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Microwave absorption in the cores of Abrikosov vortices pinned by artificial insulator inclusion
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The spectrum of core excitations of the Abrikosov vortex pinned by a dielectric inclusion or nanoholes the
size of the coherence length is considered using the Bogoliubov-deGennes equations beyond the semiclassical
approximation. While the lowest excitation, minigap, in the unpinned (or pinned by a metallic defect) vortex
is of the order of �2/EF , it becomes of the order of the superconducting gap � (EF is Fermi energy). The
reconstruction of the quasiparticle excitations’ spectrum has a significant impact on optical properties and on the
tunneling density of states. We calculate the absorption amplitude and point out that, while in scanning tunneling
microscopy the energy gap �DOS is between a quasiparticle state with angular momentum μe = μ0 > 1/2 and
quasihole with μh = −μ0, the microwave absorption gap, �dir, is between the states with μe = μh ± 1. It is shown
that �dir > �DOS. The large minigap might play a role in magneto-transport phenomena broadly associated with
the “superconductor-insulator” transition in quasi-two-dimensional systems in which small insulating inclusions
are generally present.
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I. INTRODUCTION

A distinctive remarkable feature of a superconducting
state, a quantum mechanical macroscopic coherent state, is
its rigidity.1 This robust rigidity (even a certain amount of
nonmagnetic impurities does not spoil this feature due to
the Anderson theorem) leads to the absence of dissipation.
This is a result of the energy gap � (of the order of kBTc) in
the spectrum of excitations of the many-body system around
the Fermi level observed early on both in measurements of
microwave absorption2 (even before its BCS theory3) and of
tunneling density of states4 (DOS).

Unfortunately, the magnetic field always destroys this prop-
erty. In type II superconductors it creates Abrikosov vortices
with cores of radius ξ (coherence length), in the center of which
the superfluid density vanishes due to a nonzero vorticity.5 This
feature is of topological nature and therefore unavoidable. In
the vortex core center the material resembles a normal metal in
the sense that the spectrum of the fermion excitations is almost
continuous. In fact, the spectrum is discrete since the charge
±e quasiparticles are “confined” by Andreev reflection inside
the vortex core with typically small interlevel spacing and the
minimal excitation (the minigap in DOS) �DOS of the same
order. Theoretically the core excitation spectrum of unpinned
vortices in clean s-wave superconductors was calculated a long
time ago6,9 using the Bogoliubov-deGennes equations (BdG).
It is linear, Eμ = μ�2/EF , as a function of the half-integer
angular momentum μ = 1/2,3/2, . . .. Therefore the minimal
excitation, �DOS = �2/EF , occurs at the smallest possible
angular momentum μ0 = 1/2 and is much smaller than �. The
calculation (valid for not very large μ and zero temperature)
was later improved (in particular, made self-consistent10,11)
and generalized in various directions to include higher angular
momenta, d-wave pairing12 and vortex line curvature.11

The influence of the core excitations (Andreev bound states)
on local DOS was first observed in the clean superconductor
NbSe2 using scanning tunneling spectroscopy (STM).13 Re-
cent developments of the STM technique allow identification

of the core states in a wide variety of materials.14 The core
excitations lead to dissipation when the vortices move or
vibrate. The dynamics of the vortex motion, very important for
applications,5 depends therefore essentially on the excitation
spectrum of the vortex core.

The above theories considered unpinned vortices although
vortices are seldom free in real superconductors. Usually they
are weakly pinned by spatial inhomogeneities. It is expected
that the spectrum of a vortex pinned on metallic defects is not
modified significantly due to the proximity effect. However,
in addition to inhomogeneities, superconducting material can
also tolerate small insulating inclusions and even holes. In fact,
an early method to ensure pinning of vortices was irradiation
that creates such an insulating columnar defect.15 Recently a
more efficient method, the ultrafast laser and electron-beam
lithography, was realized experimentally in thin films to
produce arrays of dielectric inclusions or holes.16,17 It has an
advantage over the randomly distributed intrinsic or columnar
defects since the pinning centers can be periodically arranged
into an array. An even more important feature of the artificial
pinning is that the diameter of the hole can be made of the
order of the coherent length.17 In these cases the effect on the
core excitation spectrum might be stronger.

