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Statisticians typically estimate the parameters of latent class and latent profile models using the
Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fit-
ting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent
classes that best satisfy the conditional independence assumption underlying the latent variable model.
The second stage then uses mixture modeling treating the class membership as known. The proposed
approach is theoretically justifiable, directly checks the conditional independence assumption, and con-
verges much faster than the full likelihood approach when analyzing high-dimensional data. This paper
also develops a new classification rule based on latent variable models. The proposed classification pro-
cedure reduces the dimensionality of measured data and explicitly recognizes the heterogeneous nature
of the complex disease, which makes it perfect for analyzing high-throughput genomic data. Simulation
studies and real data analysis demonstrate the advantages of the proposed method.

Key words: classification, finite mixture, hierarchical clustering, high-dimensional data, k-means, mi-
croarray, two-stage approach.

1. Introduction

In many psychometric studies, the conceptually or clinically most meaningful outcome is
unobservable. Hence, a set of multiple indicators is measured in place of this outcome. Latent
variable models explore the relationships between unobservable outcomes and their measured
indicators. These models assume that all measured indicators reflect the same unobservable out-
come (the assumption of unidimensionality), and that this outcome fully explains the associa-
tions between observed indicators. This unobservable outcome can be described by a contin-
uous variable representing individuals’ positions on a scale of ability (the latent trait) (Rasch,
1960; Lazarsfeld & Henry, 1968; Moustaki, 1996), or a categorical variable identifying subpop-
ulations or “classes” each of which has homogeneous outcome status (Goodman, 1974; Titter-
ington, Smith, & Makov, 1985; Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Huang
& Bandeen-Roche, 2004). This paper focuses on the cases involving an underlying categorical
variable (the latent class variable). In this case, measured indicators are independent of one an-
other within any category of the latent variable (i.e., exhibit conditional independence). When
measured indicators are categorical variables, such models are called latent class (LC) models.
Models with continuous indicators are called latent profile (LP) models.

The parameters of LC/LP models are typically estimated by maximum likelihood (ML) for
a fixed number of classes. Viewing the class membership as unobservable, the LC/LP model
becomes a typical incomplete-data problem and the Expectation-Maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977) can estimate the ML parameters. Notice that the EM approach
does not assign objects to classes as part of the procedure, but rather uses estimated model pa-
rameters to infer the latent classes. Assumptions used to derive the likelihood function, such
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as unidimensionality and conditional independence, are empirically checked through analyses
stratifying on inferred class memberships (Bandeen-Roche et al., 1997). This is problematic be-
cause these inferred latent classes can be wrong if the model assumptions are violated. Also, for
large number of indicators and moderate or small samples, using the EM algorithm to estimate
parameters in LC/LP models is typically time-consuming and the algorithm may have difficulty
converging.

LC/LP analyses may legitimately be viewed as the analog of cluster analysis. Cluster anal-
ysis uses a number of different algorithms and methods for grouping similar objects into their
respective categories. Grouping methods optimize a criterion that measures the compatibility of
clustering parameters with the data (Celeux & Govaert, 1992). This paper uses modified k-means
and hierarchical clustering methods to group objects into classes with a purposively selected op-
timization criterion that reflects the conditional independence assumption. Treating class mem-
bership assigned through the clustering algorithm as the observed value of latent class makes it
easy to estimate parameters in the LC/LP model. The proposed method can easily handle high-
dimensional data (i.e., many indicators) and directly obtain estimated latent classes that best
describe the association among indicators.

This paper also develops a classification rule for predicting the statuses of interest (e.g.,
diseased/not diseased, cured/not cured) of new objects based on LC/LP models. The proposed
classification rule is especially useful for high-dimensional data (e.g., microarray data). Clas-
sification using high-dimensional data is difficult due to many noisy and overlapping features
in such data, which can disturb the classification. Thus, it is important to carry out dimension
reduction before classifying objects on the basis of high-dimensional data. The latent variable
model explicitly recognizes and, hence, mitigates errors in measurement, and accurately sum-
marizes measured indicators. Therefore, the latent variable model is the perfect tool for di-
mension reduction. The proposed parameter estimating procedure can easily perform LC/LP
analyses on high-dimensional data, creating classification rules based on the inferred latent
classes.

2. Model

Let Yi = (Yi1, . . . , YiM)T denote a set of M observable indicators and let Si denote the
unobservable class membership for the ith individual in a study sample of N persons. Yim can
be either continuous, ordinal, or categorical, and Si can take values {1, . . . , J }, where J is the
number of latent classes. LC/LP models are based on the concept of conditional independence
in the sense that the observed indicators are statistically independent within any latent class.
Therefore, the density function for the observation (y1, . . . , yM) of Yi can be expressed as the
finite mixture:

f (y1, . . . , yM) =
J∑

j=1

{
ηj

M∏

m=1

fmj (ym|Si = j)

}
, (1)

where

Pr(Si = j) = ηj , and Yim|Si = j ∼ fmj (·|Si = j). (2)

Several authors have extended LC/LP models to describe the effects of covariates on the
underlying outcome or on measured indicators within latent levels. It is possible to summarize the
effect of covariates on the underlying outcome by allowing covariates xi = (1, xi1, . . . , xiP )T to
be functionally related to latent class Si (Dayton & Macready, 1998; Bandeen-Roche et al., 1997;
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Huang & Bandeen-Roche, 2004). This paper uses a generalized linear framework (McCullagh &
Nelder, 1989) to incorporate covariate effects into Si :

log

[
ηj (xi )

ηJ (xi )

]
= β0j + β1j xi1 + · · · + βPjxiP , for j = 1, . . . , J − 1. (3)

To adjust for characteristics associated with indicators and, hence, avoid possible misclassi-
fication of underlying variable categories, we can incorporate covariates in the within-class
distributions of measured indicators (Melton, Liang, & Pulver, 1994; Huang & Bandeen-
Roche, 2004; Muthén & Muthén, 2007). Let zi = (zi1, . . . , ziM) with zim = (zim1, . . . , zimL)T ,
m = 1, . . . ,M be the covariates used to build direct effects on measured indicators within la-
tent classes for the ith individual (i.e., fmj (·|Si = j) = fmj (·|Si = j, zim)). If Yim can take
values {1, . . . ,Km}, where Km ≥ 2, m = 1, . . . ,M , then assume that (Yim|Si = j, zim) ∼
Multinomial(1;pm1j (zim),pm2j (zim), . . . , pmKmj (zim)), and

log

[
pmkj (zim)

pmKmj (zim)

]
= γmkj + α1mkzim1 + · · · + αLmkzimL, for k = 1, . . . , (Km − 1). (4)

When indicators are continuous variables, we assume that (Yim|Si = j, zim) ∼
Normal(μmj (zim), σ 2

m), and

μmj (zim) = θmj + τ1mzim1 + · · · + τLmzimL. (5)

Some features of the above extended LC/LP models that incorporate covariate effects can
be found in Huang and Bandeen-Roche (2004). Notice that, after adjusting covariate effects, the
conditional independence assumption is also conditioning on zi :

fj (y1, . . . , yM |Si = j, zi ) =
M∏

m=1

fmj (ym|Si = j, zim). (6)

3. Two-Stage Optimization-Based Parameter Estimation

This paper proposes an alternative strategy for estimating parameters. The proposed method
consists of two stages. The first stage obtains the underlying latent class membership through
some optimization procedure. The second stage treats the obtained class membership as a known
variable and then estimates the other parameters.

