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Abstract: We develop a frequency-domain formulation in the form of
generalized eigenvalue problems for reciprocal microlasers and nanolasers.
While the goal is to explore the resonance properties of dispersive cavities,
the starting point of our approach is the mode expansion of arbitrary current
sources inside the active regions of lasers. Due to the Lorentz reciprocity, a
mode orthogonality relation is present and serves as the basis to distinguish
various cavity modes. This scheme can also incorporate the asymmetric
Fano lineshape into the emission spectra of cavities. We show how to obtain
the important parameters of laser cavities based on this formulation. The
proposed approach could be an alternative to other computation schemes
such as the finite-difference-time-domain method for reciprocal cavities.
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1. Introduction

There is significant progress in microlasers and nanolasers [1–10] as the top-down fabrication
technology advances. The geometries and sizes of ultrasmall laser cavities can be well con-
trolled, which makes the fine tuning of mode characteristics such as lasing wavelengths more
accurate and flexible. Nevertheless, it often takes much effort and time to implement active
photonic devices in the subwavelength regime. To save cost and time, the preliminary cav-
ity calculation for performance estimations is often preferred before device fabrications. After
characterization measurements, if the optimization of device structures is necessary, the more
serious modeling has to be carried out. With these demands, a physical and efficient formulation
for the modeling of microcavities and nanocavities is indispensable.

Two common approaches to the resonance modes of microcavities and nanocavities are the
finite-difference-time-domain (FDTD) method [11–14] and complex eigenfrequency method
[15]. Both have their own advantages and disadvantages. The merits of the FDTD method, for
instances, are the easy implementations on the Yee lattice [11], simultaneous spectral searches
for resonance modes with broadband excitations, and the lower memory usage than those of
other computation schemes. On the other hand, some drawbacks of the FDTD method may
bring inconveniences into the cavity modeling. These shortcomings include (1) time-consuming
computations for modes with high quality (Q) factors due to the stability issue from the size of
time steps [12]; (2) poor mesh adaptivity to arbitrary cavity structures; (3) excitation-dependent
outcomes of the mode patterns; and (4) few convenient ways to incorporate arbitrary fre-
quency dispersions of materials into time-domain calculations. Albeit the drawbacks, the FDTD
method has been applied in the modeling of active photonic devices [16–20]. The scheme is par-
ticularly useful when the dynamic properties of lasers, which are not easily conceivable from
other approaches, are of interest.

The complex eigenfrequency method resolves some of the issues in the FDTD method and
is represented as a generalized eigenvalue problem from the source-free Maxwell’s equations:

∇×∇×Ecav(r) =
(ωcav

c

)2
¯̄εr(r,ωcav)Ecav(r), (1)

where c is the speed of light in vacuum; ωcav and Ecav(r) are the complex eigenfrequency
and electric field of the cavity mode; and ¯̄εr(r,ωcav) is the relative permittivity tensor. The
implementation of this generalized eigenvalue problem with the finite-element method (FEM)
[21–23] removes the problem of mesh adaptivity in issue (2). In addition to the FEM, the
eigenvalue problem can be also implemented using the integral-equation method [24–29]. For
issue (3), as an eigenvalue-type approach without sources, the cavity structure itself determines
the mode profiles, and multimode excitations from arbitrary sources are avoided.

The complex eigenfrequency method is not flawless, however. For dispersive cavities, the
eigenfrequency ωcav also comes into play in the relative permittivity tensor ¯̄εr(r,ωcav). Taking
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the dispersion into account implies that the eigenfrequency ωcav should be obtained iteratively
and self-consistently, which is the penalty for issue (4). In addition, the relative permittivity
tensor ¯̄εr(r,ω) needs to be extended to the complex frequency ω . It is not always clear how this
generalization is made theoretically or empirically if the experimental data at real frequencies
are the only reliable sources of dispersions. Also, even though the Q factor is easily calculated
from the real and imaginary parts of ωcav [Q = −Re[ωcav]/2Im[ωcav], where Im[ωcav] < 0 for
the time dependence exp(−iωcavt)], the complex eigenfrequency results in a nonphysical di-
vergent far field due to the complex vacuum wave vector k0 = ωcav/c (Im[k0] < 0) and the
outgoing-wave boundary condition [|exp(ik0r)|r→∞ = exp(−Im[k0]r)|r→∞ → ∞, assuming the
cavity is surrounded by vacuum]. All these issues limit the applicability of the eigenfrequency
method to the modeling of dispersive cavities.

Excitation sources are the origin of many critical issues mentioned above. At the level of clas-
sical electrodynamics, as long as the system loss, including the absorption and radiation ones,
outnumbers the system gain (even slightly), the physically meaningful fields must be gener-
ated by some sorts of sources. For instance, a plane wave in the source-free region is actually
generated by a current sheet somewhere else. The nonphysical divergent far field in the eigen-
frequency method is also due to the absence of sources. In fact, the dispersion effect is easier to
manage if carefully-constructed current sources sinusoidally oscillating at real frequencies are
properly embedded into the cavity.

We present a full frequency-domain formulation for reciprocal microlasers and nanolasers
and demonstrate how to obtain important parameters of laser cavities. The central part of this
approach is a generalized eigenvalue problem which resembles that of self-supporting lasing
modes [15, 30–35] (a set of discrete real frequencies and corresponding threshold gains are
searched in this case). However, unlike the frequency-domain schemes including the eigenfre-
quency method and approach of self-supporting modes, our motivation is the mode expansion
of arbitrary sinusoidal current sources inside the active regions of lasers. The proposed for-
mulation is more advantageous than the conventional schemes in the following respects: (1)
no divergent far fields when compared with the eigenfrequency method because the source is
present; (2) no multimode excitations when compared with the FDTD method because this
approach is a generalized eigenvalue problem inherently; (3) the ability to directly include arbi-
trary frequency dispersions of materials when compared with all the schemes mentioned above
because the frequency ω is real and given in the first place; (4) the straightforward mode ex-
pansion due to a natural orthogonality relation brought by the Lorentz reciprocity; and (5) the
capability of modeling spectral properties of modes, including the asymmetric Fano lineshape
of the emission spectra, which is nontrivial in the eigenfrequency method and approach of self-
supporting modes. These advantages make the formulation an alternative to other computation
schemes such as the FDTD method in the cavity modeling.

The rest of the paper is organized as follows. We first briefly review the reciprocity theo-
rem and introduce the concept of reciprocal cavities and lasers (section 2). The construction
of the formulation is then discussed in detail (section 3 and appendix). We also demonstrate
how to obtain the important parameters of microlaser and nanolaser cavities such as resonance
frequencies, quality factors, threshold gains, and spontaneous emission coupling factors (sec-
tion 4). The application of this formulation to a one-dimensional (1D) Fabry-Perot (FP) cavity
is illustrated as an example (section 5). Additional remarks on the implementation and variation
of the formulation are addressed (section 6), and a conclusion is given at the end (section 7).

