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When two fluids of different densities move in a rotating Hele-Shaw cell, the interface between them becomes
centrifugally unstable and deforms. Depending on the viscosity contrast of the system, distinct types of complex
patterns arise at the fluid-fluid boundary. Deformations can also induce the emergence of interfacial singularities
and topological changes such as droplet pinch-off and self-intersection. We present numerical simulations based
on a diffuse-interface model for this particular two-phase displacement that capture a variety of pattern-forming
behaviors. This is implemented by employing a Boussinesq Hele-Shaw-Cahn-Hilliard approach, considering the
whole range of possible values for the viscosity contrast, and by including inertial effects due to the Coriolis force.
The role played by these two physical contributions on the development of interface singularities is illustrated
and discussed.
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I. INTRODUCTION

Rotating Hele-Shaw flows have been the subject of consid-
erable interest during the last two decades. This particular
type of confined flow offers a variation to the traditional
viscosity-driven Saffman-Taylor problem [1,2]. It occurs when
a fluid, surrounded by another of lower density, is located in
a Hele-Shaw cell, which rotates about a perpendicular axis.
Inertial forces act upon the density difference between the
fluids, and a density-driven instability results [3].

Since the seminal works by Schwartz [4], and Carrillo
et al. [5], various aspects of the rotating Hele-Shaw problem
have been investigated both theoretically and experimentally,
mostly focusing on comprehending the complex morphology
and dynamics of emerging interfacial patterns. These studies
include the development of time-dependent [6–9] and station-
ary [10,11] exact solutions, the consideration of miscible fluid
displacements [12,13], the dependence of pattern morpholo-
gies on viscous [14–16] and wetting [17] effects, and the influ-
ence of the Coriolis force on the interfacial dynamics [18–21].

The rotating flow fingering patterns obtained by experi-
ments exhibit a rich collection of shapes: they may change
from teardrop-like structures to thin filamented arms present-
ing swelled ends, or to a branched, backbone architecture
with nearly constant finger widths. Complicated pinch-off
phenomena are also detected, characterizing the formation of
satellite droplets, which are detached from the main body of
the denser fluid [14,22].

On the theoretical side, state-of-the-art numerical simu-
lations are utilized to successively reproduce experimental
pattern-forming morphologies: (i) on one hand, boundary in-
tegral techniques [16,20] and conformal mapping approaches
[23] model immiscible displacements, while (ii) spectral
methods [12,13] are used when the fluids are miscible. These
numerical studies have verified that the viscosity contrast
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−1 � A � 1 (dimensionless viscosity difference between the
fluids) plays a crucial role in determining the resulting
patterned structures, in the sense that finger competition
dynamics changes significantly when the magnitude and sign
of A is varied.

A recent numerical study [22] used phase-field simulations
based on a vortex-sheet formalism [24–26] to model the
occurrence of the experimentally observed interfacial pinch-
off events, and examined how they are modified as A varies
from 0 to 1, in the absence of Coriolis effects. Consistently
with their own experimental observations, it has been found
that pinch-off singularities are more frequent when A → 0.

Phase-field (or, diffuse-interface) modeling [24–36] offers
a convenient alternative to usual sharp-interface approaches
(e.g., boundary-integral and conformal mapping methods),
which can not handle interface topological changes such
as finger pinch-off and merging. In the framework of the
diffuse-interface theory, the fluid-fluid boundary is represented
by a thin layer of finite thickness, and not as a sharp interface.
The main idea underlying this theory is to introduce an
auxiliary function (the phase-field function) that indicates in
which “phase” (here, in which fluid) the system is at a given
point. It assumes different values in the bulk phase away
from the interfacial region, through which the phase function
varies rapidly, but smoothly from one phase to another. Hence,
the difficulty of dealing with discontinuities at the interface
is naturally avoided. In this context, the interface itself can
be associated with an intermediate contour set of the phase
function. There has been much work on the employment of
diffuse-interface models in multicomponent fluid flows. We
refer the reader to the classic review [27] and references therein
for a vast literature on this topic.

In this paper, we consider a diffuse-interface approach that
is based on a simplified version of the Navier-Stokes-Cahn-
Hilliard model [28–31], originally applied to two-phase fluid
flow in motionless (nonrotating) Hele-Shaw cells [32–35]. We
extend the results obtained in Refs. [32–35] to the rotating
Hele-Shaw setup, and used intensive numerical simulations to
analyze the fully nonlinear behavior of the evolving interfacial
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patterns. Notice that our theoretical approach differs from the
one adopted in Ref. [22] in the sense that diffusion effects
between the fluid components provide a relevant physical
mechanism to smooth flow discontinuities (for details, see
Ref. [32]). It is also worth mentioning that our analysis is done
by spanning all possible signs for the viscosity contrast (A > 0,
A = 0, and A < 0), and by taking Coriolis force effects into
account.