Recently, Melnikov et al.18 initiated the study of the
spectrum of quasiparticles of a vortex pinned by columnar
defects of a radius smaller than the coherence length using
the semiclassical approach developed earlier in Ref. 19. For
excitations with a large momentum perpendicular to the
magnetic field, k⊥, they found an indication that, even when
the radius of the columnar defect is as small as R = 0.1ξ , the
minigap becomes of the order � rather than �2/EF . More
specifically, states with a small impact parameter b = μ/k⊥
have energy of the order � (asymptotically E(b → 0) = �);
then at larger angular momentum the energy of the bound state
decreases linearly. When the impact parameter approaches
R, the energy abruptly decreases (infinite slope) signaling
the breakdown of the method at b = R. It looks like this

134521-11098-0121/2011/84(13)/134521(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.134521


ROSENSTEIN, SHAPIRO, DEUTCH, AND SHAPIRO PHYSICAL REVIEW B 84, 134521 (2011)

decrease is intercepted (just before the breakdown) by the
linear behavior E(b) = μb�/ξ characteristic to the unpinned
vortex spectrum.6,9 The excitation energy at the intercept is still
larger than �DOS = �2/EF , however, the minimum is beyond
the semiclassical approximation applicability region and one
might worry about the quantitative result. Qualitatively this
allowed them to conclude that one enhances the minigap by
placing an insulator, albeit as thin as the columnar defect.
If one was to address the dramatic increase of the minigap
experimentally, one had to consider all the values of k⊥ < kF

including the small ones. This necessarily requires calculations
beyond the semiclassical approximation.

In the present note we ascertain, by solving the BdG equa-
tions numerically, that the artificial pinning by an array of holes
changes dramatically the excitation spectrum: While the mini-
gap, that in the spectrum of the unpinned vortex (or captured
by a metallic defect) is of order �2/EF , it becomes of the order
�. We consider arbitrary values of the in-plane wave vector k⊥
and an arbitrary inclusion radius R for both the quasiparticle
branch Ee(μ) and the quasihole branch, Ee(μ). The results are
in agreement with the semiclassical approximation18 within
its range of applicability. It is emphasized that the lowest
Andreev bound state appears at elevated angular momentum
μe = μ0 > 1/2. The reconstruction of the spectrum of the
quasiparticle excitations has a most significant impact on the
optical properties and the tunneling density of states. While
in STM the energy gap is between a quasiparticle state with
angular momentum μ0 and a quasihole with −μ0, �DOS =
Ee(μ0) − Eh(−μ0), the microwave absorption gap is between
the states with μe = μh ± 1, �dir = Ee(μ0) − Eh(μ0 ± 1) for
circular polarizations. It is shown that generally �dir > �DOS.
The absorption intensity increases quadratically with k⊥.

II. THE BOGOLIUBOV-DE GENNES EQUATIONS FOR A
SINGLE VORTEX

We start with the Bogoliubov-de Gennes equations in the
operator matrix form for the BdG “spinor”:5

(
Ĥ �

�∗ −Ĥ ∗

) (
u

v

)
= E

(
u

v

)
, (1)

where E is the energy of the BdG quasiparticles and

Ĥ = 1

2m
�2 − EF ; � = − ih̄∇ − e

c
A. (2)

The single vortex order parameter for a rotational symmetric
single vortex, � = |�(r)|e−iϕ , where r,ϕ are the polar co-
ordinates in the x-y plane. The vector potential A has only
the azimuthal component Aϕ(r) and in the London gauge
consists of the singular part As

ϕ = h̄c/2er and the regular
part of the vector potential that can be neglected for the large
Ginzburg-Landau parameter5 κ = λ/ξ .