LC/LP analysis is a useful tool for classifying objects based on their responses to a set of
indicators. The basic model postulates an underlying categorical latent variable Si ∈ {1, . . . , J }
and assumes that the measured indicators within any category of the latent variable are inde-
pendent of one another. The proposed method obtains Si by grouping objects into J subgroups
such that objects in one subgroup have a set of statistically independent indicators. Grouping
methods optimize a criterion that measures the independence among indicators within each sub-
group.

Let Ci denote the class membership assigned through the above optimization procedure.
Then estimate βpj in (3) by treating Ci as a response variable and fitting a polytomous logistic
regression (McCullagh & Nelder, 1989) with covariates xi . Estimate (γmkj ,αlmk) in (4) and
(θmj , τlm, σ 2

m) in (5) by plugging Cij = I(Ci = j) = 1 if Ci = j , 0 otherwise, j = 1, . . . , (J − 1)
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into reparameterized models:

log

[
Pr(Yim = k|Ci1, . . . ,Ci(J−1), zim)

Pr(Yim = K|Ci1, . . . ,Ci(J−1), zim)

]

= γmk0 + γmk1Ci1 + · · · + γmk(J−1)Ci(J−1)

+ α1mkzim1 + · · · + αLmkzimL, for k = 1, . . . , (Km − 1) (7)

and

E(Yim|Ci1, . . . ,Ci(J−1), zim) = θm0 + θm1Ci1 + · · · + θm(J−1)Ci(J−1)

+ τ1mzim1 + · · · + τLmzimL, (8)

and fitting polytomous logistic regressions and linear regressions, respectively. The correspond-
ing standard error estimations can also be obtained. Notice that these standard error estimations
do not reflect the “true” variations of parameter estimates. When performing the proposed two-
stage procedure, βpj ’s and (γmkj ,αlmk)’s/(θmj , τlm, σ 2

m)’s are estimated separately; therefore, the
variation of estimates of βpj ’s does not account for the variation of (γmkj ,αlmk)/(θmj , τlm, σ 2

m)

estimates, and vice versa. The following simulation study evaluates the closeness to the true
values.

The following analysis theoretically justifies the proposed two-stage optimization-based
model fitting. The Appendix provides the proof.

Theorem 1. Treat the observable data as a sequence {(Y1,x1, z1), (Y2,x2, z2), . . .} of mutually
independent vector triples, and let subscript-n denote quantities estimated from the first n triples
in the sequence. Suppose that

(a) there exists object partition Cin that satisfies the conditional independence assump-
tion (6): fj (y|Cin = j, zi ) = ∏M

m=1 fmj (ym|Cin = j, zim) for j = 1, . . . , J ; and
(b) β̂pjn, (γ̂mkjn, α̂lmkn) and (θ̂mjn, τ̂lmn, σ̂

2
mn), for all j,m,p, l, k, are the estimates of pa-

rameters in (3), (7) and (8), with Cin being the class membership indicator and these
parameter estimates converge in probability to β∗

pj , (γ ∗
mkj ,α

∗
lmk) and (θ∗

mj , τ
∗
lm, σ ∗2

m ).

Then, the underlying distribution of Yi

fYi
(y|xi , zi ) −−−→

n→∞

J∑

j=1

{
η∗

j (xi )

M∏

m=1

f ∗
mj (ym|Si = j, zim)

}

for each y = (y1, . . . , yM) ∈ SuppYi
and i = 1,2, . . . , where SuppYi

denotes the support of Yi ,
and η∗

j (xi ) and f ∗
mj (ym|Si = j, zim) are class probabilities and within-class distributions in (3),

(4) and (5) evaluated at β∗
pj , (γ ∗

mkj ,α
∗
lmk) and (θ∗

mj , τ
∗
lm, σ ∗2

m ).

Assumption (a) is met if the optimization procedure obtains an object partition with a small
enough loss value. Part (b) assumes the consistency of parameter estimators when the underlying
latent variable is known and equal to the class membership estimates from (a). The polytomous
logistic and linear regressions are used to estimate these parameters, which leads to maximum
likelihood estimates. Thus, the convergence is ensured under some regularity conditions. The-
orem 1 conveys many key features of the proposed approach. First, if the optimization pro-
cedure can obtain satisfactory results, the estimates obtained from the proposed approach can
be viewed as a derivation of a LC/LP model (1). Second, its statement as an asymptotic result
highlights the necessity of adequate precision for estimation, which is driven by convergence of
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(β̂pjn, γ̂mkjn, α̂lmkn, θ̂mjn, τ̂lmn, σ̂
2
mn) to (β∗

pj , γ
∗
mkj ,α

∗
lmk, θ

∗
mj , τ

∗
lm, σ ∗2

m ). Third, in the proposed
optimization-based approach, object partition is treated as an unknown parameter, and the max-
imization is over all possible partitions as well as over values of model parameters. Under this
approach, the model parameters and object partitions increase in number with the number of ob-
servations. Note that (β∗

pj , γ
∗
mkj ,α

∗
lmk, θ

∗
mj , τ

∗
lm, σ ∗2

m ) may not be the true population parameters
(Marriott, 1975; Bryant & Williamson, 1978; Clogg, 1995). Nevertheless, this approach appears
to be fruitful since it allows us to find out the underlying unobservable characteristics. As a re-
sult, the conditional independence assumption that cannot be directly checked in the likelihood
approach can be evaluated as a part of our two-stage algorithm. This two-stage approach splits
the traditional estimation algorithm into two subsets and operates two subsets individually. Be-
cause each subset has fewer parameters and is easier to converge, this algorithm should be faster
than the full likelihood approach.

4. Optimization Algorithm

To obtain the underlying latent class Si , the proposed method modifies k-means and hier-
archical clustering algorithms to optimize the conditional independence criterion. This section
first details the proposed algorithms when covariates zi are not incorporated in the conditional
distribution fmj (·|Si = j), and then extends the algorithms to allow covariate effects. Finally, the
proposed method selects the number of latent classes based on the results of these optimization
algorithms.

4.1. Latent Class Membership Assignment When Not Incorporating Covariate Effects

To illustrate the proposed approach, this section first describes the sample covariance matrix
among indicators used. For continuous indicators, the sample covariance matrix is an M × M

matrix with component (m, t) being the sample covariance between Yim and Yit . For polytomous
categorical indicators, each component of (Yi1, . . . , YiM) is represented as a vector with elements
being the indicators of each category:

Ỹi = (
Ỹi1, Ỹi2, . . . , ỸiM

)

= (Yi11, . . . , Yi1(K1−1), Yi21, . . . , Yi2(K2−1), . . . , YiM1, . . . , YiM(KM−1))

with Yimk = I(Yim = k); m = 1, . . . ,M ; k = 1, . . . , (Km − 1). Then,

Cov
(
Ỹi

) = {
Cov(Yimk,Yits)

} =

⎡

⎢⎢⎢⎣

B11 B12 · · · B1M

B21 B22 · · · B2M

...
...