In other words, in contrast to our previous numerical inves-
tigations of the (miscible and immiscible) rotating Hele-Shaw
problem [12,13,16,20,21,23], here we employ a Boussinesq
Hele-Shaw-Cahn-Hilliard description that is able to accurately
model the occurrence of topological singularities at a diffuse
interface (pinch-off and coalescence of fingers). Among other
things, this allowed us to understand how the emergence of
such singularities is influenced by the effects of viscosity
contrast (including A < 0) and Coriolis force.

This paper consists of three additional sections. Section II
is devoted to introduce the setup of the physical problem, the
application of the diffuse-interface formalism to rotating Hele-
Shaw flows, and the related governing equations. Section III
presents our numerical results. Numerical experiments in the
absence of Coriolis effects are exhibited in Sec. III A, revealing
a number of relevant interfacial structures as the viscosity
contrast is varied from negative to positive values. These
results also serve to validate our numerical approach and
to support the effectiveness of the proposed diffuse-interface
method. The way pattern formation and the occurrence of
finger pinch-off and self-intersection respond to Coriolis
effects is discussed in Sec. III B. Finally, Sec. IV summarizes
our main conclusions.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

We investigate the interfacial instability between two
immiscible fluids in a rotating Hele-Shaw cell (Fig. 1). The
cell has gap spacing h and turns around an axis perpendicular
to the plane of the flow with constant angular velocity �.
Inside the cell, an initially circular drop (radius R0) of fluid 2
is surrounded by an outer fluid 1. The densities and viscosities
of the fluids are denoted by ρj and ηj , respectively (j = 1,2).
We focus on the centrifugally induced motion where ρ2 > ρ1,
but allow the inner fluid to be either more or less viscous than

FIG. 1. (Color online) Sketch of a rotating Hele-Shaw cell of gap
width h. It spins around a perpendicular axis passing through its
center, with angular velocity �. The inner fluid is denser (ρ2 > ρ1)
so that the initially circular fluid-fluid interface of radius R0 distorts.

the outer fluid. We examine situations in which the viscosity
contrast can assume negative, null, and positives values.

The governing equations of such a diffuse interface problem
are based on a model proposed by Cahn and Hilliard [28]. In
the context of a rotating Hele-Shaw cell system, the equations
can be written as [4,32,36]

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∇p = −12η

h2
u + ρ�2r + 2ρ�(ez × u)

− ε∇ · [ρ(∇c)(∇c)T ], (2)

ρ

(
∂c

∂t
+ u·∇c

)
= α∇2μ, (3)

μ = ∂f0

∂c
− ε

ρ
∇ · (ρ∇c) − p

ρ2

dρ

dc
, (4)

f0 = f ∗c2(1 − c)2. (5)

Here, u denotes the fluid velocity vector, p the pressure, η

the viscosity, and ρ the density of the binary fluid system.
The phase-field variable is represented by c, so that c = 1 in
the bulk of fluid 1 (phase 1) and c = 0 in the bulk of fluid 2
(phase 2). The constants ε and α represent the coefficient of
capillarity and mobility, respectively. The chemical potential
is denoted by μ, and f0 is a free energy (or, the Helmholtz
free energy) with a characteristic specific energy f ∗. Notice
the inclusion of both centrifugal and Coriolis force terms in
the generalized Darcy’s law (2), where r is the radial position
vector, and ez represents the unit vector along the rotation axis
(z axis). Equations (1)–(5) define the so-called Hele-Shaw-
Cahn-Hilliard model [32,34] associated with a surface free
energy functional given by

E = ρ

∫ (
f0 + ε

2
(∇c)2

)
dV, (6)

where V is the volume of the fluid domain.
It is worth noticing that the choice of free energy leads to

different interpretations of the model [32]. The present choice
of a quartic free energy f0 indicates the phases are separated,
so that is suitable for an immiscible interface. If a convex
free energy f0 = 0.5(c − 0.5)2 is applied, fluid diffusion is
allowed. By further assuming an extremely small ε, so that μ =
∂f0/∂c, the method becomes similar to the one used in miscible
simulations, including Korteweg stresses [13,21,37,38].