2. Reciprocity theorem and reciprocal cavities/lasers

In this section, we briefly introduce the concept of (Lorentz) reciprocity and reciprocal cavi-
ties/lasers. The Lorentz reciprocity plays an important role in the construction of the formula-
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Fig. 1. The schematic diagram of the laser cavity. The active region is denoted as Ωa, and
Ω is an arbitrary region which contains Ωa. Sa and S are the surfaces corresponding to Ωa
and Ω, respectively.

tion. Many of the results in the following sections need modifying if the Lorentz reciprocity
does not hold. We will address the applicability of the formulation.

The schematic diagram of a microlaser or nanolaser cavity is depicted in Fig. 1. The active re-
gion of the laser (might be unconnected) is denoted as Ωa and is embedded in the cavity region,
which could be an open structure and need not have physical boundaries from the surrounding.
Sa is the surface of Ωa (or union of the surfaces from unconnected parts). We consider a cavity
which is characterized by the relative permittivity tensor ¯̄εr(r,ω) but a relative permeability of
unity. We also construct a region Ω which contains Ωa but does not necessarily cover the cavity
region. The surface of Ω is denoted as S.

For two current sources Js,1(r) and Js,2(r) confined in Ωa but vanishing elsewhere, the reci-
procity theorem states that if responses of the material system to any electromagnetic fields are
linear, and the relative permittivity tensor ¯̄εr(r,ω) in the cartesian basis is symmetric inside Ω:

[εr(r,ω)]α ′α = [εr(r,ω)]αα ′ , α,α ′ = x,y,z, ∀ r ∈ Ω, (2)

the fields generated by the respective sources satisfy the following integral identity [36, 37]:
∫

Ωa

dr[E1(r) ·Js,2(r)−E2(r) ·Js,1(r)] =−
∮

S
da · [E1(r)×H2(r)−E2(r)×H1(r)], (3)

where E1(r) and H1(r) are the electric and magnetic fields generated by Js,1(r) alone; and
E2(r) and H2(r) are the counterparts generated by Js,2(r). Note that the symmetric form in
Eq. (2) is not restricted to the cartesian basis. As long as Eq. (2) holds, ¯̄εr(r,ω) is symmetric
in any real orthogonal local bases inside Ω. If ¯̄εr(r,ω) is nonsymmetric, an additional volume
integral over Ω with an integrand proportional to E1(r) · [ ¯̄εr(r,ω)− ¯̄εT

r (r,ω)]E2(r), where the
superscript “T” means transpose, is present at the left-hand side of Eq. (3).

The surface S belongs to a region Ω containing Ωa and therefore encloses Ωa. Let us assume
that far away from the cavity is the isotropic free space or absorptive media/structures. In this
way, the surface integral at the right hand-side of Eq. (3) vanishes as a result of extending
the surface S to infinity, at which the two cross products nearly cancel each other due to the
plane-wave approximation of outgoing waves in the far-field regime, or the fields just turn
exponentially small due to the absorption present at infinity. If other outer spaces can lead to a
vanishing surface integral in Eq. (3), they can also be considered. Under such circumstances,
the general reciprocity theorem in Eq. (3) turns into the Lorentz reciprocity theorem [38]:

∫

Ωa

dr[E1(r) ·Js,2(r)−E2(r) ·Js,1(r)] = 0. (4)
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The Lorentz reciprocity theorem is more restrictive than the general reciprocity theorem be-
cause the relative permittivity tensor has to be symmetric everywhere (Ω is the full space now).

A reciprocal cavity is a cavity to which the Lorentz reciprocity in Eq. (4) is applicable for two
arbitrary current sources confined in Ωa. Practical cavities which exhibit a symmetric permit-
tivity tensor in Eq. (2) everywhere, for example, dielectric spheres, cleaved ridge wavegeuides,
and microdisks (assuming that outside the substrate is the free space), all belong to this type.
For lasers, the nonlinearity such as the optical feedback from the stimulated emission is imper-
missible in the reciprocity theorem. Therefore, we adopt a loosened definition for reciprocal
lasers, by which the effective permittivity tensor dressed by the nonlinearity remains symmet-
ric, and the integral form in Eq. (4) stays valid for two weak current sources (dropping the
perturbation to gain dynamics) inside Ωa.

The Lorentz reciprocity in Eq. (4) is critical to the formulation because it introduces a nat-
ural orthogonality relation between modes and provides a way to distinguish them as well as
extract their magnitudes from an arbitrary source distribution in Ωa (see section 3.2). Its failure
leads to the inapplicability of the proposed formulation to some cavity and laser systems. If the
(effective) permittivity tensor ¯̄εr(r,ω) inside or outside the cavity becomes nonsymmetric and
breaks the Lorentz reciprocity, the formulation should not be applied, though some qualitative
estimations can be still made when the asymmetry is small. The nonsymmetric permittivity ten-
sor ¯̄εr(r,ω) can take place when the time-reversal symmetry is broken. Such examples include
cavities with the magneto-optic effect [39,40] or an external magnetic field [41–45]. Still, most
of the microlasers and nanolasers nowadays remain reciprocal during operation, namely, the
effective permittivity tensors remain symmetric. Thus, this approach can be useful in a wide
range of active photonic devices in the subwavelength regime.

3. Formulation of reciprocal cavities

In the following subsections, we will describe the generalized eigenvalue problem, mode or-
thogonality relation, and dyadic Green’s function for the sources localized in Ωa. We note that
unless fixed by the real device layout, the active region should have a higher (identical) symme-
try group than (to) that of the cavity structure (if there is any) so that the symmetry is preserved.

3.1. Generalized eigenvalue problem

In the frequency domain, the Maxwell’s equations in the presence of sources are

∇×E(r) = iωμ0H(r), (5a)

∇×H(r) =−iωε0 ¯̄εr(r,ω)E(r)+Js(r), (5b)

where E(r) and H(r) are the electric and magnetic fields; ε0 and μ0 are the vacuum permittivity
and permeability, respectively; and Js(r) is the current source. Both the effects of absorption
(cold cavity, but inter-state dipole absorption might be excluded) and gain (warm cavity) can be
incorporated into ¯̄εr(r,ω), depending on the operation condition of the cavity. Also, in Eq. (5a)
and (5b), the real frequency ω is given and can be continuously varied. It is different from the
so-called resonance frequencies of cavity modes, which are a set of discrete real frequencies to
be sought with specific criteria.

After eliminating H(r) in Eq. (5a) and (5b), we obtain the wave equation for E(r)

∇×∇×E(r)−
(ω

c

)2
¯̄εr(r,ω)E(r) = iωμ0Js(r). (6)

We now consider the current sources Js(r) that are only present in Ωa, namely,

Js(r) =
{

A vector field, r ∈ Ωa,
0, otherwise.

(7)
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Fig. 2. The effect of Δεr,n(ω) on the emission spectrum Pn(ω ′). The real part Re[Δεr,n(ω)]
shifts the resonance frequency ωn to ω , while the imaginary part Im[Δεr,n(ω)] compensates
the loss and converts Pn(ω ′) into a delta function centered at ω .

