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Maintaining Performance on Power Gating of Microprocessor
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Power gating is an effective technique for reducing leakage power in deep submicron CMOS technology.
Microarchitectural techniques for power gating of functional units have been developed by detecting suitable
idle regions and turning them off to reduce leakage energy consumption; however, wakeup of functional units
is needed when instructions are ready for execution such that wakeup overhead is naturally incurred. This
study presents time-based power gating with reference pre-wakeup (PGRP), a novel predictive strategy that
detects suitable idle periods for power gating and then enables pre-wakeup of needed functional units for
avoiding wakeup overhead. The key insight is that most wakeups are repeated due to program locality. Thus,
the pre-wakeup predictor learns the wakeup events and selects which prior branch instruction can provide
early wakeup (wakeup patterns are visible); these information are then used to adequately prepare available
functional units for instruction execution. Simulation results with benchmarks from SPEC2000 applications
show that substantial leakage energy reduction with negligible performance degradation (0.38% on average)
is worthwhile.
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1. INTRODUCTION

In deep-submicron process, leakage power accounts for a considerable fraction of chip
power consumption and is a key consideration in chip design. Power gating is an ef-
fective method for detecting idle functional units and switching them to a low-leakage
state. However, a practical design concern is the significant time required to wake
up functional units since sleep transistors must be switched on to initially discharge
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Fig. 1. Pre-wake up functional unit to avoid wakeup overhead.

virtual ground capacitance [Kao et al. 1997; Bhunia et al. 2005]. Meanwhile, ground
bounce [Pant et al. 1999] arising from power mode transitions in power gating struc-
tures greatly affects the reliability of surrounding circuit blocks. Shortening wakeup
time therefore complicates the suppression of ground bounce [Abdollahi et al. 2007;
Lee et al. 2008]. In addition to process technology, most runtime reduction techniques
target circuit-level optimizations and incur performance overhead penalties in order
to reduce leakage power. Since most leakage reduction techniques focus only on parts
of microprocessors (e.g., functional units or caches), performance degradation may be
compounded when multiple processor components reduce leakage current simultane-
ously. To mitigate such penalties, a fine-grained control technique is needed for efficient
exploitation of idle intervals in order to reduce leakage power without degrading per-
formance [Chung and Skadron 2008]. To avoid the performance penalty incurred by
wakeup latency, this work presents a method of predicting impending executions and
then pre-waking up the required functional units at runtime.

A recent development in dynamic power gating is time-based power gating, in which a
functional unit with idle time exceeding a predetermined threshold is predicted to have
sufficiently long idle time to make power gating worthwhile [Hu et al. 2004]. Idle func-
tional units are typically put into sleep mode periodically, and wakeup of a functional
unit is only needed when instructions are ready for execution. Whenever power gating
prevents functional units from executing instructions, the processor incurs wakeup
overhead that increases execution time. Figure 1 shows the details of power gating
in a typical execution example. If a functional unit is not executed for consecutive
Tidledetect cycles, power gating is enabled to minimize leakage energy. Compensation
for the dynamic energy overhead generated by power gating requires Tbreakeven cy-
cles, and net leakage savings can be achieved in Tsleep cycles. Any ready instructions
stop power gating and wake up the needed functional units in Twakeup cycles. Because
wakeup of a functional unit may also delay processor execution, increased program
execution time can increase processor energy consumption. Although leakage savings
in Tbreakeven cycles compensates for dynamic energy overhead generated by power gat-
ing, the impact of wakeup latency on other processor design metrics (performance and
total energy) must be minimized. Therefore, early wakeup of required functional units
is preferable. Practically, compiler-based leakage reduction technique inserts suitable
wakeup instructions in advance to prepare for the instruction execution. Similarly, an
effective microarchitectural solution is also needed to provide a preventive pre-wakeup
mechanism for executing instructions on-demand.

An effective power gating mechanism must have the capability to provide early
wakeup without stalling program execution. This study proposes a technique for ef-
ficiently predicting which functional units are likely to be used. Recently executed
instructions are assumed to be the instructions most likely to be executed in the near
future (i.e., temporal locality). Thus, past execution behavior is analyzed to predict
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future needs. Based on the above premise, the pre-wakeup predictor identifies recur-
rent wakeup activities during runtime and provides early wakeup to avoid incurring
the same wakeup overheads. As Figure 1 shows, power gating does not delay execution
as wakeup is early enough before functional units are actually needed.