. . .
...

BM1 BM2 · · · BMM

⎤

⎥⎥⎥⎦ , (9)

where Bmt = Cov(Ỹim, Ỹit ) is a (Km − 1) × (Kt − 1) block matrix. Various components of the
above covariance matrix are

Cov(Yimk,Yits) =
⎧
⎨

⎩

Pr(Yimk = 1) − Pr(Yimk = 1)Pr(Yits = 1) if m = t and k = s,

−Pr(Yimk = 1)Pr(Yits = 1) if m = t and k �= s,

Pr(Yimk = 1, Yits = 1) − Pr(Yimk = 1)Pr(Yits = 1) if m �= t .

(10)
Obtain the sample covariance matrix by replacing the probabilities with the sample averages.
Second, define the “loss of independence,” as the distance measure used when performing k-
means and hierarchical clustering. Let ACovj be the average of absolute values of entries in
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off-diagonal elements (continuous indicators)/blocks (polytomous indicators) of the sample co-
variance matrix using objects in class j . ACovj represents the magnitude of between-indicator
covariances for the j th class. Thus, “loss of independence” is defined as

LoI =
J∑

j=1

wj ACovj with wj = the number of objects in class j

N
. (11)

Notice that LoI is the weighted average of ACovj over all classes with weights proportional to
the number of objects in each class. The weighted average can account for the sizes of classes
to avoid inflating the effect of small classes. However, this also increases the risk of conditional
dependency in small classes. In the planning stage of our approach, we tried the equal weighting
LoI, but the results were not as good as the weighted one.

This paper modifies the k-means algorithm, which groups objects using the criterion of dis-
tance to cluster mean. The modified algorithm is termed as the “k-groups” clustering algorithm,
which can more appropriately reflect the main idea of the algorithm. The k-groups algorithm
uses the following steps to obtain the estimated class membership:

K1. Randomly partition the objects into J initial classes.
K2. Proceed through the list of objects, assigning an object to the class with the minimum

“loss of independence.”
K3. Repeat Step K2 until no more reassignments take place.

Step K2, for a given object, defines LoI(u) = ∑J
j=1 w

(u)
j ACov(u)

j as the loss of independence
when the object is assigned to class u. Assigning the object through all J classes obtains
LoI(1), . . . ,LoI(J ). A smaller value of LoI(u) increases the independence of the observed in-
dicators within latent classes when assigning the object to class u. Thus, assign a given object to
the class with the minimum loss of independence. Figure 1 shows an example of this k-groups
procedure.

Hierarchical clustering techniques proceed through either a series of successive mergers (ag-
glomerative) or a series of successive divisions (divisive). Agglomerative hierarchical methods
are precise at the bottom of the clustering tree and adequate when looking for small or many
classes. Divisive hierarchical methods are precise at the top of the tree and adequate when look-
ing for large or few classes. The agglomerative hierarchical clustering algorithm includes the
following steps:

AH1. Start with N classes, each containing a single object.
AH2. Consider the union of every possible pairs of classes. Merge the two classes whose

combination results in the minimum loss of independence.
AH3. Repeat Step AH2 until all objects are in a single class. Record the identity of classes

merged and the losses of independence at which the mergers take place.

In Step AH2, for current J (≤ N) classes, if classes u and v are merged, label the newly
formed class (uv). Let LoI(uv) be the loss of independence when merging classes u and v (i.e.,
LoI(uv) = w(uv) ACov(uv) +∑

j �=u,v wj ACovj ). We can get
(
J
2

)
LoI(uv)’s. A smaller value of

LoI(uv) increases the independence of the observed indicators within latent classes when merg-
ing classes u and v. Thus, merge the two classes whose combination results in the minimum
loss of independence. Figure 2 illustrates the proposed agglomerative hierarchical procedure.
The results of the agglomerative hierarchical clustering method can be graphically displayed as a
dendrogram whose vertical axis gives the values of the loss of independence at which the mergers
occur.
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FIGURE 1.
The proposed k-groups procedure. K1: Partition the 9 objects into 3 initial classes. K2: What class will object 1 be
assigned to? Assigning object 1 to classes 1, 2, and 3 yields LoI(1) , LoI(2) , and LoI(3) , respectively. Assign object 1 to
the class corresponding to the minimum LoI(j) . Proceed through objects 2–9, repeating the above procedure. K3: Repeat
Step K2 until no more reassignments take place.

FIGURE 2.
The proposed agglomerative hierarchical procedure. AH1: Star with four initial classes, each containing a single ob-
ject. AH2: Which pair of classes will be merged? Considering the union of all six (=(4

2
)
) possible pairs of classes, we

get LoI(12) , LoI(13) , LoI(14) , LoI(23) , LoI(24) , and LoI(34) . Merge the pair of classes whose combination yields the
minimum LoI(uv) . AH3: Repeat Step AH2 until all objects are in a single class.
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FIGURE 3.
The proposed divisive hierarchical procedure. DH1: Start with a single class that consists of all objects. DH2: Use
2-groups approach to divide the initial class into classes 1 and 2. DH3: Which class will be split first? Splitting class
1 produces LoI(1) . Splitting class 2 produces LoI(2) . Split the class whose division yields the minimum LoI(u) . DH4:
Repeat Step DH3 until each object is in its own singleton class.

The divisive hierarchical algorithm is implemented as follows:

DH1. Start with a single class containing all objects.
DH2. Divide the preliminary class into two smaller classes, using the k-groups approach

above with k = 2.
DH3. Split one of the existing classes, as in Step DH2. Split the class whose division yields

the minimum loss of independence.
DH4. Repeat Step DH3 until each object is in its own singleton class. Record the identity

of classes split and the losses of independence at which the splits take place.

In Step DH3, for current J (≥ 1) classes, if the class u is split by the 2-groups approach, label the
two newly formed classes (u)1 and (u)2. Let LoI(u) be the loss of independence when the class u

is split (i.e., LoI(u) = w(u)1 ACov(u)1 +w(u)2ACov(u)2 + ∑
j �=u wj ACovj ). Of those J LoI(u)’s,

split the class whose division yields the minimum loss of independence. Figure 3 illustrates the
proposed divisive hierarchical procedure. Similar to the agglomerative procedure, the results of
the divisive hierarchical clustering method can be graphically displayed as a dendrogram whose
vertical axis represents the values of the loss of independence at which the splits occur. Notice
that the dendrogram can contain inversions or reversals in which a larger loss of independence
takes place at a larger number of classes. To make the plot more interpretable, when inversion
happens, set the height of J classes in the dendrogram as the height of J − 1 classes.

