing core
and the interface connecting to the bus.

Fig. 8. Schedule of the proposed architecture.

In the interface, the access controller allocates the bus pri-
ority to the input and output first-in-first-out (FIFO) buffers by
round-robin policy. The size of each buffer is associated with
the off-chip bandwidth. Large buffers can support data reuse
schemes to reduce the off-chip bandwidth. Because of the suf-
ficient bandwidth in this architecture, we do not apply any data
reuse schemes here to have lower buffer cost and set its size as
2 8 pixels, where the value of 8 is to meet the bus width and
the value of 2 is to support the ping-pong mechanism for simul-
taneous reading and writing.

The operations of the architecture are described below with
the schedule in Fig. 8, which is hierarchically sliced from a
frame to pipeline tiles. The computation of one stripe row
requires 90 cycles for the stripe width of 60 and the filter
window width of 31. However, the throughput of each
pipeline tile is the computation of 8 pixels, and one stripe row
needs 12 pipeline tiles to process. Therefore, this architecture
takes 96 cycles for one stripe row, and the last six cycles are
the bubble cycles. For the process in a pipeline tile, the access
controller in the interface first reads pixels from the off-chip
memory and stores them into the FIFO buffers. Then, the two
histogram calculation engines in the core begin to compute hi
and hc , and the convolution engine consecutively produces 8
pixels to the output FIFO buffer. Finally, the interface moves
results from the buffer to the off-chip memory.
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Fig. 9. SBA in the histogram calculation engines.

Fig. 10. Proposed architectures of histogram calculation engines hi and hc .

B. Architecture of Components

In the core, the main components are two histogram calcu-
lation engines and one convolution engine for the computation
in Table III, which have high computational complexity, as pre-
viously mentioned. Thus, the proposed -parallelism method
unrolls all computational loops in the range domain . The de-
tails of this method are described in each engine as follows.

1) Histogram Calculation Engine: The histogram calcula-
tion engines perform the integration and extraction processes
for hc and hi , as shown in Table III. With the -parallelism
method, we design their architectures, as shown in Fig. 10,
where the selected-bin adder (SBA) is depicted in Fig. 9. These
two engines can achieve the throughput of 1 histogram/cycle.
Note that the difference of the two engines is that the integral
value of SBAs is the source pixel in the engine hi , instead
of the constant 1 in the engine hc . In addition, all bit widths of
data in the engine hi are more than those in hc by 8 bits (see
Fig. 10).

In above architectures, each engine needs to access the five
IHs, i.e., IH , IH , IH , IH , and IH , from the on-chip
memory in one cycle. To reduce the bandwidth problem, we
propose the delay-buffer method, which is presented as follows
by the data dependence of the associated IHs in two successive
cycles. Assume that pixels , , , and shown in Fig. 6(d)
are located in , , , and
in cycle , respectively. Hence, their IHs can be notated by

IH IH

IH IH (15)

Fig. 11. Proposed architecture of (a) convolution engine and (b) its table selec-
tion modules.

For the next cycle , their -coordinates are increased by
1 as follows:

IH IH

IH IH (16)

From (15) and (16), we can find that is equal to
and is equal to . That means IH and IH can be
obtained by delaying IH and IH for one cycle, respectively.
Therefore, we can use two delay buffers to avoid accessing IH
and IH from the on-chip memory and to reduce the bandwidth
from five to three IHs.

2) Convolution Engine: The convolution engine uses his-
tograms hc and hi to further compute the result pixel by
the kernel calculation and convolution processes in Table III.
Its architecture is shown in Fig. 11(a). With the proposed

-parallelism method, the convolution process can achieve
the throughput of 1 pixel/cycle. Higher throughput can be
further attained by adding the registers at the available cutlines
for pipelining in the figure, which can enable the operating
frequency to be higher.

The -parallelism method brings high throughput but suffers
from large size and large number of range table. First, the range
values are converted from fractional to integer ones by

round Scale (17)

where is the variance of the range kernel and Scale is a mul-
tiple to scale the original value ( 1.0) to a larger value. In this
design, Scale is set as 1023, and the bit length of the range
value is fixed to 10 bits using the unsigned integer representation
without the fractional part. The corresponding range table with
256 items should be duplicated to as many as the bin number.
For the large size, we take advantages of the symmetry and the
truncation property of the Gaussian function to decrease its size
from 256 to 32. In addition, to avoid the large number of range
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Fig. 12. [(a)–(c)] Hardware performance per frame with different �

values. (d) Memory reduction with the proposed methods for � of 60
�� � ����� � � ������ � �	� and ��� � 
��.

table, we share one table by the table selection module, as shown
in Fig. 11(b), which reduces the number of tables to one. Note
that the result of the divisor would directly be in the range of
8 bits because it is used to normalize the sum of pixels with
weighting in (4).

Furthermore, the histogram calculation engines and the
convolution engine can be serially connected to achieve the
throughput of 1 pixel/cycle. More engines can be used to
process multiple cascaded pixels simultaneously for higher
throughput. The proposed memory reduction methods could be
directly extended to support the processing of multiple pixels.
In addition, note that, for simpler BF, the histogram calculation
engine hi and its on-chip memory in the core module, and the
two input FIFOs in the interface module could be reduced.

VI. IMPLEMENTATION RESULT

Here, we first analyze the parameter selection in the proposed
memory reduction methods and then demonstrate the result of
the implementation example for the HD1080p resolution.