The proposed pre-wakeup predictor anticipates wakeup activities by using control-
flow events. Essentially, control flow instructions determine which instructions should
subsequently be executed and therefore are suitable to identify recurrent execution of
a loop. Hence, an early wakeup could be determined by the prior branch instructions.
The proposed heuristic for limiting the control-flow information sent to the pre-wakeup
predictor focuses on the most recent branch instructions that were executed leading
up to a wakeup overhead. As soon as a new wakeup occurs, the predictor captures
the control-flow event by storing the most recent branch address and its direction.
Subsequent executions of the same branch instruction cause the predictor to check
for wakeup need. This approach requires an extra memory to capture control-flow
information. Fortunately, for most idle periods, time-based approach with a suitable
detection threshold prevents inefficient power gating and also avoids corresponding
wakeup activities whereas the pre-wakeup predictor can service remaining wakeup
events by providing a very small memory.

Leakage reduction techniques inevitably incur a performance penalty. Traditional
time-based approaches that only have high idle detection thresholds prevent most
wakeup activities. The proposed predictor allows the time-based approaches to have
low thresholds for efficient power gating without delaying program execution. This
work makes the following contributions.

—While time-based solutions are adequate for intermittent power-gating, this study
shows that recurrent wakeup overheads can significantly degrade performance. Idle
interval distributions of SPEC2000 benchmarks are analyzed to show why time-
based power gating schemes should consider recurrent wakeup overheads.

—Pre-wakeup prediction. Wakeup can be determined by using a control-flow event
(branch address and its direction) and, before an impending execution, wakeup of
functional units can be predicted with over 90% accuracy.

—Time-based Power Gating with Reference Pre-wakeup (PGRP). Time-based power
gating scheme can prevent most wakeup activities behind short idle periods; there-
fore, the proposed pre-wakeup table requires very little memory (32-entry content
addressable memory) to store wakeup information.

The remainder of this article is organized as follows. Section 2 discusses related
work. Section 3 describes the experimental environment. Section 4 then presents a
sample distribution of idle periods and finds inherent wakeup overheads arising from
time-based power gating. Next, Section 5 discusses the architecture of the proposed
PGRP scheme. Section 6 summarizes the simulation results. Conclusions are finally
drawn in Section 7.

2. RELATED WORK

2.1. Ground Bounce Noise and Wakeup Time

Switching current may cause a ground bounce noise due to the substantial parasitic
inductance in the power-supply network. Grochowski et al. [2002] implemented a di/dt
controller on the chip by using a current-to-voltage computation to estimate supply
voltage variations and controlling the microprocessor’s activities upon detection of a
voltage violation. Typically, ground bounce noise can be significant as sleep transistors
are turned on within a very short time to minimize performance overhead. Low supply
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voltage in CMOS technology scaling decreases noise margin and further limits the
ground bounce allowed by the chip.

To reduce the magnitude of voltage glitches in the power distribution network as
well as the time required for network stabilization, Kim et al. [2003] proposed two
novel power-gating structures, in which the first turns on multiple sleep transistors in
a nonuniform stepwise manner (parallel sleep transistors), and the second structure
turns a single sleep transistor on gradually (staircase sleep signal). Abdollahi et al.
[2007] proposed a wakeup scheduler to partition logic cells into different clusters and
schedule intercluster sleep signals to minimize wakeup time while limiting the instan-
taneous supply/ground current. Calimera et al. [2009] minimizes reactivation time by
sizing the parallel sleep transistors according to an optimal algorithm and introduc-
ing a row-based physical implementation to minimize layout disruption and routing
congestion.

Approaches for tolerating wakeup latency overhead include the power-gating circuit
proposed by Agarwal et al. [2006], in which different gate biases are applied to NMOS
footer devices. The resulting differences in VGND potentials enable different wakeup
latencies. A processor can select the optimum sleep mode based on the number of idle
cycles and wakeup latencies. Singh et al. [2007] partitioned the logic datapath into
different blocks and exploited multimode power gating based on block position in the
datapath flow. Deep logic circuits in a datapath have particularly high wakeup margins
and can therefore be gated strongly. Dropsho et al. [2002] provided an analytical en-
ergy model for the dual-threshold-voltage dynamic domino logic circuits in the integer
functional units of a processor to determine suitable sleep-mode activation policies.
Sleep mode may not be advantageous if the integer functional units are dominated by
the distribution of short idle periods; hence, Dropsho et al. proposed a gradual sleep
policy in which successive portions of the functional unit enter sleep mode when the
functional unit is idle.