4.2. Latent Class Membership Assignment When Incorporating Covariate Effects

The k-groups and hierarchical clustering algorithms above assume that observed indica-
tors are statistically independent within any latent class. If covariates zim are incorporated into
the conditional distributions of models (4) and (5), the conditional independence assumption is
also conditioning on incorporated covariates (i.e., assumption (6)). To apply these algorithms to
models (4) and (5), it is necessary to “eliminate” the covariate effects, and hence “marginalize”
models (4) and (5).
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This study adopts the marginalization process developed in Section 3.3.1 of Huang (2005).
The strategy for achieving such marginalization can be motivated by the properties of added
variable plots for linear regression models (Cook & Weisberg, 1982). To present the process,
first reparameterize models (4) and (5) as models (7) and (8), respectively. This process assumes
that the incorporated covariates zim and the class membership Cij , j = 1, . . . , J − 1 are orthog-
onal, and calculates the residual of regressing Yim on zim separately for each m ∈ {1, . . . ,M}.
It is then possible to extract zim from conditional distributions by treating these residuals as
new response variables and regressing them on Cij . Therefore, the conditional independence as-
sumption (6) is satisfied if objects belonging to the same latent class have a set of M statistically
independent residuals. Thus, apply the clustering algorithms developed in the previous section to
these residuals to obtain a class membership that satisfies assumption (6).

When Yim’s are continuous, compute the typical residuals of linear regressions Rim (i.e., the
differences between observed responses and their modeled predictors). When Yim’s are categor-
ical, the problem becomes how to calculate residuals from the generalized linear model

log

[
Pr(Yim = k|zim)

Pr(Yim = K|zim)

]
= α1mkzim1 + · · · + αLmkzimL, for k = 1, . . . , (Km − 1). (12)

We propose to use the “pseudo-residual”

R̃im = (
Ĉov

(
Ỹim

))−1(Ỹim − p̂im

)
, (13)

where Ỹim is defined as in Section 4.1, pim = E(Ỹim|zim), and “hat” denotes the estimated values
based on (12). The pseudo-residual (13) is defined by analogizing the iteratively reweighted
least-squares of generalized linear models with the least-square estimates of linear regressions
(Landwehr, Pregibon, & Shoemaker, 1984; Huang, 2005). Then, classify objects based on new

response variables Rim (continuous indicators) or R̃im (categorical indicators), as in the previous
subsection.

The orthogonality assumption between zim and the class membership is a strong assump-
tion in most applications. However, the orthogonality assumption holds to an increasingly close
approximation as N → ∞ if xi and zim are independent (Huang, 2005). This assumption can be
verified empirically by calculating the sample correlation matrix among covariates.

4.3. Selecting the Number of Latent Classes

When using the k-groups algorithm to infer the underlying class membership, first fit the
LC/LP models (1), (3), (4) and/or (5) repeatedly under different numbers of classes, and record
their corresponding loss of independence at which the k-groups algorithm stops. The number of
latent classes to be selected is the number that yields the minimum loss of independence. For
the agglomerative/divisive hierarchical clustering algorithm, examine the dendrogram for large
changes in vertical values, which indicate the best number of latent classes to fit.

5. Classification Using LC/LP Models

Many studies attempt to predict new observations’ unknown disease statuses based on in-
dicator measurements. Here, the LC/LP model is used to predict the disease status from the
indicators, on the assumption that the latent class mediates the relationship fully. So from a psy-
chometric point of view, the LC or LP model is measurement invariant with respect to the disease
status (Meredith, 1993).
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Consider a set of N objects with known disease statuses Di and measured indicators Yi plus
incorporated covariates xi , zi if existing, for i = 1, . . . ,N , where Di takes values {1, . . . ,A}.
Use these objects to fit LC/LP models (1), (3), (4) and/or (5) following the methods de-
scribed in Section 3. Then, obtain estimations Ci , β̂pj , (γ̂mkj , α̂lmk) and (θ̂mj , τ̂lm, σ̂ 2

m), for all
i, j,m,p, l, k. The posterior possibility of classifying a new object with measurements on in-
dicators Y∗ = (Y ∗

1 , . . . , Y ∗
M) and covariates x∗, z∗ = (z∗

1, . . . , z∗
M) as the disease status D∗ = a

is

Pr
(
D∗ = a

∣∣Y∗,x∗, z∗) =
J∑

j=1

{
Pr

(
D∗ = a

∣∣S∗ = j
)

Pr
(
S∗ = j

∣∣Y∗,x∗, z∗)}, (14)

where S∗ is the presumed latent class membership of the new object. Equation (14) is true when
assuming

Pr
(
D∗ = a

∣∣S∗ = j,Y∗,x∗, z∗) = Pr
(
D∗ = a

∣∣S∗ = j
); (15)

in other words, latent classes can fully capture the association between the disease status and ob-
served indicators. The ability of the psychometric model to relate indicators to a latent variable
does not generally imply that the relationship between any external variable and the indicators
should run via the latent variable (which would ensure (15)). See Lux and Kendler (2010) for fur-
ther discussion. Fortunately, it is possible to verify (15) empirically by performing the regression
relating Di to Ci , Yi , xi and zi .

The components in the right hand side of (14) can be estimated by

P̂r
(
D∗ = a

∣∣S∗ = j
) =

∑N
i=1 I(Ci = j)I(Di = a)

∑N
i=1 I(Ci = j)

(16)

and

P̂r
(
S∗ = j

∣∣Y∗ = (
y∗

1 , . . . , y∗
M

)
,x∗, z∗) = η̂j (x∗)

∏M
m=1 f̂mj (y

∗
m|Si = j, z∗

m)
∑J

t=1{̂ηt (x∗)
∏M

m=1 f̂mt (y∗
m|Si = t, z∗

m)} . (17)

Here, η̂j (x∗) is the estimated latent prevalence of the j th class for the new observation x∗, eval-
uated at estimator β̂pj . The term f̂mj (y

∗
m|Si = j, z∗

m) is the estimated conditional distribution
of the mth indicator given the j th class for the new observation (y∗

m, z∗
m), evaluated at estima-

tors (γ̂mkj , α̂lmk) or (θ̂mj , τ̂lm, σ̂ 2
m). Allocate Y∗ to D∗ = a∗ at which the maximum estimated

posterior probability is reached, i.e.,

a∗ = arg max
a∈{1,...,A}

P̂r
(
D∗ = a

∣∣Y∗,x∗, z∗). (18)

The proposed classification rule predicts a new object’s disease status using his/her inferred
latent class variable S∗. The S∗ term essentially summarizes the new object’s measured indica-
tors through the training set {Y1, . . . ,YN }. This summarization process can reduce dimension-
ality and errors in measurements. This is especially important for high-dimensional data due to
many overlapping and noisy features, which can disturb the classification. Also, if the disease
of interest does not follow typical Mendelian inheritance patterns (i.e., is a “complex” disease),
objects with the same disease status can originate from different indicator response patterns. As
a result, traditional linear/quadratic discriminant models that directly summarize the indicator
response patterns under each disease status can fail. The proposed LC/LP approach recognizes
the heterogeneous nature of a complex disease; it first predicts the new object’s likelihood of
being in homogeneous indicator response patterns and then weights each homogeneous pattern
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with its prediction probability (i.e., Pr(D∗ = a|S∗ = j)) to classify the new object. Genetic and
nongenetic (environmental) contributions to the disease can be adjusted through incorporated
covariates x∗ and/or z∗ (Lubke, Carey, Lessem, & Hewitt, 2008).