Correlations of viscosity (η) and density (ρ) with the phase-
field variable c are required by the present approach. To take
advantage of the highly accurate scheme previously developed
for miscible Hele-Shaw flows [39–41], we assume that

η(c) = η1e
[R(1−c)], R = ln

(
η2

η1

)
, (7)

ρ(c) = ρ1c + ρ2(1 − c). (8)

For immiscible flow situations, the form of the correlation
between the phase-field variable c and viscosity η such as the
one shown in (7) is aimed to provide a smooth variation of
viscosity between the two fluids within the diffuse interface.
In the early studies of phase-field simulations, a simpler
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linear proportionality rule was commonly used. However, our
numerical code is originated from the schemes designed to a
miscible interface, where a more physical correlation would
be desired. The specific functional form given by Eq. (7) has
been originally proposed some time ago in a seminal paper
by Tan and Homsy [42]. The validity and suitability of this
expression has been extensively demonstrated by contrasting
numerical simulations [39–41] and experiments [43–45] for
various combinations of fluids. To take advantage of the high
accuracy associated with such miscible schemes, a similar
exponential correlation is utilized in this work.

If a Boussinesq approximation is applied, the density
can be represented by a constant bulk density ρb, except
in the centrifugal term. In order to render the governing
equations dimensionless, the initial radius of the inner fluid
drop R0 and density difference �ρ = ρ2 − ρ1 are taken as
characteristic scales. Viscosities and time are scaled by η1 and
12η1/(�ρ�2h2), respectively. In conjunction with a charac-
teristic velocity (�ρ�2R0h

2)/12η1, pressure �ρ�2R2
0, and

specific free energy f0
∗, the dimensionless Boussinesq Hele-

Shaw-Cahn-Hilliard (BHSCH) equations [32,34] associated to
Eqs. (1)–(5) can be written as

∇ · u = 0, (9)

∇p = −ηu −
(

c + ρ2

�ρ

)
[r + 2 Re(ez × u)]

− C

Ga
∇ · [(∇c)(∇c)T ], (10)

∂c

∂t
+ u·∇c = 1

Pe
∇2μ, (11)

μ = ∂f0

∂c
− C∇2c, (12)

f0 = c2(1 − c)2. (13)

Dimensionless parameters, such as the Péclet number Pe, the
viscosity contrast A, the Cahn number C, the rotationally
modified Galileo number Ga, and the (Coriolis force related)
Reynolds number Re are defined as

Pe = ρb�ρ�2h2R2
0

12αη1f ∗ , A = eR − 1

eR + 1
, C = ε

f ∗R2
0

,

Ga = �ρ�2R2
0

ρbf ∗ , Re = �ρ�h2

12η1
.

Moreover, the dimensionless free interfacial energy corre-
sponding to Eq. (6) can be obtained accordingly as

E = 1

Ga

∫ (
f0 + C

2
(∇c)2

)
dV. (14)

In order to solve the governing equations numerically, we
recast them into the well known stream function vorticity
formulation (φ, ω) [39], yielding

u = ∂φ

∂y
, v = −∂φ

∂x
(15)

∇2φ = −ω, (16)

where

ω = −R

(
u

∂c

∂y
− v

∂c

∂x

)
− 1

η

(
y

∂c

∂x
− x

∂c

∂y

)

−2 Re

η

(
u

∂c

∂x
+ v

∂c

∂y

)

+ C

ηGa

[
∂c

∂x

(
∂3c

∂x2∂y
+ ∂3c

∂y3

)
− ∂c

∂y

(
∂3c

∂x∂y2
+ ∂3c

∂x3

)]
.

As in Refs. [14,16,22], a dimensionless rotational Bond
number, defined as Bo = σ/�ρ�2R3

0, can be used to evaluate
the ratio between the capillary and centrifugal forces. If a
one-dimensional interface (associated with a given spatial
variable ζ ) is assumed, the surface tension (or, free energy)
can be calculated as

σ = 1

Ga

∫ [
f0 + C

2

(
∂c

∂ζ

)2 ]
dζ. (17)

Under such circumstances, an equilibrium surface tension
equation can be obtained as [30]

C

2

(
∂c

∂ζ

)2

= c2(1 − c)2. (18)

If we further assume a boundary condition of an average value
of the phase-field variable at the midpoint of the interface,
i.e., c(0) = 1/2, the distribution of phase-field variable can be
solved analytically as

c = e(
√

2
C

)ζ

1 + e(
√

2
C

)ζ
. (19)

Considering all this, an equilibrium rotational Bond number
can be defined as

Boe =
√

C/2

3Ga
. (20)

Boundary conditions are prescribed as follows:

x = ±1 : φ = 0,
∂c

∂x
= 0,

∂2c

∂x2
= 0, (21)

y = ±1 : φ = 0,
∂c

∂y
= 0,

∂2c

∂y2
= 0. (22)

To reproduce the extremely fine structures of the fingers,
a highly accurate pseudospectral method is employed. As a
result, the actual boundary conditions applied in the numerical
code are ∂φ/∂y = 0 at y = ±1. However, at the present
situation where no concentration gradient is generated on the
boundaries, the above conditions automatically lead to φ = 0.
To ensure this condition, all the simulations are terminated
when the inner fluid reaches a certain distance away from
the computational boundaries. Both c and φ are expanded in a
cosine series in the x direction. In the y direction, discretization
is accomplished by sixth order compact finite differences.
Time integration is fully explicit and utilizes a third order
Runge-Kutta procedure. The evaluation of the nonlinearity at
each time level is performed in a pseudospectral manner. For
a more detailed account about these numerical schemes, the
reader is referred to Refs. [39–41].