2.2. Early Wakeup Control Policies

Simultaneous control of ground bounce and wakeup time increases circuit complexity
(e.g., a finite-state machine needed for scheduling algorithm). Knowledge of future
execution patterns provides accurate prediction of functional units required in the near
future, which thereby provides sufficient wakeup time for efficient control of ground
bounce.

Compiler-level approaches perform data-flow analysis to identify program regions in
which idle functional units can be exploited. Activate/deactivate instructions are in-
serted into the code to set/reset a sleep signal that controls leakage current from func-
tional units [You et al. 2006]. The benefit is that wakeup overhead is reduced by placing
wakeup instructions far in advance of ready instructions whenever possible; hence,
wakeup can be early enough according to predictions (preactivated), and performance
loss is negligible. Nevertheless, the number of additional power-control instructions in
application programs is problematic because rich components are equipped with power-
gating controls in system-on-a-chip (SoC) design platforms. You et al. [2007] developed
a compact control framework that reduces the number of power-gating instructions by
combining several power-gating instructions into a single compound instruction.

Microarchitectural-level approaches have difficulty for predicting the future use of
functional units. Mohamood et al. [2006] used a hardware table to quantify current
demand after decode stage for clock gating of idle functional units. A simple decay
counter detects suitable idle periods for preemptive turn-on of clock-gated ALU through
pre-decoding instructions. To maintain performance while controlling leakage current
from the instruction cache, Chung and Skadron [2008] proposed an on-demand wakeup
prediction policy for selectively pre-waking required instruction cache lines according

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 16, Publication date: October 2011.



Predictive Pre-Wakeup for Power Gating Functional Units 16:5

Table I. The Baseline Configuration

Fetch Queue 8 entries
Fetch/Decode 8 instructions per cycle
Issue/Commit 8 instructions per cycle
functional units 4 integer alu, 1 integer mult

4 FP alu, 1 FP mult
Branch Predictor gshare, 16K table, 14-bits history
L1 ICache 64K, 2-way, 32B
L1 DCache 64K, 2-way, 32B
L2 Cache 1MB, 4 way, 6 cycles hit latency
TLB size ITLB: 16 set 4 way

DTLB: 32 set 4 way
4KB page size, 30 cycles penalty

Memory 8 bytes/line,
virtual memory 4 KB pages

to branch prediction information. This approach not only achieves excellent leakage
energy reduction comparable to that of the optimal policy, it also consistently achieves
near-optimal performance (only 0.08% performance overhead on average).

This study analyzed the idle interval distribution of each benchmark to explore the
inherent wakeup characteristic. A predictive method is then used to provide early
wakeup while also maximizing sleep time.

3. SIMULATION METHODOLOGY

Before addressing the power-performance trade-offs of power gating, the machine ar-
chitecture, simulation method, and benchmarks used in this study are described in
this section. The machine model assumes a multiissue architecture composed of four
integer ALUs, one integer MUL, four floating ALUs, and one floating MUL. This study
used the SimpleScalar/Alpha toolset with Wattch power extensions [Brooks et al.
2000]. The CPU is an in-order processor. Unused functional units are power gated
for leakage energy reduction. This study applied the activity-sensitive power model
with aggressive nonideal conditional clocking (cc3 mode). The assumptions were that
leakage power in Wattch comprises 10% of total power consumption, and PGRP can
still achieve energy reduction even when leakage power consumption is increased in
deep submicron technology (as discussed in Section 6.7). During wakeup, the voltage
fluctuations in the power network were minimized by assuming that wakeup requires
20 cycles,1 even if latency is overestimated.

Table I presents experimental parameters. This study simulated SPEC2000 bench-
marks. All benchmarks were simulated using reference inputs. All tests were performed
by fast-forwarding the first 500M instructions and then performing detailed simula-
tions for the next 500M instructions.