Using the well-known Ansatz5 for the excitation amplitude
in the form,

(
u

v

)
=

(
f+(r)ei(μ−1/2)ϕ

f−(r)ei(μ+1/2)ϕ

)
eikzz, (3)

for the half-integer “angular momentum” μ, and substituting
it into Eq. (1), one obtains the following one-dimensional
equation for the spinor f :[(

γH0 |�|
|�| −γH0

)
− γμ

r2

](
f+
f−

)
= Eμ,kz

(
f+
f−

)
. (4)

The operator

H0 = −1

r

∂

∂r

(
r

∂

∂r

)
− k2

⊥ + μ2 + 1/4

r2

contains k2
⊥ ≡ k2

F − k2
z . ξ is the unit of length and γ = �∞/

4EF , ξ = vF /�∞. The bulk energy gap, �∞, will be units of
energy. In principle, the spatial distribution of the order param-
eter �(r) = �(r)/�∞ should be determined self-consistently
(see Ref. 11), however, it was shown9–11 that a simple
approximation,

�free(r) = r√
r2 + 1

, (5)

provides a sufficiently accurate description of the order
parameter for the free (unpinned) vortex. This is consistent
with the solution of the Ginzburg-Landau (GL) equations.

The spectrum of the quasiparticles (Ee
μ,kz

> 0) of these
equations for the unpinned vortex can be simply summarized
by an approximate universal formula for positive μ found by
Clinton:7

Ee
μ,kz

= �(μ/k⊥). (6)

The system possesses the following symmetries. The magnetic
field breaks the time-reversal symmetry T , however, the equa-
tions are invariant under combined CT: u → v∗,v → −u∗.
Each quasiparticle state is accompanied by a corresponding
quasihole state with energy,

Eh
μ,kz

= −Ee
−μ,kz

. (7)

Note that the sign of the angular momentum is reversed and
there is no symmetry between positive and negative angular
momentum quasiparticles (holes) since vorticity creates chi-
rality of the core excitations. An additional obvious reflection
symmetry is Eμ,kz

= Eμ,−kz
. In the presence of the insulator

inclusion or hole of the radius R we assume that the order
parameter profile, Eq. (5), is still accurate for r > R. Therefore
there are two regions: the insulator inclusion, 0 � r < R,

where the BdG wave function is strictly zero and the tail
of the vortex order parameter in which the order parameter
is suppressed near the insulator and approaches the uniform
superconductor value at infinity. To find the BdG excitations lo-
calized near the vortex, one has to solve Eq. (4) using boundary
conditions for BdG localized at the vortex core wave functions,(

f+
f−

)
r=R

=
(

f+
f−

)
r→∞

= 0, (8)

with the order parameter found self-consistently. In BCS with
phonon coupling g one obtains

�(r) = g
∑

Eμ,k⊥<h̄ωD

uμ,k⊥v∗
μ,k⊥(1 − 2fF (Eμ,k⊥/T )), (9)

where ωD is the Debye frequency and fF is the Fermi-Dirac
distribution function. Qualitatively the spectrum consists of
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several Andreev bound states and a continuum of states above
the gap. If there is no magnetic field; there is continuum only
resulting in homogeneous condensate �(r) = �∞. Under
magnetic field, neglecting the quantum effect of emergence
of the discrete bound state coming from the continuum, one
would obtain the mean-field solution of the GL equations
with effective ξ (T ) [Eq. (5)]. The effect of bound states is
rather small (see Ref. 10), so that the GL spatial distribution
of the order parameter is sufficiently precise. In the case of the
insulator inclusion the superconductor-insulator (SI) interface
is formed. In a microscopic theory of the SI interface (see,
e.g., Ref. 8), the order parameter rises abruptly from zero in
dielectric (where amplitudes of normal excitations f± = 0)
to a finite value inside the superconductor within an atomic
distance a from the interface, namely with an “infinite” slope
∝ 1/a. Therefore, as in Ref. 18, we assume a discontinuous
distribution:

�(r) =
{

0 r < R
r√

r2+1
r > R

. (10)

The boundary conditions, on the amplitudes f± [Eq. (8)],
are consistent with the zero-order parameter at the boundary
point r = R − a. Next we show that that this set of boundary
conditions, even for R → 0, leads to a spectrum different
from that in Eq. (6).