At this point, we believe some clarifications about the
discretization schemes along the x-y directions are necessary.
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At first glance, by considering the circular geometry and
overall symmetry of the physical problem under study, it may
seem obvious that the most appropriate theoretical description
would obligatorily involve the use of a polar coordinate system
(r,θ ). However, this is not exactly the case when an accurate
numerical description of the problem needs to be implemented.

In order to successfully generate the extremely fine and
intricate fingering structures emerging in the rotating Hele-
Shaw problem, a highly accurate numerical scheme is required.
To accomplish this task, spectral methods associated with
discretization by high order compact finite difference schemes
are a very useful tool. In practice, the use of such spectral
methods, which require periodic boundaries in one direction,
and of compact finite difference schemes, which perform better
in a uniform grid, impose serious limitations on the imple-
mentation of a numerical code based on polar coordinates. In
this sense, the ability of generating extremely fine patterning
structures is somewhat incompatible (or at least, much more
difficult) with the eventual choice of polar coordinates.

This is why we have adopted a rectangular coordinate
system (x,y) to describe our current problem. A similar
procedure has been very successfully applied in Ref. [13],
which describes the miscible displacement in rotating Hele-
Shaw flows. The excellent agreements (both qualitative and
quantitative) with existing experiments and other numerical
approaches obtained in this work and in Ref. [13] support the
applicability, reliability, and general appropriateness for our
choice of Cartesian coordinates.

III. NUMERICAL RESULTS AND DISCUSSION

A. Fingering dynamics in the absence of the Coriolis force

In this section, we introduce numerical results for rotating
Hele-Shaw flows that neglect Coriolis force effects. We begin
by presenting data related to various numerical experiments
(more than 40) considering a wide range of values for
the relevant control parameters: Pe = 103, 3 × 103, 6 × 103,
9 × 103, 1.2 × 104; A = −0.76, 0, 0.25, 0.46, 0.76; Ga =
0.1,0.4,1,2,10; and C = 10 × 10−5.

From Eq. (20), these values of Ga and C result in five
major groups for the equilibrium rotational Bond number
Boe: (a) 7.45 × 10−5, (b) 3.73 × 10−4, (c) 7.45 × 10−4,
(d) 7.45 × 10−3, and (e) 1.86 × 10−3. A representative sample
of fingering patterns associated to groups (a)–(d) is depicted
in the insets of Fig. 2, which plot the number of fingers N

as a function of Boe. The solid curve represents the relation
N ≈ √

(1/3Bo) obtained analytically in Ref. [5] through linear
stability analysis.

The images shown in the insets (a)–(d) of Fig. 2 clearly
illustrate prominent fingering patterns with well defined
interfaces, presenting minimal dispersion. It is evident that
smaller values of Boe (meaning small surface tension, or
large centrifugal driving) lead to patterns presenting a larger
number of fingering structures. Another clear feature is the
favored occurrence of droplet emissions at the finger tips when
Boe is decreased. These simulated morphological attributes
agree very well with existing experiments [5,14,17,22], as
well as with other numerical simulations based on boundary
integral methods [14,16] and phase-field modeling based on
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FIG. 2. (Color online) Number of fingers N plotted as a function
of the equilibrium rotational Bond number Boe. The solid curve
represents the analytical relationship N ≈ √

1/3Boe, and the symbols
indicate data obtained from our numerical experiments. The specific
parameters used to obtain the fully nonlinear fingering patterns shown
in the insets are (a) Pe = 3 × 103, A = 0.63, Ga = 10, and C = 10−5

(Boe = 7.45 × 10−5); (b) Pe = 9 × 103, A = 0.46, Ga = 2, and C =
10−5 (Boe = 3.73 × 10−4); (c) Pe = 9 × 103, A = 0.46, Ga = 1,
and C = 10−5 (Boe = 7.45 × 10−4); (d) Pe = 9 × 103, A = 0.25,
Ga = 0.1, and C = 10−5 (Boe = 7.45 × 10−3).

the vortex-sheet formalism [22]. It is worth mentioning that
the value A = 0.46 used in the insets (b) and (c) of Fig. 2
is very close to the viscosity contrast values reported in
Refs. [14,22], so that the patterns can be directly compared,
revealing a remarkable resemblance among them. These
findings are reassuring and provide qualitative validations for
our diffuse-interface BHSCH numerical simulations.