6. Simulation Study

The simulations in this study examine characteristics of the proposed approaches in three as-
pects: (i) the performance of the proposed approach, including the accuracy of model parameter
estimations, agreement between simulated class membership and assigned (by proposed clus-
tering algorithms) class membership, and satisfaction of independence among indicators within
each latent class; (ii) the sensitivity of the proposed method to model assumptions, including
conditional independence among indicators given the latent class, and orthogonality between
zim and the class membership; and (iii) a comparison of the current results with the traditional
EM approach used in Huang and Bandeen-Roche (2004) (regression extension of latent class
analysis (RLCA) model). This section only presents results for categorical indicator measure-
ments (i.e., Yim takes values {1, . . . ,Km}, for m = 1, . . . ,M). A similar pattern of characteristics
appeared in continuous indicators.

6.1. Study Design

This study simulates two different latent class models. The first model was a three-class
model with five two-level measured indicators, two covariates associated with conditional prob-
abilities, and two covariates associated with latent prevalences (i.e., J = 3, M = 5, K1 = · · · =
K5 = 2, P = L = 2). The other was a six-class model with five three-level measured indicators,
two covariates associated with conditional probabilities, and two covariates associated with la-
tent prevalences (J = 6, M = 5, K1 = · · · = K5 = 3, P = L = 2). The covariates used in the
simulation were obtained from the schizophrenia syndrome scale study described in the fol-
lowing section. In each model, the covariates associated with conditional probabilities were the
variables “Sex” and “Age” (in years), and the covariates associated with latent prevalences were
variables “Occupation” (with versus without occupation) and “Dprime,” which is the sensitiv-
ity index from the Continuous Performance Test (Rosvold, Mirsk, Sarason, Bransome, & Bech,
1956). The true model parameter values of βpj , γmkj and αlmk were adopted from the parameter
estimates of fitting the RLCA model to a subset of the data used in the following section. For
the three-class model, the sample size N = 200 with approximately six individuals per param-
eter. For the six-class model, N = 500 with approximately five individuals per parameter. The
indicator measurements Yi were then generated from the model with 100 replications.

This study also simulates latent class models with “conditional dependency” among mea-
sured indicators given the latent class membership. This represents a model often encountered in
practice, and makes it possible to evaluate the impact of the conditional independency assump-
tion on various model fitting approaches. The conditional probabilities were obtained through

log

[
pmkj (zim)

pmKmj (zim)

]
= γmkj + bij + α1mkzim1 + · · · + αLmkzimL, (19)

where bij ∼ Normal(0, ν2
j ), and βpj , γmkj and αlmk equal the values used in the conditional

independence model. Model (19) allows for conditional dependence among indicators by incor-
porating a single Gaussian random effect into (4) (Qu, Tan, & Kunter, 1996; Albert, McShane,
& Shih, 2001).

The covariates associated with conditional probabilities (“Sex” and “Age”) and the co-
variates associated with latent prevalences (“Occupation” and “Dprime”) are not independent;
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older age is associated with a lower “Dprime” value (p-value = 0.02) and having an occupa-
tion (p-value = 0.04). This indicates the violation of the orthogonality assumption between zim

and the class membership described in Section 4.2, but it is often encountered in real applica-
tions. The orthogonality assumption is not required to implement the EM approach. To eval-
uate the sensitivity of the proposed marginalization method to this assumption, compare the
results of a latent class model with two independent sets of covariates: zim1 ∼ Bernoulli(pz),
zim2 ∼ Normal(μz, σ

2
z ); xi1 ∼ Bernoulli(px), xi2 ∼ Normal(μx,σ

2
x ); and all ziml and xip are

mutually independent. We chose pz = 0.54 (the proportion of males in “Sex”), μz = 33.33,
σ 2

z = 64.06 (the sample mean and variance of “Age”), px = 0.28 (the proportion of having occu-
pation in “Occupation”), and μx = 3.05, σ 2

x = 2.36 (the sample mean and variance of “Dprime”).
Initial values must be chosen carefully to ensure reasonable convergence of fitting algorithms

and avoid local maxima in parameter estimation. To initialize EM fitting of (3) and (4), first fit a
latent class model without the incorporated covariates, and then randomly assign each object to
a class with posterior probabilities of class membership calculated from the initial no-covariate
model. Then, regress the estimated membership on the covariates to obtain initial values of coef-
ficients for (3) and (4). Given that the simulated data are somewhat sparse in this study, iterated
EM steps quit frequently due to extremely large values of parameter estimates, and the algorithm
did not converge. Thus, the absolute values of parameter estimates were trimmed to 20 in each
EM iteration, which redirected the algorithm at boundary values and improved the convergence
rate of the EM procedure. Initial classes of the proposed k-groups optimization algorithm were
obtained through clustering algorithms based on k-means or hierarchical clustering, but using
the criterion of distance to cluster mean instead of the proposed criterion of conditional indepen-
dence.

6.2. Simulation Results

6.2.1. Performance of the Two-Stage and EM Approaches The “true” conditional prob-
abilities and the latent prevalences calculated from the true parameter values were examined
(results are not shown). Apparently, the simulated data in this study contain sparse response pat-
terns, and the six-class model exhibits a different sparseness pattern than the three-class model.
Thus, this simulation can evaluate the proposed approaches in various sparse-data situations.

Table 1 presents estimations of the regression coefficients for conditional probabilities under
the three-class model. The EM approach performed poorly in estimating γmkj ’s. The estimations
from the k-groups, agglomerative hierarchical, and divisive hierarchical methods were close to
the true values. Table 1 also displays the standard errors of parameter estimates in polytomous
logistic regressions (7) and the sample standard errors of the parameters estimates from 100
simulation replications (i.e., “true” standard errors). Both standard errors were much larger in the
EM approach than the clustering approaches. The EM approach also yielded very large standard
errors of γmkj estimates. This is due to the convergence to boundary solutions in γmkj estimates
for some replicates, which may have been caused by sparse response patterns. As expected,
the proposed clustering methods underestimated the standard error estimates from polytomous
logistic regressions. This underestimation was small, especially for the covariate coefficients
(“Sex” and “Age”).

Table 2 presents estimates for latent prevalence regression (3) under the three-class model.
Similar to the results for conditional probabilities, the proposed clustering methods achieved
more accurate parameter estimation than the EM approach. The EM approach did not create the
extremely large standard error estimates that it did in conditional probabilities, indicating more
stable parameter estimation in the latent prevalence regression.

Table 3 reveals agreement between simulated and obtained/inferred class membership under
the three-class model. The simulated (“true”) class membership for individual i was obtained
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TABLE 3.
Matched number of individuals between simulated and obtained/inferred class membership under the three-class model
with total 200 individuals, averaging over 100 replications.

Sim.\Est. EM algo. K-groups Hier. aggl. Hier. divi.