III. ANDREEV BOUND STATES SPECTRUM

The BdG equations subject to the insulator inclusion
boundary condition [Eq. (8)], were solved numerically for
clean superconductors, γ = 2.5 · 10−3. The radial equation
was discretized and the whole spectrum of particle and
hole excitation was calculated despite the appearance of
oscillations of the order 1/kF . This required a very small
step (2 × 10−3) and large size for elevated angular momenta
(up to 120; large enough for realistic situations considered
below). As a test for the accuracy of the calculation, the
threshold at energy �∞ was required to be within 0.1%
for both quasiparticles and quasiholes. The results for the
positive angular momentum (quasiparticle) branch of the BdG
spectrum for k⊥ = 10,50,200 are presented in Fig. 1 for values
of the hole radius R = 0.4. As estimated below, the maximal
value of kmax

⊥ in metals can reach several hundred. The results
at small positive angular momenta (corresponding to a small
impact parameter b ≈ μ/k⊥) are lower than the semiclassical
approximation18 plotted as purple lines. In this case the wave
function is restricted to avoid insulator inclusion. The energy
decreases as the angular momentum increases and reaches
a minimum at μ0, given in Table 1. Unfortunately at μ0,
precisely the region in which the threshold for the excitations of
the vortex core are observed, the semiclassical approximation
breaks down. Both components of the wave functions at μ0,
f e

±, are given in Fig. 2 for R = 0.4 at k⊥ = 50. At yet
higher angular momenta the wave function is concentrated
far from the inclusion and energy approaches the universal
envelop curve well described by Eq. (6) (see blue lines). For
large k⊥ the semiclassical spectrum becomes accurate before
the approximation breaks down near b = R. Of course, the
spectrum at small μ is different, even for R as small as 0.1ξ ,
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FIG. 1. (Color) Energy of quasiparticles for positive angular
momenta for three values of k⊥ for the hole radius R = 0.4ξ . Our
numerical results are given by dots, while the semiclassical results
and the perturbative results of Ref. 18 are given by purple (dash) and
light blue (solid) lines respectively.

compared to the spectrum of the unpinned vortex7 that is close
to the b > R semiclassical solution given by Eqs. (22), (27),
and (30) of Ref. 18, plotted as a blue line in Fig. 1.

According to Refs. 5 and 18 the results of quasiclassical
theory are valid under conditions, k⊥ξ 
 1 while perturbation
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FIG. 2. (Color) Components of the eigenvectors of the BdG
equations for R = 0.4ξ , k⊥ξ = 50 at angular momentum μ0 as
functions of the distance from the center of inclusion (in units of
ξ ). Quasiparticles (upper plot) and quasiholes (lower plot) differ by
the sign of the lower component of the spinor.
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FIG. 3. (Color) Full spectrum of Andreev bound states and
transitions between them (top plot). While the minigap seen by STM,
�DOS is between a quasiparticle state with angular momentum μe =
μ0 and quasihole with μh = −μ0 (brown arrow), the microwave
absorption gap, �dir, is between the states with μe = μ0 = μh − 1
(brown arrow) and shown on the bottom plot. Clearly �dir > �DOS.

theory hinges on an additional condition μ/k⊥R > 1. Clearly
our results agree with the quasiclassical approach better for
large k⊥ (see Fig. 1).

To calculate the microwave absorption across the minigap,
one needs also the negative energy states as well as negative
μ. According to the symmetry [Eq. (7)], it is sufficient to
calculate the μ > 0 quasihole states. The whole spectrum is
shown in Fig. 3 for R = 0.4. Red, green and blue curves denote
k⊥ = 10, 50, 200, respectively. It demonstrates that due to the
lack of μ → −μ symmetry the minimal gap occurs between
a particle with μ0 and a hole with −μ0. It is important to
note that μ0 grows monotonically as k⊥ increases, see the fifth
column in Table I.