The constraint in Eq. (7) is often physical because the spontaneous emission dipole moments
which trigger the lasing field usually coexist with gain in the active region only. Our goal
is to find a set {js,n(r,ω)} of current sources, which is present only in Ωa and labeled by
index n, for the mode expansion of Js(r) in Eq. (7). Denote the set of electric fields generated
by {js,n(r,ω)} as {fn(r,ω)}. We want to prevent the multi-mode excitations from carelessly-
constructed sources. A solution to this issue is to excite the electric field with a source which is
proportional to the electric field itself in Ωa but vanishes elsewhere, namely, a self-duplicated
vector field in Ωa. Thus, we assign the following ansatz to js,n(r,ω):

js,n(r,ω) =−iωε0Δεr,n(ω)U(r)fn(r,ω), (8a)

U(r) =
{

1, r ∈ Ωa,
0, otherwise,

(8b)

where U(r) is the indicator function for Ωa; and Δεr,n(ω) is a complex parameter. With Eq. (8a),
the wave equation of fn(r,ω) is transformed into a generalized eigenvalue problem:

∇×∇× fn(r,ω)−
(ω

c

)2
¯̄εr(r,ω)fn(r,ω) = iωμ0js,n(r,ω)

=
(ω

c

)2
Δεr,n(ω)U(r)fn(r,ω), (9)

where (ω/c)2Δεr,n(ω) acts as the eigenvalue; and mode quantization indicated by index n is
justified from the source confinement in Ωa, cavity structure, and outgoing-wave boundary con-
dition. Note that fn(r,ω) is not divergent in the far-field zone because it is effectively generated
by a source js,n(r,ω). Once fn(r,ω) is obtained, the corresponding magnetic field gn(r,ω) is
derived from Faraday’s law in Eq. (5a):

gn(r,ω) =
1

iωμ0
∇× fn(r,ω). (10)

The parameter Δεr,n(ω) acquires its frequency dependence when Eq. (9) is solved for dif-
ferent ω’s. Its physical interpretation becomes clear if we rewrite Eq. (9) as

∇×∇× fn(r,ω)−
(ω

c

)2 [
¯̄εr(r,ω)+Δεr,n(ω)U(r) ¯̄I

]
fn(r,ω) = 0, (11)

where ¯̄I is the identity tensor. Equation (11) resembles the source-free wave equation of which
the solution fn(r,ω) oscillates at the real frequency ω , namely, a self-supporting mode. As
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indicated in Fig. 2, the real part Re[Δεr,n(ω)] can be regarded as the average permittivity vari-
ation in Ωa required to shift the original resonance frequency ωn of mode n to the given fre-
quency ω , while the imaginary part Im[Δεr,n(ω)] is related to the necessary gain which com-
pensates the loss and converts the emission spectrum Pn(ω ′) (ω ′ is a dummy variable for the
frequency) into the delta-function spectrum centered at ω [for details about ωn and Pn(ω ′), see
section 4.1]. The self-supporting mode is a bonus of this formulation though the original mo-
tivation is aimed at current sources. We also note that Im[Δεr,n(ω)] has to be negative [in the
convention exp(−iωt)] because it represents gain. The magnitude |Im[Δεr,n(ω)]| is smaller if
the more gain is incorporated into ¯̄εr(r,ω), but Im[Δεr,n(ω)] never turns positive under physical
circumstances. If too much gain is present initially, the stimulated emission would clamp it so
that the steady-state gain still corresponds to a negative imaginary part Im[Δεr,n(ω)].

On the other hand, some current sources are not expandable with the set {js,n(r,ω)}. This
incompleteness is more evident for a homogeneous and isotropic active region characterized by
a scalar permittivity εr,a(ω). In this case, we take the divergence in Eq. (11) for r ∈ Ωa:

[εr,a(ω)+Δεr,n(ω)]∇ · fn(r,ω) = 0, r ∈ Ωa. (12)

Since Δεr,n(ω) �= −εr,a(ω) [otherwise, the fact that ∇×∇× fn(r,ω) ∝ ∇× gn(r,ω) = 0 in
Ωa may lead to discontinuous tangential magnetic fields across Sa, and thus fictitious surface
currents], the divergence of the field fn(r,ω) vanishes in Ωa. Therefore, the corresponding
current source js,n(r,ω) is also divergenceless (solenoidal) in Ωa:

∇ · js,n(r,ω) =−iωε0Δεr,n(ω)∇ · fn(r,ω) = 0, r ∈ Ωa. (13)

From Eq. (13), any current sources confined in Ωa that contribute to volume charge densities
oscillating at ω (nonzero divergence) cannot be fully expanded by the set {js,n(r,ω)} (however,
js,n(r,ω) may result in the surface charge density on Sa). Although real-space charge densities
oscillating around the resonance frequencies of cavity modes are uncommon in typical lasers,
these charge densities, once induced, affect both the near-field and far-field profiles and should
be taken into account. For general reciprocal permittivity tensors in Ωa, the situation becomes
less transparent because the set {js,n(r,ω)} may not be divergenceless. However, from the
lesson of homogeneous and isotropic active region, it is probable that {js,n(r,ω)} does not
span all the source configurations. Therefore, we introduce an analogous set {is,m(r,ω)} of
current sources, where m is the mode index, to complement {js,n(r,ω)}. Similar to js,n(r,ω),
we require is,m(r,ω) to be confined in Ωa only. The corresponding sets of electric and magnetic
fields generated by {is,m(r,ω)} are denoted as {um(r,ω)} and {wm(r,ω)}, respectively, and
they also have to satisfy the outgoing-wave boundary condition. We summarize the construction
of these additional sets in the appendix.

With the sets {js,n(r,ω)} and {is,m(r,ω)}, we expand an arbitrary current source Js(r) con-
fined in Ωa and oscillating at ω as follows:

Js(r) = ∑
n

cnjs,n(r,ω)+∑
m

dmis,m(r,ω), (14a)

where cn and dm are the expansion coefficients. From the superposition principle of linear
systems, the corresponding electric field E(r) and magnetic field H(r) are expressed as

E(r) = ∑
n

cnfn(r,ω)+∑
m

dmum(r,ω), (14b)

H(r) = ∑
n

cngn(r,ω)+∑
m

dmwm(r,ω). (14c)

Our next goal is the extractions of expansion coefficients cn and dm. This step is straightforward
if various modes are orthogonal to each other via a certain form of inner product. We will show
that the Lorentz reciprocity provides such a handy relation.
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3.2. Mode orthogonality

From the Lorentz reciprocity in Eq. (4), we are now in a position to show how a natural orthog-
onality relation between various modes can be derived. With the sets {js,n(r,ω)} and {fn(r,ω)}
constructed in section 3.1, we make the following assignments:

[Js,1(r), E1(r)] = [js,n′(r,ω), fn′(r,ω)] = [−iωε0Δεr,n′(ω)U(r)fn′(r,ω), fn′(r,ω)], (15a)

[Js,2(r), E2(r)] = [js,n(r,ω), fn(r,ω)] = [−iωε0Δεr,n(ω)U(r)fn(r,ω), fn(r,ω)], (15b)

and substitute them into the Lorentz reciprocity theorem in Eq. (4):