Further validation of our numerical results is provided
by comparing the data for the number of fingers N directly
extracted from our numerical experiments with the analytical
prediction for N represented by the solid curve in Fig. 2.
In general, excellent agreement is observed, especially for
increasingly larger values of Boe. As stated in Ref. [14],
the number of fingers can be more accurately identified
for relatively stable interfaces, such as those obtained for
higher Boe. As expected, for the cases presenting conspicuous
nonlinear elements, i.e., finger merging and competition, the
linear prediction for N is not as precise. Nevertheless, the
overall agreement is still reasonably good.

We proceed by pointing out the usefulness of our diffuse-
interface approach in addressing two very important behaviors
that arise at nonlinear stages of the dynamics in rotating
Hele-Shaw flows: the phenomena of (a) finger competition
and (b) droplet pinch-off, and their sensitivity to changes in
the value of the viscosity contrast. Weakly nonlinear analysis
[15] and sharp interface boundary-integral simulations [16]
have verified that competition among fingering structures
is considerably modified as A varies: increasingly larger
values of A < 0 (A > 0) lead to enhanced competition among
outward (inward) fingers. In addition, it has been found that
finger competition is significantly suppressed when A → 0.
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These immiscible fluid flow findings have been confirmed
by simulations of rotating Hele-Shaw miscible displacements
[13], where surface tension effects are mimicked by Korteweg
stresses.

Nevertheless, the episodes of finger pinch-off and droplet
emissions experimentally captured in Refs. [14,22] can not be
properly simulated by sharp interface computational methods
employed in Refs. [14,16,17]. This has been accomplished
only very recently by Folch and co-workers [22], who derived,
analyzed, and implemented a phase-field model based on a
vortex-sheet formalism for centrifugally driven Hele-Shaw
flows. Their simulations and laboratory experiments for
the cases in which 0 � A � 1 demonstrated that pinch-off
singularities are more frequent for smaller viscosity contrasts.

However, cases with negative contrast (A < 0) and the
impact of Coriolis effects on interface singularities have not
been addressed in Ref. [22]. For the remainder of this section,
we try to further validate our diffuse-interface numerical
approach by using it to revisit the advents of finger competition
and pinch-off, and their relation to the viscosity contrast (now
including negative values of it) in confined rotating flows. The
role of the Coriolis force on such phenomena will be studied
in Sec. III B.

Before continuing our analysis and presenting more sim-
ulations, a few important remarks are in order. It should be
noticed that, by design, there exists some interfacial mixing
and diffusion in most phase-field models. The acceptable level
of interfacial diffusion is very much problem dependent, and
the corresponding controlling parameter has to be chosen
judiciously [29,30]. In this sense, various scalings for the
Péclet number have been suggested in the literature, for
instance, Pe ∼ 1/C [31–33] and Pe ∼ C [34]. Taking these
points into consideration, and for the safe of consistency,
for the rest of this paper, we consider that Pe = 9 × 103.
Nonetheless, we point out that the fingering patterns are not
significantly altered when different values of Pe are used.
For clarity, instead of showing images containing the whole
phase-field domain as in Fig. 2, only the contour curve for
c = 0.5 is plotted in Figs. 3, 5, and 6. This is done without loss
of generality.

Another fundamental issue regarding the appropriateness of
diffuse-interface models is about the interface, the thickness
of which can be approximated as (O

√
ε). To catch an exact

interfacial phenomenon in a sharp interface limit, (O
√

ε) →
0 is desired. A guideline regarding the maximum allowable
value of the Cahn number had been proposed as C ∼ 10−4

[46,47], in which the results accurately reflect reality, having
molecular scale interfaces. Based on this guideline, we had
tested different Cahn numbers between 10−4 ∼ 5 × 10−6 in
test simulations, and the overall aspect of the patterns show
no significant differences. In this context, we have chosen the
smallest value of the Cahn number for which all simulations
of interest remain numerically stable: C = 10−5. Excellent
agreement between our simulated shapes with interfaces
obtained in actual experiments validate the appropriateness
of our choice for the Cahn number.

It is known that phase-field methods have difficulties in
dealing with the particular (but important) case of viscosity
contrast A = 1 [22], which is actually the easiest to implement
experimentally [5], e.g., by choosing air as one of the fluids.