The minimal gap �DOS = 2Eμ0,k
max
⊥ (see arrows) can be

measured by STM from the expression for tunneling differen-
tial conductance,

dI

dV
=

(
dI

dV

)
N

∫ ∞

−∞

N (r,E)

N0

∂fF (E − eV )

∂V
dE, (11)

TABLE I. The tunneling and microwave minigaps.

k⊥ξ R/ξ μ0 Iμ0 �dir/� �DOS/�

10 0.1 1.5 8.27 0.51 0.5
10 0.4 3.5 7.58 0.96 0.93
10 0.8 6.5 7.71 1.42 1.37
50 0.1 7.5 40.79 0.76 0.39
50 0.4 22.5 45.22 1.1 0.88
50 0.8 42.5 47.44 1.47 1.25
200 0.1 24.5 — 1.04 0.2
200 0.4 73.5 — 1.26 0.71

where fF is the Fermi function, I and V are the current and
applied voltage, correspondingly, and the local density of states
below threshold is

N (r,E) =
∑
μ,k⊥

|f +
k⊥,μ|2δ(E − Ek⊥,μ)

+ |f −
k⊥,μ|2δ(E + Ek⊥,μ). (12)

This gap does not correspond to the direct transitions in
microwave experiments with angular momenta μe − μh =
±1. In Fig. 3 the direct minigap �dir as a function of the
angular momentum is shown. The minimum appears at μ0. The
tunneling density of states exhibiting the smaller minigap � is
determined directly by the eigenfunctions of the quasiparticle
excitations (shown in Fig. 2) and the quasihole excitations as
in Ref. 5. On the contrary the microwave response depends
also on the dipole matrix elements leading to the selection
rules.

IV. MICROWAVE ABSORPTION DUE TO CORE STATES

In the presence of the magnetic field the direct energy
minigap �dir should be observable in microwave absorption.21

The calculation of the energy absorption22 in one vortex
is very similar to that of the interband transition in a
cylindrically symmetric quantum dot.23 In the present case
at zero temperature the hole branch is occupied, while
the electron branch is empty. Coupling of time-dependent
external field Amw (assumed to be a plane wave propa-
gating parallel to the z axis in the gauge ∇ · Amw = 0)
in linear response is described by the operator [returning
to physical units and with momentum operator defined in
Eq. (2)]:

V = − e

mc

(
Amw · � 0

0 −Amw · �

)
. (13)

In the dipole approximation, the real part of the AC con-
ductivity for the left-handed circular polarization Emw =
E0(cos(ωt), sin(ωt)) is

σ (ω) = 2πe2

m2ω
ρ

∑
μ,μ′,kz

|Mμμ′kz
|2δ(Ee

μkz
− Eh

μ′kz
− h̄ω

)
.

(14)
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The density of vortex lines can be written, using the flux
quantization, as ρ = B/�0. The transition amplitudes are

Mμμ′kz

=
∫

d2r
(
ue∗

μ′k′
z
ve∗

μ′k′
z

)(�x + i�y 0
0 −�x − i�y

)(
uh

μkz

vh
μkz

)

= 2π2h̄2iδμ−μ′−1Iμ

Iμ =
∫

dr r

{
f e−

μ−1

(
μ + 1

r
+ ∂r

)
f h−

μ

− f e+
μ−1

(μ

r
+ ∂r

)
f h+

μ

}
. (15)

As expected, the angular momentum of the states in the
quasiparticle and quasihole bands differ by 1. The matrix
element at μ0(k⊥) was calculated numerically and the results
are given in Table I for various parameters.

One observes that the matrix element at the thresh-
old increases linearly with k⊥ and consequently the ab-
sorption is dominated by kmax

⊥ , therefore �dir = Eμ0,k
max
⊥ −

Eμ0−1,kmax
⊥ . Note that dependence of the matrix ele-

ment of the dielectric inclusion radius is insignificant.
Next we discuss the application to certain realistic
systems.