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 34.73 22.13 22.13 66.36 11.03 0.87 68.79 9.13 0.34 65.09 12.01 1.16
Class 2 23.76 17.44 17.00 15.15 33.17 9.43 18.07 32.72 6.96 26.40 18.45 12.90
Class 3 9.50 24.61 28.71 0.65 4.38 58.96 0.53 4.85 58.61 1.04 12.69 50.26

TABLE 4.
Average correlation coefficient of pseudo-residuals within each latent class under the three-class model.

EM algo. K-groups Hier. aggl. Hier. divi.

Class 1 0.14 0.09 0.12 0.08
Class 2 0.14 0.06 0.17 0.10
Class 3 0.13 0.09 0.12 0.11

by randomly assigning the individual to a class with probabilities η1(xi ), . . . , η3(xi ) calculated
from the true model parameter values. The class membership inferred from the EM approach
was created through the posterior latent prevalence, as described by Bandeen-Roche et al. (1997)
and Huang and Bandeen-Roche (2004). The overall proportions of agreement for EM, k-groups,
agglomerative hierarchical, and divisive hierarchical approaches were 40.44%, 79.25%, 80.06%,
and 66.9%, respectively.

Table 4 shows the average of pair-wise sample correlations of pseudo-residuals {R̃im,m =
1, . . . ,5} of (13) within each estimated class under the three-class model. The conditional inde-
pendence assumption is satisfactory for all approaches.

Sparseness of the simulated data significantly affects the EM approach. When fitting the
model with the EM algorithm, only 62 out of 100 replicated three-class models actually con-
verged (i.e., the difference in log likelihood between two consecutive EM-iterations was smaller
than 0.001 within 200 iterations). All 100 replications converged when using the proposed two-
stage approaches.

Tables 5, 6, 7, and 8 present the corresponding results under the six-class model, which are
similar to the results of the three-class model. However, due to the much more complex model
structure of the six-class model, the proposed methods have worse accuracy, agreement, and
independence. The degree of underestimation in standard errors of γmkj estimates can be large
under the six-class model when using the proposed two-stage approach. Fifty-two out of 100
replicated six-class models converged when using the EM approach, whereas all 100 replications
converged when using the proposed approaches.

6.2.2. Sensitivity to Model Assumptions A three-class model was generated with condi-
tionally independent indicators within the 1st and 3rd classes but conditionally dependent indi-
cators in the second class (ν2

j = 49). Its average root mean square errors (RMSEs) for estimating
parameters in conditional probabilities were 8.26, 3.16, 3.54, and 3.46 using the EM, k-groups,
agglomerative hierarchical, and divisive hierarchical approaches, respectively. These results were
worse than the estimates under the conditional independence model with average RMSE values
of 6.70, 2.65, 3.18, and 3.26, respectively. In estimating parameters in latent prevalences, the av-
erage RMSE values were 2.53, 0.80, 1.26, and 0.65 under the conditional dependence model, and
1.27, 0.45, 0.50, and 0.62 under the conditional independence model, respectively. A noticeable
difference was in the agreement proportion between simulated and inferred class membership for
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TABLE 8.
Average correlation coefficient of pseudo-residuals within each latent class under the six-class model.

EM algo. K-groups Hier. aggl. Hier. divi.

Class 1 0.09 0.06 0.08 0.08
Class 2 0.12 0.05 0.17 0.08
Class 3 0.10 0.05 0.11 0.06
Class 4 0.10 0.05 0.19 0.09
Class 5 0.10 0.05 0.10 0.07
Class 6 0.10 0.05 0.19 0.06

the second class in which the conditional independence assumption was not satisfied. The sec-
ond class agreement proportions were 9.08%, 3.93%, 3.96%, and 8.40% under the conditional
dependence model, and 8.72%, 16.59%, 16.36%, and 9.23% under the conditional independence
model, respectively. Also, the conditional dependence model resulted in a larger within-class
sample correlation of pseudo-residuals (0.28, 0.21, 0.29, and 0.21, respectively) than the condi-
tional independence model (0.14, 0.08, 0.14, and 0.10, respectively). This shows that the con-
ditional independence assumption can be checked by examining the correlation coefficient of
pseudo-residuals within each latent class.

When applying the proposed approaches to a three-class model with two independent sets
of covariates xi and zim, the obtained results were not significantly different from those pro-
duced by the model with correlated xi and zim. When applying the EM, k-groups, agglomerative
hierarchical, and divisive hierarchical approaches, the average RMSE values for parameters in
conditional probabilities were 7.32, 2.92, 5.26, and 3.21, respectively; the average RMSE values
for parameters in latent prevalences were 1.43, 0.42, 0.51, and 0.59, respectively; the overall class
agreement proportions were 30.76%, 80.37%, 79.52%, and 68.27%, respectively; and the within-
class sample correlations of pseudo-residuals were 0.10, 0.07, 0.13, and 0.09, respectively.

6.3. Summary

In summary, the proposed clustering methods outperform the traditional EM approach in
sparse response patterns for measured indicators. The proposed clustering methods yield ac-
curate parameter and standard error estimates. As for assigning individuals to the class that
they belong to, the proposed clustering methods’ overall correct rates are high, with the divi-
sive hierarchy ranking lowest among three methods. Based on observations from model (1), the
conditional independence assumption appears to be satisfied in estimates from the proposed ap-
proaches. When the true underlying model contains conditionally dependent indicators within
latent classes, this assumption violation can be detected by examining sample correlations of
pseudo-residuals within each latent class. The proposed two-stage approach does not seem sen-
sitive to the assumption of orthogonality between zim and the class membership.

7. Example

7.1. Breast Cancer Data

This paper uses data from a study using gene expression profiling to predict breast can-
cer outcomes (van’t Veer, Dai, van de Vijver, He, Hart, Mao, Peterse, van der Kooy, Marton,
Witteveen, Schreiber, Kerkhoven, Roberts, Linsley, Bernards, & Friend, 2002). A total of 78
sporadic lymph-node-negative breast cancer patients under 55 years of age were examined for a
prognostic signature in their gene expression profiles. Forty-four patients remained disease-free
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for an interval of at least five years after their initial diagnosis (good prognosis group), while 34
patients had developed distant metastases within five years (poor prognosis group).

Gene expression is the level of the process where the DNA of a gene is transcribed to RNA.
Differences in gene expression of certain genes from good versus poor prognostic patients sug-
gest that these genes may induce different function in the two patient groups. Therefore, the
expression profile over a set of pre-selected genes can be used to distinguish good from poor
prognostic patients. In this study, microarray technology was used to simultaneously measure the
gene expression of 25,000 pre-selected genes for each patient (Hughes, Mao, Jones, Burchard,
Marton, Shannon, Lefkowitz, Ziman, Schelter, Meyer, Kobayashi, Davis, Dai, He, Stephaniants,
Cavet, Walker, West, Coffey, Shoemaker, Stoughton, Blanchard, Friend, & Linsley, 2001). Mi-
croarrays consist of thousands of individual DNA fragments spotted in a high-density glass slide
to which fluorescently labeled RNA isolated from patients is hybridized. After thorough washing,
the slide is imaged using a laser scanner and fluorescence measurements are made for each spot.
The fluorescence measurement indicates the abundance of the corresponding DNA fragment in
the RNA sample.