(a) A=−0.76,Re=0,t=0.78 (b) A=−0.76,Re=0,t=1.3

(c) A=0,Re=0,t=2.3 (d) A=0,Re=0,t=2.95

(e) A=0.76,Re=0,t=8.0 (f) A=0.76,Re=0,t=11.2

FIG. 3. (Color online) Typical fingering patterns for A = −0.76
[(a) and (b)], A = 0 [(c) and (d)], and A = 0.76 [(e) and (f)]. The
remaining parameters are Pe = 9 × 103, Ga = 0.4, and C = 10−5

(Boe = 1.86 × 10−3). The left (right) panel shows patterns before
(after) the occurrence of pinch-off.

However, simulations for A = 1 and −1 are actually not shown
in this paper. In fact, we present simulations for the interval
−0.76 � A � 0.76, so that the largest magnitude for the vis-
cosity contrast is 0.76. This is the largest value of A we can sim-
ulate for which our numerical code remains stable. Although
the whole range of −1 � A � 1 could not been spanned by
our simulations, the particular range of values for the viscosity
contrast we consider (−0.76 � A � 0.76) results in signifi-
cant fingering, and produce pattern morphologies very close
to those obtained through sharp interface methods for higher
A [16,20]. Moreover, it is worth noting that fluids with higher
density (to allow maximized centrifugal driving) but extremely
low viscosity (such as those with A exactly equal to −1)
are probably difficult to find in practice. This is the reason
why a more realistic value A = −0.8 (and not A = −1) has
been used for the boundary-integral simulations in Ref. [20].
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CHING-YAO CHEN, YU-SHENG HUANG, AND JOSÉ A. MIRANDA PHYSICAL REVIEW E 84, 046302 (2011)

Numerical simulations illustrating the effect of the viscosity
contrast on the mechanisms of finger competition and pinch-
off are depicted in Fig. 3 for three different values of A: −0.76
[(a) and (b)]; 0 [(c) and (d)]; and 0.76 [(e) and (f)]. First, we
focus on the left panel of Fig. 3, which shows characteristic
pattern morphologies before the occurrence of complicated
pinch-off events. By inspecting Figs. 3(a), 3(c), and 3(e), we
observe the formation of distinctly shaped patterns: short petal-
like fingers for A < 0, stretched filamented structures with
bulbous ends for A = 0, and more ramified shapes where the
width of the fingers do not tend to vary much along their
lengths when A > 0.

Important information regarding finger competition behav-
ior of the patterns presented on the right column of Fig. 3
can be extracted from Fig. 4, which plots the dimensionless
radial coordinate (r) of the tips of both outward and inward
moving fingers for each finger (labeled by an integer n) for
A: −0.76 [Fig. 4(a)], 0 [Fig. 4(b)], and 0.76 [Fig. 4(c)]. By
observing Fig. 4(a) for negative A, it is quite clear that finger
length variability (or, finger competition) is very significant
for outward moving fingers. Figure 4(c) illustrates just the op-
posite behavior when A > 0, in which inward fingers compete
more actively. Inhibition of competition for both inward and
outward fingers is also apparent when A = 0 [Fig. 4(b)]. All
these results, concerned with pattern morphologies and finger
competition dynamics, are in very good agreement with similar
findings obtained in Refs. [16,20] through sharp interface
numerical techniques, and also with weakly nonlinear analytic
tools [15].

At this point, we turn to the discussion of the finger pinch-
off events depicted on the right panel of Fig. 3. Once again,
we focus of the influence of A on this complex phenomenon.
An inspection of Figs. 3(b), 3(d), and 3(f) readily leads us
to conclude that pinch-off events are increasingly favored for
negative viscosity contrast. This occurs because, for A < 0, the
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FIG. 4. (Color online) Finger competition behavior for the
patterns shown on the left panel of Fig. 3 when (a) A = −0.76,
(b) A = 0, and (c) A = 0.76. The dimensionless radial coordinate
r of the finger tip is shown for each finger, labeled by an integer
number n.

interface is both centrifugally and viscosity unstable. Then, the
occurrence of pinch-off becomes relatively milder for A = 0,
and tends to be totally suppressed for large, positive values of
A. In addition, we notice that the size of the satellite droplets
decreases as A is varied from negative to positive values.
Even though the case for A < 0 has not been simulated in
Ref. [22], our numerical diffuse-interface results for A � 0 are
absolutely consistent with their experiments and phase-field
simulations.

B. Influence of the Coriolis force

We initiate our analysis of the Coriolis effects by examining
Fig. 5. It plots fingering patterns and their corresponding
streamlines when Coriolis force is neglected [Figs. 5(a)
and 5(b)], and when it is taken into account Figs. 5(c) and 5(d).
In Figs. 5(a) and 5(b), A = 0 and Re = 0, while in Figs. 5(c)
and 5(d), A = 0 and Re = 1.1. Throughout this section, for the
simulations including Coriolis effects, we take the maximum
allowed value of Re for which our code remains numerically
stable.