−iωε0[Δεr,n′(ω)−Δεr,n(ω)]
∫

Ωa

drfn′(r,ω) · fn(r,ω) = 0. (16)

In Eq. (16), if Δεr,n′(ω) �= Δεr,n(ω), the volume integral of the dot product fn′(r,ω) · fn(r,ω)
must vanish. On the other hand, if a degeneracy exists such that Δεr,n′(ω) = Δεr,n(ω), we can
still utilize the volume integral of the dot product as the inner-product rule to orthogonalize the
modes. Thus, we obtain a natural orthogonality relation for the set {fn(r,ω)} as follows:

∫

Ωa

drfn′(r,ω) · fn(r,ω) = δn′nΛn(ω), (17)

where δn′n is the Kronecker’s delta; and Λn(ω) is the complex normalization constant of
fn(r,ω). We also define an analogous orthogonality relation to Eq. (17) for the set {js,n(r,ω)}:

∫

Ωa

drjs,n′(r,ω) · js,n(r,ω) = δn′nΘn(ω), (18a)

Θn(ω) =−[ωε0Δεr,n(ω)]2Λn(ω). (18b)

where Θn(ω) is the normalization constant of js,n(r,ω).
For the set {is,m(r,ω)}, we also demand a similar orthogonality relation based on the same

inner-product rule:
∫

Ωa

dris,m′(r,ω) · is,m(r,ω) = δm′mΞm(ω), (19)

where Ξm(ω) is the normalization constant of is,m(r,ω). In addition, two current sources, one
from {js,n(r,ω)} and the other from {is,m(r,ω)}, always have to be orthogonal to each other:

∫

Ωa

dris,m(r,ω) · js,n(r,ω) =
∫

Ωa

drjs,n(r,ω) · is,m(r,ω) = 0. (20)

The conditions in Eqs. (18a), (19), and (20) necessitate only one single orthogonality relation
for any basis vector functions from {js,n(r,ω)} and {is,m(r,ω)}. This property, however, stems
from a specifically-constructed set {is,m(r,ω)}, which is summarized in the appendix.

With the orthogonality relations in Eqs. (18a), (19), and (20), we can extract the expansion
coefficients cn and dm in Eq. (14a), (14b), and (14c). The expressions of these coefficients can
help construct the dyadic Green’s function, which is useful in the calculations of spontaneous
emission coupling factors.

3.3. Dyadic Green’s function

For an arbitrary current source Js(r) confined in Ωa, we need to find its mode expansion co-
efficients cn and dm in Eq. (14a) in order to reconstruct the electric field E(r) and magnetic
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field H(r) from Eq. (14b) and (14c), respectively. We first dot product both sides of Eq. (14a)
with the current source js,n′(r,ω) and integrate it over Ωa. With the orthogonality relations in
Eqs. (18a), (19), and (20), only the term corresponding to cn′ at the right-hand side of Eq. (14a)
remains, and we obtain the expression of cn′ as follows:

cn′ =
1

Θn′(ω)

∫

Ωa

drjs,n′(r,ω) ·Js(r). (21a)

With the same procedure but adopting is,m′(r,ω) rather than js,n′(r,ω), we derive the analogous
expression of dm′ :

dm′ =
1

Ξm′(ω)

∫

Ωa

dris,m′(r,ω) ·Js(r). (21b)

For the applications in optics, the spatial profile and far-field pattern of the electric field E(r) are
important. With the expressions of expansion coefficients in Eq. (21a) and (21b), we substitute
them into the expansion series of E(r) in Eq. (14b). After renaming the dummy index n′ (m′)
into n (m) and interchanging the variable r with r′, we then link the electric field E(r) to the
current source Js(r) through the dyadic Green function ¯̄Gee(r,r′,ω):

E(r) =
∫

Ωa

dr′ ¯̄Gee(r,r′,ω)[iωμ0Js(r′)], (22a)

¯̄Gee(r,r′,ω) = ∑
n

fn(r,ω)jT
s,n(r

′,ω)

iωμ0Θn(ω)
+∑

m

um(r,ω)iTs,m(r
′,ω)

iωμ0Ξm(ω)

= ∑
n

fn(r,ω)fT
n (r

′,ω)U(r′)(ω
c

)2 Δεr,n(ω)Λn(ω)
+∑

m

um(r,ω)iTs,m(r
′,ω)

iωμ0Ξm(ω)
. (22b)

The matrix multiplications jT
s,n(r

′,ω)Js(r′) and iTs,m(r
′,ω)Js(r′) in the tensor operation of

¯̄Gee(r,r′,ω) on Js(r′) represent the dot products js,n(r′,ω) · Js(r′) and is,m(r′,ω) · Js(r′), re-
spectively. On the other hand, not every current source can be substituted into Eq. (22a). The
dyadic Green’s function ¯̄Gee(r,r′,ω) in Eq. (22b) is not applicable to the sources which spread
outside the active region Ωa.

We will utilize the expression of the dyadic Green’s function ¯̄Gee(r,r′,ω) in Eq. (22b) to
calculate the spontaneous emission coupling factor in section 4.2.

4. Characteristics of reciprocal cavities

In section 3, we constructed the sets of current sources {js,n(r,ω)}, electric fields {fn(r,ω)},
and magnetic fields {gn(r,ω)} at a given real frequency ω . To further investigate the spectral
properties of these modes, we need to link the calculations at different ω’s together. Through
this connection, we can then define the cavity resonance.

With the field fl(r,ω) of a nondegenerate mode l at ω , the formal way to associate it with
its counterpart fl(r,ω +Δω) at ω +Δω , where Δω is a small frequency difference, is to track
how the field profile evolves from ω to ω +Δω and make a one-to-one link from {fn(r,ω)} to
{fn(r,ω +Δω)}. An easier approach is the connection through eigenvalue Δεr,l(ω), assuming
a continuous and smooth frequency variation. On the other hand, in degenerate cases due to
the cavity symmetry, once a field profile fl(r,ω) in the set {fl′(r,ω)|Δεr,l′(ω) = Δεr,l(ω)} of
degenerate modes at ω (excluding the accidental degeneracy) is chosen, its counterpart fl(r,ω+
Δω) has to satisfy a condition similar to the orthogonality relation in Eq. (17):

∫

Ωa

drfl′(r,ω) · fl(r,ω +Δω) ∝ δl′l . (23)
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Unlike Eq. (17), however, Eq. (23) originates from the symmetry viewpoint even though two
equations coincide with each other at Δω = 0. Note that in degenerate cases, the continuity and
smoothness of Δεr,l(ω) may only provide the group-to-group rather than one-to-one correspon-
dence of modes and are insufficient to uniquely identify a particular mode.

In the following derivations, we will assume that the proper one-to-one connection has been
established for mode l at different frequencies. In this way, we can identify one of these fre-
quencies as its resonance frequency and obtain the mode information from there.