This study uses a selection of 25,000 gene expression to predict group membership (good
versus poor prognosis) by positing a latent variable that mediates between the gene expression
and the group membership, and then uses the results to classify new cases into the two prognosis
groups. We adopt the latent profile approach to reduce the dimensionality of microarray data to
a latent variable, which could reduce noise while still capturing the main biological properties
of the original data. A preliminary two-step selection process was performed to retain genes in
the analysis. The first step selected 4741 genes with the intensity ratio >2 or <0.5 (i.e., more
than two-fold difference) and the significance of regulation p-value <0.01 in more than three
patients. This was used in the original paper to focus the attention on the most informative genes.
The second step selected genes based on the ratio of their between-group to within-group sums
of squares, as suggested by Dudoit, Fridlyand, and Speed (2002). For a gene m, this ratio is

BW(m) =
∑

i

∑
a I(di = a)(ȳam − ȳ.m)2

∑
i

∑
a I(di = a)(yim − ȳam)2

, (20)

where yim denotes the intensity ratio of gene m in patient i, di is the indicator of good (=1)
or poor (=0) prognosis group of patient i, and ȳam and ȳ.m are the average intensity ratios of
gene m across samples belonging to prognosis group a only and across all patients, respectively.
Equation (20) was used to compute the BW ratio for each gene and the top 70 genes with the
largest BW ratios were selected for the finite mixture analysis.

The latent profile model of (1), (3), and (5) was then fitted using the 70 selected gene expres-
sion ratios as observed indicators. In the fitted model, the age at diagnosis (year) was correlated
with conditional probabilities, and latent prevalence was modeled as depending on age at diag-
nosis. Figures 4 and 5 present the heatmaps for the 70-gene expression profile, showing patients
ordered by the dendrograms created from the proposed agglomerative hierarchical (AH1–AH3)
and divisive hierarchical (DH1–DH4) clustering methods, respectively. The agglomerative hier-
archical method divided patients into two classes of 32 and 46, while the divisive hierarchical
method divided patients into three classes of 13, 19, and 46. The k-groups clustering approach
(K1–K3) grouped patients in three classes of 16, 24, and 38. The heatmaps showed that the 70
included genes can be divided into two different sets. Patients in the first class from the agglom-
erative hierarchical method were those with high expression levels on the first set of genes but
lower expression levels on the second set of genes, while patients in the second class behaved
reversely. The divisive hierarchical method further divided the first class from the agglomerative
hierarchical method into two with one having higher expression levels on the first set of genes
than the other. The divisive hierarchical method and k-groups method produced similar expres-
sion profiles for classes. All three clustering algorithms obtained satisfactory class allocation
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FIGURE 4.
Heatmap for breast cancer data with patients clustered using the proposed agglomerative hierarchical clustering method
(AH1–AH3). The column dendrogram for genes is based on the traditional agglomerative hierarchical clustering method
with the distance measure being one minus correlation between two genes.

with average within class correlations of 0.21, 0.21, and 0.22 for the k-groups, agglomerative
hierarchy, and divisive hierarchy, respectively.

The leave-one-out cross-validation scheme was performed to estimate the misclassification
rate of the proposed classification rule in classifying patients between good and poor prognosis
groups. The k-groups, agglomerative hierarchical, and divisive hierarchical approaches produced
misclassification rates of 24.36%, 26.92%, and 29.49%, respectively.

As in the original paper, an additional independent set of primary tumors from 19 young,
lymph-node-negative breast cancer patients was used to validate the above 70-gene prognosis
classifier. This group included seven patients who remained free of disease for at least five years,
and 12 patients who developed distant metastases within five years. Consequently, the k-groups,
agglomerative hierarchical, and divisive hierarchical approaches had three, three, and two out of
19 incorrect classifications, respectively.

7.2. Schizophrenia Syndrome Scale Data

This section uses data from a series of studies, investigating the clinical manifestations of
schizophrenia and searching for the neuropsychological, environmental, and genetic factors un-
derlying schizophrenia. The details of study design and eligibility criteria have been described
previously (Liu, Hwu, & Chen, 1997; Chen, Liu, Chang, Lien, Chang, & Hwu, 1998; Chang,
Chen, Liu, Cheng, Ou Yang, Chang, Lane, Lin, Yang, & Hwu, 2002). The analyzed data include
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FIGURE 5.
Heatmap for breast cancer data with patients clustered using the proposed divisive hierarchical clustering method
(DH1–DH4). The column dendrogram for genes is based on the traditional agglomerative hierarchical clustering method
with the distance measure being one minus correlation between two genes.

169 patients with acute schizophrenia recruited within one week of index admission and 160
subsided state patients living in the community under family care.

The schizophrenia symptoms used in this study were assessed by the Positive and Negative
Syndrome Scale (PANSS) (Cheng, Ho, Chang, Lane, & Hwu, 1996). The PANSS has 30 items
and consists of three subscales: positive (seven symptoms: P1–P7), negative (seven symptoms:
N1–N7) and general psychopathology (sixteen symptoms: G1–G16). Each item was originally
rated on a 7-point scale (1 = absent, 7 = extreme), but this scale was reduced by merging the
points with response percentages of less than 10%. This study considered external covariates
including demographic variables and environmental/neuropsychological factors. Demographic
variables included gender, age at recruitment, years of education, and occupation (versus no oc-
cupation). Environmental/neuropsychological factors included the onset-age of psychotic symp-
toms and the sensitivity index of the Continuous Performance Test (CPT), which is widely used
to measure sustained attention deficits in psychotic disorders (Chen et al., 1998).

This study explores the subtypes (groups) of schizophrenia patients based on PANSS mea-
surements. In this application, the latent class model of (1), (3), and (4) was applied to 30
PANSS items. Given that demographic variables might act as the extraneous influences to af-
fect an individual’s measurements of PANSS, the analysis included these variables as ziml’s in
(4) to obtain latent classes that more accurately reflected underlying schizophrenia subtypes. En-
vironmental/neuropsychological factors were denoted as xip’s in (3), which enables us to model
schizophrenia subtypes as depending on these factors. Figures 6 and 7 show the heatmaps for
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FIGURE 6.
Heatmap for schizophrenia data with patients clustered using the proposed agglomerative hierarchical clustering method
(AH1–AH3). The column dendrogram for genes is based on the traditional agglomerative hierarchical clustering method
with the distance measure being one minus correlation between two genes.

PANSS symptom patterns with patient subtypes identified by the proposed agglomerative hierar-
chical and divisive hierarchical clustering methods, respectively. Both clustering methods divided
patients into four subtypes. The k-groups clustering approach was also implemented, producing
four subtypes. Three clustering methods identified similar symptom patterns for classes. Class 1
generally represented a group with severe/extreme positive symptoms and moderate negative
symptoms. Class 2 exhibited severe positive and negative symptoms. Class 3 had moderate pos-
itive symptoms but mild negative symptoms. Finally, class 4 was a remitted group with only rare
symptoms. Satisfactory class allocations were obtained with average within class correlations
of 0.16, 0.18, and 0.18 for k-groups, agglomerative hierarchy, and divisive hierarchy, respec-
tively.