4. POWER-GATING CONSIDERATIONS

The leakage-control mechanism is effective only if it provides sufficient power-gating
time without excessively increasing in runtime. To observe wakeup behavior for dif-
ferent application benchmarks, this section profiles the idle interval distribution in
each functional unit to estimate when the processor may be stalled. The performance
penalty resulting from time-based power gating is discussed next.

1For example, wakeup time with 8–10 cycles is used in Singh et al. [2007]. Meanwhile, the propagation time
required for a sleep signal should also be considered.
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Fig. 2. Average cumulative percentage of idle time of functional units as a function of idle interval length
for all SPEC2000 programs.

4.1. Idle Interval Distribution of Functional Units

Significant energy savings can be realized if functional units can power down to a low-
power sleep state during idle periods between intermittent executions; however, the
frequent transitions from sleep to active mode adversely affect the performance. The
performance penalty resulting from recurrent wakeup overheads was assessed in this
study by evaluating the varying distribution of idle intervals needed to manage power
gating in each functional unit. Measuring execution complexity in each functional unit
according to idle time is a simple and effective way to evaluate existing power gating
techniques.

Figure 2 shows the average distribution of idle periods in each functional unit across
the benchmarks. The x-axis is the idle period length and the y-axis is the average
cumulative percentage of time functional units are idle over the total execution time
for all SPEC2000 programs. The left figure shows the percentage of idle time in a series
of integer ALUs (IALUs) and an integer MUL (IMUL), and the right figure shows the
percentage for a series of floating ALUs (FALUs) and a floating MUL (FMUL). The two
figures illustrate how idle periods can be power gated in functional units by scavenging
idle time.

In the first integer ALU (IALU1), extremely long idle periods are rare, and relatively
short periods are common. The graph shows that IALU1 is idle 85% of the time when
idle time is shorter than five cycles; clearly, most instructions are executed by IALU1
and therefore prevent it from entering sleep mode. Wakeup overheads incurred by in-
teger IALUs are relatively smaller than those incurred by other functional units since
the instructions look forward to wake up a power-gated IALU can be changed to wait
for other idle/busy IALUs [Hu et al. 2004]. IMUL and other floating point units are very
likely to have a long idle time, which makes power-gating an effective energy conserva-
tion strategy. Finally, the short but sharp step at the idle periods smaller than 150 cycles
for the IALUs and FALUs indicates a suitable threshold value (Tidledetect = 150), that
avoids most inefficient power-gating and excessive wakeup activities.

This study determined that wakeup patterns can be classified using the distribution
of idle periods to evaluate the potential recurrent wakeup overheads and approximate
increases in execution time. Figure 3 presents the distribution of idle periods within
each distinct range of idle time length across all SPEC2000 benchmarks. Only rep-
resentative idle periods Tidle (corresponding to at least 150 cycles) are plotted. Idle
periods with <150 cycles are omitted because they occur very frequently, and power
gating therefore achieves only limited energy savings. The y-axis is the percentage
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Fig. 3. Distribution of idle periods within each distinct range of idle time length.

of idle time in the range greater than 150 cycles. For brevity, plotted distributions for
functional units with low potential wakeup overheads, including all IALUs and FALU3,
are omitted.

Clearly, for benchmarks with idle periods shorter than 900 cycles (e.g., vpr, eon, twol f ,
mesa, and apsi), the middle periods cannot be controlled by the time-based approach
when Tidledetect is <150 cycles. Therefore, recurrent wakeup overheads are possible. The
number of middle idle periods is insignificant, but heavy wakeup overheads may still
be incurred when most functional units are concurrently power gated in the middle
periods and the number of idle periods is weighted by the length of wakeup latencies
(e.g., mesa may have a maximum of 13.53% increased runtime when Twakeup is 20 cycles
and Tidledetect is 150 cycles). Conversely, although high Tidledetect can minimize recurrent
wakeup overheads, power gating time is also reduced (e.g., about 96% of idle periods in
FALU1, FALU2 and FALU3 for lucas is between 150 and 300 cycles, which cannot be
power gated when Tidledetect is >300 cycles; in Figure 12(b), the leakage energy savings
from functional units is also reduced by time-based power gating from 25.7% to 2.41%).