4.1. Resonance frequency, lineshape, quality factor, and threshold gain

With the identification of mode l at each frequency, we look into the frequency dependence of
the power generated by a current source proportional to js,l(r,ω). In this way, the forms of the
current source Js(r) and electric field E(r) are

Js(r) = a(ω)js,l(r,ω) = a(ω)(−iω)ε0Δεr,l(ω)U(r)fl(r,ω), (24a)

E(r) = a(ω)fl(r,ω), (24b)

where a(ω) is the source strength. For a fair comparison between the responses at different
frequencies, we demand a frequency-independent volume integral of |Js(r)|2

∫

Ωa

dr|Js(r)|2 = |a(ω)|2(ε0ω)2|Δεr,l(ω)|2
∫

Ωa

dr|fl(r,ω)|2 ≡ J 2Va, (25)

where J is a real constant; and Va is the volume of the active region. The constraint in Eq. (25)
is the white-noise condition [46] for mode l so that the frequency-dependent strength a(ω) of
Js(r) does not interfere with the intrinsic nature of mode l on the power spectrum. In this way,
the expressions of the square magnitude |a(ω)|2 and power Pl(ω) become

|a(ω)|2 = J 2Va

(ε0ω)2|Δεr,l(ω)|2 ∫Ωa
dr|fl(r,ω)|2 , (26a)

Pl(ω) =−
∫

Ωa

dr
1
2

Re [J∗s (r) ·E(r)] =−|a(ω)|2 ε0ωIm[Δεr,l(ω)]

2

∫

Ωa

dr|fl(r,ω)|2

=
J 2Va

2ε0
Im

[
1

ωΔεr,l(ω)

]
. (26b)

Equation (26b) indicates that the lineshape of the white-noise power is determined by the
term Im{[ωΔεr,l(ω)]−1}. To understand its behavior, we define a frequency ωl such that the
absolute value |ωlΔεr,l(ωl)| is the minimum. As shown in Fig. 3(a), if we plot the locus of
η(ω) ≡ ωΔεr,l(ω) parameterized by ω on the complex η plane, the differential change δη
due to a small frequency variation δω around ω ≈ ωl , when viewed as a two-dimensional (2D)
vector, has to be perpendicular to that of η(ωl). If these two vectors were not perpendicular,
|η(ω)| would have further reduced its magnitude by either moving forward or backward on the
curve. In terms of complex numbers, the illustration in Fig. 3(a) implies

δη
η(ωl)

=−i
δω

(Δωl/2)
, (27)

where Δωl is a parameter that must be real. The presence of imaginary number i in Eq. (27)
indicates a ±π/2 phase change (depending on the sign of δω), namely, the 2D vectors of δη
and η(ωl) on the complex η plane are perpendicular. From Eq. (27) and δη 
 η ′(ωl)δω ,
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Fig. 3. (a) The locus of η(ω) = ωΔεr,l(ω) parameterized by ω on the complex η plane. At
resonance frequency ωl , η(ωl) is closest to the origin of the complex plane. (b) The com-
parison between the Lorentzian and Fano lineshapes. The Fano lineshape is asymmetric
with respect to ωl , and the peak is shifted from that of the Lorentzian.

where η ′(ω) is the frequency derivative of η(ω), we can express the parameter Δωl as

Δωl =−2i
η(ωl)

η ′(ωl)
=−2i[ωlΔεr,l(ωl)]

{
∂ [ωΔεr,l(ω)]

∂ω

∣∣∣∣
ω=ωl

}−1

∈ R. (28)

With Eq. (27), we approximate η(ω) near ωl with the linear expansion in ω −ωl and substi-
tute it into the power spectrum Pl(ω) in Eq. (26b):

η(ω) = ωΔεr,l(ω)≈ ωlΔεr,l(ωl)

[
1− i

(ω −ωl)

(Δωl/2)

]
, (29a)

Pl(ω)≈ J 2Va

2ε0

(Δωl/2)
|ωlΔεr,l(ωl)|

{
− Im[ωlΔεr,l(ωl)]

|ωlΔεr,l(ωl)|
(Δωl/2)

(ω −ωl)2 +(Δωl/2)2

+
Re[ωlΔεr,l(ωl)]

|ωlΔεr,l(ωl)|
(ω −ωl)

(ω −ωl)2 +(Δωl/2)2

}
. (29b)

Equation (29b) indicates that Pl(ω) has a Fano lineshape near ωl (weighted sum of the
Lorentzian centered at ωl and its Hilbert transformation). As shown in Fig. 3(b), this line-
shape is asymmetric with respect to ωl . In contrast to the Lorentzian, which has a maxi-
mum at ωl , the maximum of Fano lineshape is blueshifted (Re[ωlΔεr,l(ωl)] > 0) or redshifted
(Re[ωlΔεr,l(ωl)]< 0). Although the asymmetry on the power spectrum is derived based on the
white-noise source, the phenomenon is generic to most frequency-dependent sources.

If |Re[ωlΔεr,l(ωl)]| � |Im[ωlΔεr,l(ωl)]| (valid for most cavities with high Q factors), the
physical interpretations of ωl and Δωl are more evident. In this case, the frequency ωl is nearly
the peak frequency of Pl(ω). Therefore, we may view ωl as the resonance frequency of mode l
and generalize it to the cases of asymmetric lineshapes. The electric field fl(r,ωl) at ωl is
then the field profile of mode l. Correspondingly, we can identify the parameter Δωl as the
full-width-at-half-maximum (FWHM) linewidth of the approximate Lorentzian. The (cold- or
warm-cavity) quality factor Ql of mode l is defined as the ratio between ωl and Δωl :

Ql =
ωl

Δωl
=

i
2Δεr,l(ωl)

∂ [ωΔεr,l(ω)]

∂ω

∣∣∣∣
ω=ωl

. (30)

Recall that Δεr,l(ωl) is the permittivity variation required for the self-supporting mode l at ωl .
With a homogeneous and isotropic active region [ ¯̄εr(r,ω)|r∈Ωa = εa(ω) ¯̄I] and the cold-cavity
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condition [inter-state dipole absorption excluded from εa(ω)], the threshold gain gth,l is

gth,l =−2
(ωl

c

)
Im

[√
εa(ωl)+Δεr,l(ωl)−

√
εa(ωl)

]
≈−

(ωl

c

) Im[Δεr,l(ωl)]√
Re[εa(ωl)]

. (31)

4.2. Spontaneous emission coupling factor and Purcell effect

The spontaneous emission coupling factor βl is defined as the ratio of the spontaneous emission
power into mode l over the total spontaneous emission power. Classically, various spontaneous
emission events are generated by uncorrelated dipoles. Therefore, the spontaneous emission
current source Jsp(r,ω) per unit square-root energy [46] at ω satisfies the following relation:

〈
J∗sp,α ′(r′,ω)Jsp,α(r,ω)

〉
= δ (r′ − r)∑

c,v
Dcv(r,ω) j∗sp,cv,α ′(ω) jsp,cv,α(ω), (32)

where α,α ′ = x,y,z; Dcv(r,ω) is the position-dependent emitter density per unit energy due to
transitions between states (bands) c and v, which includes the information of state occupations
and vanishes for r /∈ Ωa; jsp,cv(ω) is the microscopic source responsible for the spontaneous
emission; 〈. . .〉 means the ensemble average; and overline means averages or expectations of
other types such as crystal symmetries. For dipole transitions, the source jsp,cv(ω) is

jsp,cv(ω) =−2iωqdcv(ω), (33)

where qdcv(ω) is the dipole moment; and a factor of two in Eq. (33) is due to the con-
sistent usages between the harmonic sum and phasor notation (dcv(ω)exp(−iωt) + c.c. =
Re[2dcv(ω)exp(−iωt)]).