Several authors have pointed out that the symptom structure in schizophrenia may de-
pend on the phase of disease chronicity (Mohr, Cheng, Claxton, Conley, Feldman, Harg-
reaves, Lehman, Lenert, Mahmoud, Marder, & Neumann, 2004). This study thus aims to
use the PANSS ratings to predict patients’ phases of disease chronicity (acute versus sub-
sided). The leave-one-out cross-validation was performed to evaluate the proposed classifi-
cation method. As a result, the misclassification rates were 23.10%, 24.01%, and 28.27%
for the k-groups, agglomerative hierarchical, and divisive hierarchical approaches, respec-
tively.
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FIGURE 7.
Heatmap for schizophrenia data with patients clustered using the proposed divisive hierarchical clustering method
(DH1–DH4). The column dendrogram for genes is based on the traditional agglomerative hierarchical clustering method
with the distance measure being one minus correlation between two genes.

8. Discussion

This paper presents the k-groups and hierarchical clustering methods to search for the op-
timal class allocation that makes measured indicators as independent as possible for objects
belonging to the same class. These proposed methods adopt a clustering algorithm based on
k-means and hierarchical clustering, but using the psychometric criterion of local (conditional
on latent class) independence rather than the usual criterion of distance to cluster mean. Treating
the identified class allocation as a known predictor makes it possible to estimate the parameters
underlying LC/LP models. This approach is theoretically justifiable, allows direct checking of
the conditional independence assumption, and converges much faster than the full likelihood ap-
proach when analyzing high-dimensional data. This paper further develops a classification rule
based on the finite mixture model. Simulation results show that the proposed clustering methods
outperform the traditional EM approach when measured indicators exhibit sparse response pat-
terns. The real data analysis in this study confirms the ability of the proposed methods to handle
high-dimensional data, and confirms the accuracy of the proposed classification rule in predicting
the disease statuses of new observations.

The current study can be improved and extended in several aspects. First, this study used
pair-wise sample covariance as the measure of independence among indicators, which is straight-
forward and easy to calculate. However, it is not appropriate to use the sample covariance to
represent the association between two random variables when the sample size is small. At the



GUAN-HUA HUANG, SU-MEI WANG, AND CHUNG-CHU HSU 609

early stage of the agglomerative hierarchical approach, each class contains only very few objects
(e.g., at the initial stage, there is only one object for each class). Thus, any wrong reallocation of
objects at an early stage will result in wrong reallocation of objects in the following stages. Alter-
native measures of independence among variables can be used for the improvement. Second, for
large dimensional covariance matrices, the sample covariance matrix can be non-invertible, nu-
merically ill-conditioned, and a very inaccurate estimate of the true covariance matrix (Ledoit &
Wolf, 2004). As a result, a modified covariance matrix estimate (e.g., the one proposed by Ledoit
& Wolf, 2004) should be used when handling high dimensional data. Third, a relatively small
unknown subset of observed indicators contributes to the clustering of high-dimensional data.
Therefore, algorithms that simultaneously perform variable selection and object clustering (e.g.,
Brusco & Cradit, 2001; Friedman & Meulman, 2004) can be used to replace regular clustering
algorithms.
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Appendix: Proof of Theorem 1

For simplicity, the following proofs focus on the latent class model (i.e., measured indicators
are categorical variables) with K1 = · · · = KM = K (i.e., the levels of items are all the same).
Extension to allow the levels to be different and to the latent profile model is straightforward.

First consider the following two equalities:

Pr(Yi = y|Cin = j, zi ) =
M∏

m=1

Pr(Yim = ym|Cin = j, zim)

=
M∏

m=1

E
[
Pr

(
Yim = ym

∣∣Cin = j, zim, γ̂ mn, α̂mn

)]

=
M∏

m=1

E

[
K∏

k=1

(
p̂imkjn

)ymk

]

−−−→
n→∞

M∏

m=1

K∏

k=1

(
p∗

imkj

)ymk , (A.1)

where γ̂ mn = (γ̂mkjn, for all k, j); α̂mn = (̂αlmkn, for all l, k); γ ∗
m = (γ ∗

mkj , for all k, j); α∗
m =

(α∗
lmk, for all l, k); pimkj = pmkj (zim); p̂imkjn is pimkj evaluated at (γ̂ mn, α̂mn); p∗

imkj is pimkj

evaluated at (γ ∗
m,α∗

m); and ymk = 1 if ym = k; 0 otherwise. The first moment convergence of
the last line of (A.1) follows from the uniform integrability of p̂imkjn and the convergence in
probability of (γ̂ mn, α̂mn) to (γ ∗

m,α∗
m). Similarly,

lim
n→∞ Pr(Cin = j |xi ) = lim

n→∞ E
[
Pr

(
Cin = j |xi , β̂n

)] = lim
n→∞ E

[
η̂ijn

] = η∗
ij , (A.2)
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where β̂n = (β̂pjn, for all p, j); β∗ = (β∗
pj , for all p, j); ηij = ηj (xi ); η̂ijn is ηij evaluated at

β̂n; and η∗
ij is ηij evaluated at β∗.

Next, define two auxiliary random variables that are useful in establishing the results. Let
W ∗

i (y) be a discrete random variable having frequency function

Pr
(
W ∗

i (y) = w|xi , zi;φ∗) =
{

η∗
ij if w = ∏M

m=1
∏K

k=1(p
∗
imkj )

ymk , j = 1, . . . , J,

0 otherwise,

where φ∗ = ((β∗
pj , γ

∗
mkj ,α

∗
lmk), for all p, j,m, k, l). Further, let Win(y) = Pr(Yi = y|Cin,xi , zi ).

With equalities (A.1) and (A.2), we now want to show the convergence in distribution of Win(y)

to W ∗
i (y). Notice that

∣∣Pr
(
Win(y) ≤ w0

) − Pr
(
W ∗

i (y) ≤ w0
)∣∣ =

∣∣∣∣
∑

j∈Ain(w0)

Pr(Cin = j |xi ) −
∑

j∈A∗
i (w0)

η∗
ij

∣∣∣∣, (A.3)

where

Ain(w0) = {
j s.t. Pr(Yi = y|Cin = j, zi ) ≤ w0

}
,

A∗
i (w0) =

{
j s.t.

M∏

m=1

K∏

k=1

(
p∗

imkj

)ymk ≤ w0

}
.

Since (A.1) holds, Ain(w0) and A∗
i (w0) are equal as n → ∞. Now, because of (A.2), (A.3)

converges to 0, and therefore Win(y)
L−→ W ∗

i (y).
Since Win(y) is uniformly integrable,

Win(y)
L−→ W ∗

i (y) ⇒ lim
n→∞ E

[
Win(y)

] = E
[
W ∗

i (y)
]

=
J∑

j=1

η∗
ij

M∏

m=1

K∏

k=1

(
p∗

imkj

)ymk .

Notice that E[Win(y)] = ∑J
j=1{Pr(Yi = y|Cin = j, zi )Pr(Cin = j |xi )} = Pr(Yi = y|xi , zi ), con-

cluding the proof.
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