A. Parameter Analysis

As the combined memory cost in (14), there are three
parameters, i.e., the filter window width of the space kernel

, the number of bin , and the stripe width , where the
first two are related to the application quality and the last one
is related to the target performance. Referring to the quality
analysis in [23], we select 31 for and 64 for as an
example to illustrate how to determine by considering the
hardware performance.

Fig. 12(a)–(c) estimates the hardware performance of JBF
with different for the resolution HD1080p. The memory cost
is computed with (14) and plotted in Fig. 12(a). The off-chip

TABLE IV
EXAMPLE IMPLEMENTATION RESULT OF THE PROPOSED ARCHITECTURE

TABLE V
COMPARISON OF HARDWARE COST PER FRAME

Number of bins � � �	; filter window width ��� � 
�; Stripe width � �

��; VGA � �	��	��; HD���p � ��������;HD����p � ���������

TABLE VI
PREVIOUS VLSI IMPLEMENTATIONS OF BF

bandwidth and the computation time are calculated by the fol-
lowing and plotted in Fig. 12(b) and (c), respectively:

pixels pixels

(18)

cycles (19)

where is the stripe area with extended regions
and is the number of stripe in a frame. Note that the com-
putation time is cycles for one stripe row
because one pipelining tile takes 8 cycles. For the bandwidth,
the term with 4 pixels is required by the integration process,
and the other term with 2 pixels is required by other processes.
Since the integration process should additionally perform on the
extended regions in Fig. 5, its bandwidth is more than that of the
other processes. For the computation time, the proposed archi-
tecture takes 1 cycle to produce a 1-pixel result.
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TABLE VII
COMPARISON OF DIFFERENT IMPLEMENTATIONS

The selection of is mainly related to the target frame rate.
If our target is 30 frames/s, we could select 60 for when the
working clock is 100 MHz. Hence, the off-chip bandwidth will
be 62.2%, and the memory cost can be reduced to 23 KB, which
is 0.003% of the original cost, as shown in Fig. 12(d).

B. Implementation Result

With previously selected parameters, the proposed architec-
ture of JBF has been implemented by Verilog and synthesized
under the 90-nm complementary metal–oxide–semicon-
ductor technology process. For verifying our design, all the
floating-point computation in the C model is first changed into
integer computation. Then, we use the C model to dump the
golden data into files using practical sequences and random
patterns for gate level simulation. The numerical results of
the gate level simulation are verified to be the same as those
golden data. Table IV lists the implementation result of the
proposed architecture. The hardware design spends equivalent
gate counts of less than 300 K and 23-KB on-chip memory to
achieve the throughput of HD1080p 30 frames/s at the clock
rate of 100 MHz. Moreover, it can process at 200 MHz by
pipelining on the available cutlines in the convolution engine
and can further achieve the throughput of HD1080p 60 frames/s
that is 124 Mpixels/s. In addition, the maximum operating fre-
quencies of the two designs are 180.5 and 284.0 MHz with area
cost of 440- and 531-K gates, respectively.

Table V compares the complexity, the memory requirement,
and the bandwidths between the proposed methods and the orig-
inal IH in different resolutions. With the proposed memory re-
duction and architecture design techniques, the complexity can
be reduced to 0.15%, and the memory requirement can be re-
duced to 0.003%–0.02%. In addition, the bandwidth for the IH
(i.e., on-chip bandwidth) can be reduced to 32%–36%, but the
bandwidth for the pixel (i.e., off-chip bandwidth) is increased
to 20.3–132.7 Mb. Nevertheless, the off-chip bandwidth is af-
fordable by the 64-bit bus processing at 200 MHz. Note that
the stripe width is specifically selected for the resolution
HD1080p. Thus, it can be reselected by means of the mentioned
analysis in Part A to acquire better performance for another
resolution.

Table VI compares our proposed hardware design with the
previous VLSI implementations. The previous implementa-
tions [18], [21] could support large filtering window but low
throughput, whereas the implementations in [19] and [20]
could reach high throughput for a small filtering window only.
Not only can our design achieve high throughput, but it can
also support a large filtering window. Table VII compares our
design with the other previous GPU and central-processing-unit
implementations. Comparing with other design, the proposed
architecture could efficiently utilize the hardware cost to
achieve high throughput.

VII. CONCLUSION

This paper has presented an efficient scalable implementa-
tion for the state-of-the-art IH approach used in JBF and BF
applications by the means of well-designed memory reduction
methods and architecture design techniques. The memory
reduction methods take advantage of the raster-scan processing
in the IH approach to reduce the memory cost from the original
frame–scale–magnitude to line–scale–magnitude. In the pro-
posed architecture design techniques, the -parallelism method
can increase the processing throughput, and the delay-buffer
method can decrease the on-chip bandwidth. In addition, the
simplified range table can significantly save the storage of
Gaussian values. With these presented methods, an example
implementation has shown that it can achieve the processing of
HD1080p resolution and 60 frames/s and has spent only 356-K
gate counts and 23-KB memory cost. Scalable to other design
specifications, it can be easily adapted from the presented ar-
chitecture. Although the presented methods have been designed
for the hardware originally, it can be also applied to other kinds
of implementations such as processor-based implementations
for computation speedup and memory reduction, which will be
future work of this paper.
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