With Eq. (32), the spontaneous emission rate rsp(ω) per unit energy is expressed as

rsp(ω) =− 1
h̄ω

∫

Ωa

dr
〈

1
2

Re[J∗sp(r,ω) ·E(r,ω)]

〉

=− 1
h̄ω

∫

Ωa

∫

Ωa

drdr′
〈

1
2

Re[J∗sp(r,ω) · ¯̄Gee(r,r′,ω)iωμ0Jsp(r′,ω)]

〉

=
μ0

2h̄ ∑
(α,α ′),(c,v)

∫

Ωa

drDcv(r,ω)Im
{
[Gee(r,r,ω)]α ′α j∗sp,cv,α ′(ω) jsp,cv,α(ω)

}
, (34)

where E(r,ω) is the electric field generated by Jsp(r,ω); and the factor of 1/(h̄ω) is to convert
the power into rate. We then substitute the expansion of the dyadic Green’s function ¯̄Gee(r,r,ω)
in Eq. (22b) into Eq. (34) and obtain

rsp(ω) = ∑
n

rsp,n(ω)+∑
m

r̃sp,m(ω), (35a)

rsp,n(ω) =
1

2ε0
∑
(c,v)

∫

Ωa

dr
Dcv(r,ω)

h̄ω
Im

{
[j∗sp,cv(ω) · fn(r,ω)][jsp,cv(ω) · fn(r,ω)]

[ωΔεr,n(ω)]Λn(ω)

}
, (35b)

r̃sp,m(ω) =
1
2 ∑
(c,v)

∫

Ωa

dr
Dcv(r,ω)

h̄ω
Im

{
[j∗sp,cv(ω) ·um(r,ω)][jsp,cv(ω) · is,m(r,ω)]

iΞm(ω)

}
, (35c)

where rsp,n(ω) is the spontaneous emission rate per unit energy into mode n in {fn(r,ω)}; and
r̃sp,m(ω) is the counterpart into mode m in {um(r,ω)}.
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The total spontaneous emission rate Rsp, spontaneous emission rate Rsp,n into mode n in
{fn(r,ω)}, and the counterpart R̃sp,m into mode m in {um(r,ω)}, are the integrations of rsp(ω),
rsp,n(ω), and r̃sp,m(ω) over photon energy h̄ω , respectively:

Rsp =
∫ ∞

0
d(h̄ω)rsp(ω) = ∑

n
Rsp,n +∑

m
R̃sp,m, (36a)

Rsp,n =
∫ ∞

0
d(h̄ω)rsp,n(ω), (36b)

R̃sp,m =
∫ ∞

0
d(h̄ω)r̃sp,m(ω), (36c)

and the spontaneous emission coupling factor βl into mode l in {fn(r,ω)} is written as

βl =
Rsp,l

Rsp
. (37)

For a single dipole [see Eq. (33)] due to a two-level system (the occupied excited state |c〉,
empty ground state |v〉, and transition frequency ωcv) and located at position rs ∈ Ωa, namely,

Dcv(r,ω) = δ (r− rs)δ (h̄ω − h̄ωcv), rs ∈ Ωa, (38)

the spontaneous emission rate Rsp,l into mode l in Eq. (36b) becomes

Rsp,l =
2ωcv

ε0h̄
Im

{
[qd∗

cv · fl(rs,ωcv)][qdcv · fl(rs,ωcv)]

[ωcvΔεr,l(ωcv)]Λl(ωcv)

}
. (39)

Equation (39) is indicative of the Purcell effect on a single dipole. The spatial enhancement
comes from the modal strength fl(rs,ωcv) at position rs, and spectral enhancement originates
from the lineshape effect from 1/[ωΔεr,l(ωcv)] if ωcv is sufficiently close to ωl . To compare it
with the counterpart Wsp,l from Fermi’s Golden rule (Lorentzian density of states of mode l):

Wsp,l =
2π
h̄

∣∣∣∣qdcv · Êl(rs)

2

∣∣∣∣
2
(Δωl/2)

π h̄
1

(ωcv −ωl)2 +(Δωl/2)2 , (40)

where Êph,l(rs) is the single-photon field of mode l, we rewrite Rsp,l in Eq. (39) with a few
simplifications. First, for ωcv ≈ ωl , the fastest-varying part with respect to ωcv −ωl is the fac-
tor 1/[ωcvΔεr,l(ωcv)]. Except for this factor, we replace ωcv with ωl in other parts of Rsp,l .
Second, if we set Λl(ωl) to a positive real number and assume that the phase of fl(r,ωl) does
not vary rapidly in Ωa (except for ±π jumps near nodes or nodal surfaces), fl(r,ωl) is close
to a real vector field in Ωa, namely, f∗l (r,ωl) ≈ fl(r,ωl) for r ∈ Ωa. Third, we assume that the
asymmetry of the lineshape is minor and only keep the symmetric Lorentzian. With these sim-
plifications, the form of Rsp,l is reduced to that of Wsp,l in Eq. (40) with the following connection
between the single-photon field Êl(rs) and mode profile fl(rs,ωl):

Êl(rs) =

√
2h̄ωl

ε0

fl(rs,ωl)√−Im[Δεr,l(ωl)]QlΛl(ωl)
. (41)

5. One-dimensional Fabry-Perot cavity

To see if the proposed formulation leads to reasonable outcomes, we apply it to a one-
dimensional Fabry-Perot cavity, of which many analytical or approximate properties are known.
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Fig. 4. (a) The layout of the 1D FP cavity. The active region has the same permittivity as
that (εc) of the whole cavity. (b) The resonance lineshapes of various cavity modes with
even or odd electric fields when εc = 12.25. The lineshape of each mode closely resembles
a Lorentzian near its resonance frequency.

The structure of the FP cavity is shown in Fig. 4(a). The length Lc of the cavity is 5 μm, and the
counterpart La of the active region is 2 μm. The cavity starts at z=−Lc/2 and ends at z= Lc/2,
and is uniform in the x-y plane. The active region is evenly distributed in the central part of the
cavity, and outside it are two passive regions with identical lengths Lp = 1.5 μm. The relative
permittivity of the whole cavity, including the active and passive regions, is εc (no frequency
dispersion). We only consider modes which are uniform in the x-y plane. In this way, the cavity
modes can be classified based on whether their electric fields are even or odd along the z axis.
The free space outside the cavity is filled with air, of which the relative permittivity is unity. We
will focus on the spectral properties such as resonance frequencies and lineshapes of modes.