Note that in Fig. 5 we take a lower value for the equilibrium
rotational Bond number Boe = 7.45 × 10−4. Recall that a
smaller rotational Bond number represents either weaker
surface tension effects or stronger centrifugal driving force, so
that the overall interfacial instability is further enhanced. This

(a) A=0,Re=0,t=2.6

(c) A=0,Re=1.1,t=4.4 (d) Streamlines

 

 

(b) Streamlines

 

 

−0.05 0 0.05 0.1 0.15

FIG. 5. (Color online) Fingering patterns and streamlines for
Pe = 9 × 103, Ga = 1, and C = 10−5 (Boe = 7.45 × 10−4) for
A = 0 and Re = 0 [(a) and (b)]; A = 0 and Re = 1.1 [(c) and (d)].
The magnitudes of the streamlines are represented by the color coding
presented in the horizontal bar at the bottom. The streamlines are
plotted in equal intervals of the stream function.
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is clearly seen by contrasting Fig. 5(a) with Fig. 3(d). Also
plotted in Fig. 5(b) are the corresponding streamlines with
their strengths indicated according to the background color
coding (see horizontal bar at the bottom of the figure). In line
with the results of conventional viscous fingering [21,38], each
finger consists of a pair of countercirculating eddies. These
countercirculating eddies possess roughly equal strengths, but
different signs, with their maxima (φ ≈ ±0.086) located at the
fingertips. As expected, the overall flow depicted in Figs. 5(a)
and 5(b) is mainly in the radial direction.

The main morphological features induced by the Coriolis
force can be easily identified in Figs. 5(c) and 5(d). If, on one
hand, the pattern shown in Fig. 5(a) grows along the radial
direction, on the other hand, the central body of the drop
in Fig. 5(c) looks rotated (or, “phase drifted” [20]), clearly
exhibiting finger bending phenomena. It is also noticeable
that the number of fingers is reduced, while their growth is
slowed down. Conversely, it is important to observe that finger
pinch-off events and droplet emissions are more frequent when
Coriolis force effects are considered. Most of these findings
can be understood by the fact that, contrary to the centrifugal
force, the Coriolis force acts along the azimuthal direction,
restraining radial grow, and favoring the tilting of the emerging
fingers. Enhanced pinch-off can be attributed to inertia since
the Coriolis force tends to move the unstable finger backward,
favoring finger breakup and droplet detachment.

Further realization about the influence of the Coriolis force
can be obtained by the streamlines depicted in Fig. 5(d).
Instead of numerous separated eddy pairs, which appear in
Fig. 5(b), the streamlines of all the fingers in Fig. 5(d)
are connected through the formation of multilayers. These
streamlines indicate the significant presence of azimuthal
velocities. The stabilization of finger growth can also be
quantitatively evaluated by the lower local maximum strength
of stream function (φ ≈ ±0.057) at the fingertips. On the other
hand, the strength of the stream function is much higher at the
central region of the main drop, which means a significant fluid
rotation. It is this azimuthally directed flow that is responsible
for the rotational behavior of the drop’s body.

The tangential shear induced by azimuthal velocity varia-
tions along the radial direction can also be noticed in Fig. 5(d).
Since the streamlines are plotted in equal intervals of the stream
function, the magnitudes of velocities are represented by the
density of local streamlines. It is apparent that the largest
azimuthal velocities are induced at the rim region, and reduced
inwardly. A strong tangential shear is generated by this velocity
variation. The larger magnitude of the azimuthal velocity at
the outer rim explains the bending of the fingers. Moreover,
the tangential shear is the cause of enhanced finger pinch-off
and droplet emissions.

We advance by analyzing Fig. 6, which depicts fingering
patterns and their corresponding streamlines when A = 0
and Re = 1.1 [Figs. 6(a) and 6(b)]; A = 0.46 and Re = 1.6
[Figs. 6(c) and 6(d)]; and A = 0.76 and Re = 1.6 [Figs. 6(e)
and 6(f)]. The rest of the parameters are the same as those
presented in Fig. 3. However, in contrast to what we did in
Fig. 3, we do not address the case A = −0.76 in Fig. 6.
Unfortunately, when A = −0.76, the maximum Reynolds
number we could successfully simulate was only Re = 0.23.
Coriolis force effects are insignificant for this low Reynolds

(a) A=0,Re=1.1,t=4.8 (b) Streamlines

 

 

(c) A=0.46,Re=1.6,t=7.6 (d) Streamlines

(e) A=0.76,Re=1.6,t=11.8 (f) Streamlines

−0.05 0 0.05 0.1 0.15

FIG. 6. (Color online) Fingering patterns and corresponding
streamlines when Coriolis force effects (tuned by the Reynolds
number Re) are taken into account for A = 0, Re = 1.1 [(a) and
(b)]; A = 0.46, Re = 1.6 [(c) and (d)]; and A = 0.76, Re = 1.6 [(e)
and (f)]. The values of the parameters Pe, Ga, C, and Boe are the
same as those utilized in Fig. 3.

number value within the time period of the simulation, thus,
this case is not really illustrative, so it is not shown.