V. DISCUSSION AND SUMMARY

To exemplify possible signatures of the “large” minigaps
�DOS and �dir, we consider two extreme realizations of the
“clean” superconducting thin film. The first is Lz = 10 nm
thick Pb film for which Tc = 7.15 K, ξ = 50 nm, EF = 9.5 eV.
The states on the Fermi surface (considered isotropic) obey

EF = π2h̄2

2m∗
cL

2
z

n2
z + k2

⊥h̄2

2m
, (16)

where the integer nz can take values from 1 to LzkF /π = 50.
Correspondingly, the in-plane component of the momentum
varies from zero to ξk⊥ = 790. The second is the optimally
doped YBCO with Tc = 93 K, ξ = 2.5 nm, m∗

c = 7me. The
d-wave nature of pairing in high Tc cuprite has a certain effect
on Andreev bound states that has been studied intensively for
unpinned vortices and vortices pinned on metallic inclusions.
The absorption threshold, in principle sharp, is smeared due
to the d-wave nature of the energy gap. The effect of nodal
quasiparticles is strongly suppressed by the limited phase
space (measure zero) of the nodes.12,20 The vortex structure
prevents quasiparticles from approaching the nodes. When
insulator inclusions are present the situation does not change
in this respect. One therefore can use the s-wave results
with a small value of EF = 0.3 eV. For a film of thickness
Lz = 5 nm only 10 levels nz = 1, . . . ,10 contribute. The
highest values of k⊥ are consequently very small ξk⊥ < 8 .
The tunneling and microwave (or direct) minigap will result
in appearance of absorption at �DOS and �dir, given in
Table I.

To summarize, the spectrum of the Andreev bound states,
localized by the Abrikosov vortex pinned by the insulator
inclusion (or nanohole) of the size of the coherence length,
was studied theoretically. We show that in this case the BdG

spectrum dramatically changes in comparison with that inside
an unpinned Abrikosov vortex. While for the unpinned vortex
(or the one pinned by a slight inhomogeneity or a normal
metal inclusion) the spectrum is monotonic in the angular
momentum μ, with lowest excitation at μ = 1/2 of order
�2/EF , in the case of the dielectric inclusion of a nanosize R,
the low angular momenta excitations are pushed up toward the
threshold � (gap of the superconductor) since the dielectric
prevents electron orbits of radius R. As the angular momentum
increases, the excitation energy decreases to a minimum given
by Eq. (4) (see Figs. 2 and 3), and then rises approaching
the threshold � at large angular momenta, very much like
in an unpinned vortex. For Fermi energies large compared
to � (we have considered EF /� up to 500) the minimal
excitation energy is �3/2/EF

1/2 
 �2/EF . Dependence on
the radius of the insulator inclusion was also studied. Due to
the approximate electron-hole symmetry, the lowest energy
gap exists for the largest possible k⊥.

The reconstruction of the quasiparticle excitations’ spec-
trum has a significant impact on optical, transport, and ther-
modynamic properties of the superconductor under magnetic
field. The excitation with minimal energy manifests itself in
optical response. Generally, unpinned or pinned by metallic
inclusion vortices lead to excitations in the microwave range
of the spectrum. On the other hand, on the basis of the
above estimate, when all the vortices are pinned by dielectric
inclusions or holes, the absorption spectrum should move to the
infrared range. One therefore is led to conclude that the sample
with nanoholes (like the one used recently to study insulator-
superconductor transition24) becomes “transparent” to the
microwave pulse.21 Similarly, dissipation in the vortex system
at sufficiently high frequencies, due to “vortex viscosity”
closely associated with the quasiparticle excitations, is greatly
reduced.

We speculate that the spectrum reconstruction also plays
a role in transport phenomena broadly associated with
the “superconductor-insulator” transition25 in quasi-two-
dimensional systems. In these materials small insulating
inclusions (islands) are generally present and, since the width
is small, can be considered as “columnar.” In that case our
results are applicable. Experimentally magnetoresistance first
rises dramatically as the magnetic field is increased and
subsequently decreases.25 It has been established that the
long-range superconducting correlations are suppressed so
there is no supercurrent contribution to conductivity. As a
result transport is dominated by the normal component. Why
does this normal component of the conductivity become so
small? It might be that the normal excitations are suppressed
by the spectrum reconstruction due to pinning on insulator
inclusions. At very high magnetic fields not all the vortices are
pinned and the normal component is no longer suppressed.
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