The field profiles of the 1D cavity are composed of forward- and backward-propagating
waves with (complex) propagation constants in the active region (symmetric or antisymmetric
combination) and passive regions, and outgoing waves in the free space. After matching the
boundary conditions at z=±La/2 and z=±Lc/2, the permittivity variation Δεr,n(ω) of mode n
satisfies the transcendental equation:

1 =±eika,nLa

[
ra,p + rp,fse2ikpLp

1+ ra,prp,fse2ikpLp

]
, (42a)

ka,n =
(ω

c

)√
εc +Δεr,n(ω), kp =

(ω
c

)√
εc, (42b)

ra,p =

√
εc +Δεr,n(ω)−√

εc√
εc +Δεr,n(ω)+

√
εc
, rp,fs =

√
εc −1√
εc +1

, (42c)

where + (−) is the sign for even (odd) modes, ka,n is propagation constant of mode n in the
active region while kp is that of the passive region; and ra,p and rp,fs are the reflection coefficients
when a plane wave is normally incident from the active region to passive region, and from
passive region to free space (fs) filled with air, respectively. The permittivity variation Δεr,n(ω)
is obtained by self-consistently solving the transcendental equation in Eq. (42a) at different
ω’s. Setting the relative permittivity εc = 12.25, we show the white-noise lineshapes of various
FP modes [a common current parameter J for all modes in Eq. (26b)] in Fig. 4(b). Since the
modes exhibit high enough quality factors, their lineshapes resemble symmetric Lorentzians
near their resonance frequencies.

For this 1D cavity, the resonance frequency ωn, quality factor Qn, and the threshold gain gth,n
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Table 1. The Comparison of h̄ωn, Qn, and gth,n between the Theoretical and FP Estimations

n 1 2 3 4 5 6
mn 38 39 40 41 42 43
parity even odd even odd even odd
h̄ωn (Theory, eV) 1.3488 1.3842 1.4196 1.4552 1.4907 1.5261
h̄ωn (FP, eV) 1.3487 1.3842 1.4196 1.4551 1.4906 1.5261
Qn (Theory) 101.46 104.36 106.91 109.38 112.33 115.00
Qn (FP) 101.55 104.22 106.90 109.57 112.24 114.91
gth,n (Theory, cm−1) 5962.40 5746.66 5875.75 6008.63 5800.37 5802.59
gth,n (FP, cm−1) 5951.12 5765.97 5877.87 5988.41 5813.13 5814.62
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Fig. 5. The spectral characteristics of the mode at h̄ω3 = 1.42 eV. (a) The square magni-
tude of the mode profile. The pattern in the active region shows the amplification due to
Im[Δεr,3(ω3)]. (b) The locus of h̄η(ω) = h̄ωΔεr,3(ω) on the complex h̄η plane. The real
part Re[Δεr,3(ω3)] = 0.00256 indicates a slight blueshift from ω3.

of mode n can be estimated from the nature of a FP resonator and represented as [47–49]

ωn ≈ mn
πc√
εcLc

, (43a)

1
Qn

≈ vg

ωnLc
ln

(
1

|rp,fs|2
)
=

2
mnπ

ln

(√
εc +1√
εc −1

)
, (43b)

gth,n ≈ 1
Γz,nLc

ln

(
1

|rp,fs|2
)
=

2
[1± sinc(mnπLa/Lc)]La

ln

(√
εc +1√
εc −1

)
, (43c)

where mn is the number of standing waves of mode n in the cavity; vg is the group velocity of
the wave in the cavity and is identical to the phase velocity (c/

√
εc) in this case; and Γz,n =

(La/Lc)[1± sinc(ωnLa/c)] is the longitudinal confinement factor [+ (−) for even (odd) modes;
and sinc(x) = sin(x)/x]. The quantization of ωn in Eq. (43a) is due to an integral number of
standing waves in the cavity region while Qn in Eq. (43b) is estimated from the fractional loss
of the energy due to the power leakage at the two outputs in a round-trip period [47]. The
threshold gain gth,n in Eq. (43c) is obtained from the round-trip balance condition, taking into
account the effects of La �= Lc and the standing-wave pattern, as described by the expression of
the longitudinal confinement factor Γz,n [48]. In Table 1, we show the theoretical estimations of
h̄ωn, Qn, and gth,n and their FP counterparts from Eq. (43a) to (43c). The spectral parameters
h̄ωn, Qn, and gth,n obtained from these two different approaches agree well. Therefore, we
believe that the proposed approach has grasped the essential points of the cavity modeling.

#152167 - $15.00 USD Received 1 Aug 2011; revised 18 Sep 2011; accepted 27 Sep 2011; published 10 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19,  No. 22 / OPTICS EXPRESS  21131



1.1 1.2 1.3 1.4 1.5
0

1

2

3

Li
ne

sh
ap

e 
(a

.u
.)

Photon energy (eV)

c=3.0625

c=12.25
(a) Even modes

-2 -1 0 1 2
0

2

4

6

8
0

2

4

6

8

10

Passive 
region

Passive 
region

Passive 
region

(b)

c=12.25

Sq
ua

re
 m

ag
ni

tu
de

 (a
.u

.)

Position z ( m)

Passive 
region

Active region

c=3.0625
Active region

Fig. 6. (a) The white-noise lineshapes of two even modes with εc = 3.0625 and εc = 12.25,
respectively. The mode corresponding to εc = 3.0625 has the more asymmetric lineshape.
(b) The mode profiles (square magnitudes) of the two even modes with εc = 3.0625 and
εc = 12.25, respectively. The more significant field amplification in the active region with
εc = 3.0625 indicates the more leaky cavity in this case.

Figure 5(a) shows the square field magnitude of the even mode at a resonance photon energy
of about 1.42 eV (n = 3 in Table 1). In addition to the standing-wave pattern of typical FP
modes, the effect of the permittivity variation Δεr,3(ω) can be observed in the active region
(|z| < 1 μm). The growing envelop of the mode profile toward both ends of the active region
indicates that the amplification in the active region compensates the radiation loss at two outputs
of the cavity. Figure 5(b) shows the locus of h̄η(ω) = h̄ωΔεr,3(ω) on the complex h̄η plane.
The permittivity variation Δεr,3(ω3) at resonance is about 0.00256-0.286i. Although the real
part of the permittivity variation is much lower than the imaginary part in magnitude, this
small but positive number indicates that the white-noise lineshape of this FP mode is a little bit
asymmetric, and its peak photon energy is slightly blueshifted from h̄ω3 = 1.42 eV.

To make the phenomenon of asymmetry more significant, we lower the relative cavity per-
mittivity to one quarter of its original value (εc = 3.0625) and show the lineshape of an even
mode l (solid black) in Fig. 6(a) (h̄ωl = 1.281 eV). For comparison, we also show the line-
shape of an even mode l′ (dashed red) with a close resonance photon energy when εc = 12.25
(h̄ωl′ = 1.278 eV). The square magnitudes of the mode profiles corresponding to the two
cases are shown in Fig. 6(b). The lower relative cavity permittivity makes the radiation loss
larger. Therefore, the quality factor of mode l is lower than that of mode l′ (Ql = 21.52 ver-
sus Ql′ = 96.34). The larger radiation loss of mode l also leads to the more rapid field growth
in the active region, as shown in Fig. 6(b). Usually, the asymmetry on the lineshape is more
significant in the more lossy or leaky cavities. From Fig. 6(a), the asymmetry on the line-
shape of mode l is indeed more prominent than that of l′. This behavior is also reflected in the
more significant real part of the permittivity variation for mode l at its resonance frequency
[Δεr,l(ωl) =−0.0733−0.359i versus Δεr,l′(ωl′) =−0.00190−0.311i]. In addition, a plateau-
like feature takes place between photon energies 1.4 to 1.45 eV, which even goes beyond the
applicability of Fano lineshape in Eq. (29b).