The fingering patterns for A = 0 and 0.76, shown in
Figs. 6(a) and 6(e), can be directly compared with the
equivalent cases without the Coriolis force shown in Figs. 3(d)
and 3(f). Consistent with the results presented earlier in this
section, Coriolis force effects lead to damped radial growth
plus enhanced emission of satellite droplets. In particular,
notice that while there is no pinch-off in Fig. 3(f), it does
arise in Fig. 6(e). Plots for an intermediate value of the
viscosity contrast (A = 0.46) are shown in Figs. 6(c) and 6(d),
confirming the trend that even in the presence of Coriolis
effects, pinch-off is indeed more frequent when A → 0.
One can also notice the occurrence of finger merging in
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FIG. 7. Time evolution of the interfacial length L for various
viscosity contrasts and Reynolds numbers. Here, Pe = 9 × 103, Ga =
0.4, and C = 10−5 (Boe = 1.86 × 10−3).

Figs. 6(a), 6(c), and 6(e) induced by Coriolis effects. This
creates “islands” of fluid 1 surrounded by fluid 2.

Further examination of Fig. 6 reveals other noteworthy
facts. While strong finger bending, accompanied by some drop
rigid rotation, occurs for A = 0 [Fig. 6(a)], rigid rotation seems
to be the dominant phenomenon if A = 0.76 [Fig. 6(e)]. On
the other hand, for an intermediate viscosity contrast value
A = 0.46 [Fig. 6(c)], both tilting of the fingers and rotation of
the drop body can be observed.

These distinct behaviors can also be understood with the
help of the streamlines plotted in Figs. 6(b), 6(d), and 6(f).
Similar to the case studied in Fig. 5(d), here the streamlines
are more circular, presenting larger azimuthal velocities near
the fingertips, for smaller values of the viscosity contrast. The
circular streamlines indicate that the whole drop’s body is
subjected to a rotational motion. The bending of the fingers
results from the faster movements taking place at the fingertips.
On the other hand, the streamlines present significant radial
orientation at areas closer to the fingers’ roots for larger values
of A (A = 0.76). In this case, the streamlines are almost evenly
distributed, which implies a nearly uniform circulating flow
field. The existence of nearly uniform azimuthal velocities
explains a more prominent rigid rotation of the whole fluid.

We conclude by presenting Fig. 7, which provides com-
plementary information about the role played by the Coriolis
effects. It plots the pattern’s interfacial lengths as a function
of time, for different values of A and Re. In agreement with

our previous observations, we see that the inclusion of the
Coriolis force leads to interfacial stabilization, resulting in
shorter lengths. It is also apparent that the effect to a negative
A = −0.76 is not that significant, at least in the time period
simulated. Finally, for a fixed value of the Reynolds number
(say, for Re = 1.6), it can be observed that Coriolis effects
are more intense for a smaller viscosity contrast (A = 0.46).
All these findings are consistent with existing sharp interface
numerical results [20].

IV. CONCLUSION

We have presented a diffuse-interface numerical study for
the rotating Hele-Shaw problem, which has been implemented
by utilizing a Boussinesq Hele-Shaw-Cahn-Hilliard (BHSCH)
approach. Our analysis considers the role of negative, zero, and
positive viscosity contrast, as well as the action of Coriolis
force effects.

In the absence of Coriolis effects, our results correctly
predict the number of emergent fingering structures, and
the appropriate finger competition behavior as the viscosity
contrast A is varied. We have also found that the occurrence
of complex finger pinch-off events are increasingly favored
as A changes from positive to negative values. The excellent
agreement between our numerical results with existing ex-
periments [14,17,22], spectral method [13], boundary integral
[16], and a different kind of phase-field simulation [22], plus
analytical calculations [15], serve to substantiate the validity
and correctness of our BHSCH approach.

When Coriolis force contributions are taken into account,
our numerical experiments clearly reveal three basic behaviors:
a stabilized radial growth, existence of pattern phase drift,
and development of finger bending. Once again, all these
features are in line with what has been obtained by previous
simulational investigations of the problem, which employed
distinct numerical techniques [20,21]. Furthermore, we have
also verified that important topological changes related to fin-
ger pinch-off and emission of satellite droplets are significantly
favored by the action of the Coriolis force.
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