6. Additional remarks

A practical issue is how to numerically implement the computation of the mode profiles. We
focus on the set {fn(r,ω)} and show a generic computation domain based on the FEM in Fig. 7.
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Fig. 7. The generic computation domain for the numerical implementation of the formu-
lation. PMLs are inserted in the inner sides of the computation domain while the outer
boundaries of the computation domain are set to PECs or PMCs.

Since we require the outgoing-wave boundary condition for the modes, perfect-matched lay-
ers (PMLs) are inserted in the inner sides of the computation domain to avoid unnecessary
reflections. With fields significantly attenuated inside PMLs, the boundary conditions corre-
sponding to the perfect electric conductor (PEC) or perfect magnetic conductor (PMC) can be
imposed at the outer boundaries of the computation domain. The generalized eigenvalue prob-
lem is then implemented in an analogous numerical scheme to the mode calculations of cavities
with the outer PEC or PMC boundaries. The only difference is that it is the permittivity vari-
ation Δεr,n(ω) rather than the eigenfrequency that is to be sought. The construction should be
applicable to the modeling of most laser cavities as long as the Lorentz reciprocity holds.

The computation time is also critical in scientific computations. The proposed formulation
is based on a generalized eigenvalue problem solved at each sampling frequency. One can
speed up the calculations with (1) efficient solvers for generalized eigenvalue problems, and (2)
fewer frequency samplings. While (1) depends on details of solver implementations, (2) can
be often improved with suitable estimation schemes. For example, the search for the resonance
frequency ωl of mode l is equivalent to the minimization of the goal function |ωΔεr,l(ω)|2 with
respect to frequency ω . The convergence to the target frequency can be effective and robust
using proper schemes such as quasi-Newton methods or conjugate gradient method.

Another issue is the ansatz of the current source. We may alternatively write the source as
js,n(r,ω) =−iωε0γnU(r) ¯̄T (r,ω)fn(r,ω), where γn is related to the eigenvalue; and ¯̄T (r,ω) is
a symmetric tensor in the cartesian basis. The orthogonality relations take the form of volume
integrals of fT

n′(r,ω) ¯̄T (r,ω)fn(r,ω) and jT
s,n′(r,ω) ¯̄T−1(r,ω)js,n(r,ω) in Ωa. As an example, we

can use ¯̄T (r,ω) = ¯̄εr(r,ω) and directly set is,m(r,ω)∝ U(r) ¯̄ε−1
r (r,ω)∇Φm(r,ω) [Φm(r,ω) is a

scalar function vanishing at r ∈ Sa] without the projection process (see appendix). However, in
this case, the physical interpretation of γn related to the eigenvalue is less clear, and we should
not pursue the related formulation here.

7. Conclusion

We have presented a frequency-domain approach to reciprocal microlasers and nanolasers. The
motivation of the approach is the mode expansion of arbitrary current sources in the active re-
gion. The proposed formulation can take the frequency dispersion of materials into account and
avoid the effect of multimode excitation. We have shown how to obtain the important spectral
parameters of cavity modes using this approach, and demonstrated that the asymmetric Fano
lineshape comes into play naturally in this formulation. With the constructed dyadic Green’s
function, we also derive the spontaneous emission coupling factor and Purcell effect on a single
dipole. This approach may be adopted as an alternative to other computation schemes such as
the FDTD method.
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Appendix: Construction of Complementary Source Set {is,m(r,ω)}
The set {is,m(r,ω)} is constructed to complement the set {js,n(r,ω)}. In a homogeneous and
isotropic active region, we may set the source is,m(r,ω) curl-free [is,m(r,ω) ∝ U(r)∇φ(r),
where φ(r) is a scalar function] in Ωa to complement the divergenceless source js,m(r,ω). For
general reciprocal active regions, we generalize this idea and write is,m(r,ω) as

is,m(r,ω)≡−iωε0

∫

Ωa

dr′ ¯̄P(c)(r,r′,ω)∇′Φm(r′,ω), (44)

where Φm(r,ω) is a scalar function; and ¯̄P(c)(r,r′,ω) is the projection operator which elimi-
nates the component spanned by {js,n(r,ω)} from the current source present in Ωa only:

¯̄P(c)(r,r′,ω) = δ (r− r′)U(r′) ¯̄I−∑
n

js,n(r,ω)jT
s,n(r

′,ω)

Θn(ω)
. (45)

The ansatz in Eq. (44) makes {is,m(r,ω)} orthogonal to {js,n(r,ω)}, as required in Eq. (20).
The continuity equation relates is,m(r,ω) to corresponding charge density ρm(r,ω):

∇ · is,m(r,ω) = iωρm(r,ω). (46)

To construct a generalized eigenvalue problem for Φm(r,ω), we write ρm(r,ω) as

ρm(r,ω) = ε0

(ω
c

)2
Δκr,m(ω)U(r)Φm(r,ω), (47)

and substitute the expressions in Eqs. (44) and (47) into Eq. (46):

−∇ ·
[∫

Ωa

dr′ ¯̄P(c)(r,r′,ω)∇′Φm(r′,ω)

]
=
(ω

c

)2
Δκr,m(ω)U(r)Φm(r,ω), (48)

where (ω/c)2Δκr,m(ω) is the eigenvalue to be obtained. With the extra requirement Φm(r,ω) =
0,r ∈ Sa, one can show that the orthogonality between the two current sources is,m′(r,ω)
and is,m(r,ω) [see Eq. (19)] is indeed satisfied. Once is,m(r,ω) is obtained, the electric
field um(r,ω) and magnetic field wm(r,ω) are then calculated through the wave equation and
Faraday’s law:

∇×∇×um(r,ω)−
(ω

c

)2
¯̄εr(r,ω)um(r,ω) = iωμ0is,m(r,ω), (49a)

wm(r,ω) =
1

iωμ0
∇×um(r,ω). (49b)

A significant simplification can be made with a homogeneous and isotropic active region. In
this case, it can be shown that the set {js,n(r,ω)} is automatically orthogonal to U(r)∇Φm(r)
[Φm(r,ω) = 0 for r ∈ Sa] through the inner product in Eq. (20). In this case, Eq. (48) turns into
the form of Schrodinger’s equation with the infinite potential barrier outside Ωa

−∇ [U(r)∇Φm(r,ω)] =
(ω

c

)2
Δκr,m(ω)U(r)Φm(r,ω), Φm(r,ω) = 0, r ∈ Sa, (50)

and the source is,m(r,ω) =−iωε0U(r)∇Φm(r,ω) becomes curl-free in Ωa.
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