These observations indicate that a pre-wakeup predictor can prevent recurrent
wakeup overheads. The time-based approach simply excludes power gating during
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short idle periods [Hu et al. 2004]. If the periods are somewhere in the middle, PGRP
provides efficient power gating without incurring wakeup overheads.

4.2. Limits of Time-Based Power Gating

Detecting and exploiting middle idle periods is extremely challenging. In the time-
based power gating scheme proposed in Hu et al. [2004], the functional unit is not
put to sleep until a certain number of idle cycles (i.e., Tidledetect) has elapsed since
the end of the last execution and is not awakened until it must execute the next in-
struction. A nonnegligible wakeup time must be taken before functional units begin
to execute instructions. Wakeup overhead is incurred if the same functional unit is
accessed twice within a time interval exceeding the idle detection threshold. Excessive
wakeup overhead can substantially degrade performance. Hence, modern designs pro-
vide a conservative detection threshold by increasing Tidledetect to avoid most wakeup
operations; however, high Tidledetect reduces power gating duration, which then impairs
the effectiveness of the leakage energy reduction scheme.

Notably, the efficiency of time-based power-gating is greatly decreased by various
idle interval distributions of benchmarks. Thus, Tidledetect should be sufficiently high
to avoid recurrent wakeup overheads but also sufficiently low to detect enough idle
periods for power gating. However, a single Tidledetect can hardly satisfy the power
gating requirements of each application and different processor configurations without
wakeup overheads.

Case studies reveal interesting observations concerning the performance and energy
penalties of recurrent wakeup overheads. Consider, for example, a sensitivity analysis
based on different Tidledetect values for mesa and lucas. Figure 4 presents the energy
benefits of the time-based approach when integer arithmetic logic unit (ALU), inte-
ger multiplier, floating-point ALU, and float-point multiplier are considered for power
gating. The baseline model used for comparison is that without power-gating control.
Energy benefits can be classified into three categories: Ef u is the energy savings ob-
tained by power gating in functional units; Eother represents the increased leakage
energy incurred by all other processor components (excluding functional units); and
Esavings is the total energy benefits of the processor.

The smallest processor energy benefit of mesa (Esavings = 0.14%) is obtained when
Tidledetect is 50 cycles (Figure 4). Notably, energy benefits are calculated for the entire
processor; that is, processor energy benefits are reduced, and this additional overhead
is the overall leakage energy (Eother = −6.46%) expended by the processor due to
increased runtime (16.75%). Although maximum energy benefits (Ef u = 6.60%) are
obtained from functional units, the processor cannot realize these benefits. In fact,
the energy reduction is even smaller due to increased runtime. Hence, performance
cost must be carefully controlled to ensure that the power gating consistently provides
energy benefits. Tidledetect is assumed to be 50 cycles, which is clearly unsuitable for
use in time-based power-gating. By increasing Tidledetect, performance cost is reduced to
roughly 2.25% when Tidledetect is 300 cycles. Overall energy benefits are only increased
to 3.77% because energy benefits obtained in functional units have decreased to 4.67%.

In the second example, lucas obtains maximal energy benefits (Esavings = 4.16%)
when Tidledetect is 150 cycles. Most of the middle idle periods are between 150 and
300 cycles in FALU1, FALU2 (Figure 3(b)), FALU3 and IALU3; therefore, when
Tidledetect is >200 cycles, these middle idle periods cannot be power gated, and Esavings
is reduced to 0.39%. Consequently, Tidledetect must be low enough to efficiently reduce
leakage energy. In the mesa example, however, Tidledetect should be at least 300 cycles
to avoid wakeup overheads. Hence, due to varying idle interval distributions between
mesa and lucas, a major difficulty is choosing a suitable Tidledetect that meets the de-
mands of negligible performance overhead while providing high energy benefits for
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Fig. 4. Evaluation of the time-based power-gating for the benchmarks mesa and lucas, Twakeup and Tbreakeven
are fixed at 20 cycles. Higher is better.

each benchmark (even for a single benchmark, idle interval distributions may vary
within each program section, as discussed in Section 6.1) and for different processor
architectures. Thus, an efficient scheme for avoiding wakeup overheads is needed to
obtain stable energy benefits.

5. POWER GATING WITH REFERENCE PRE-WAKEUP (PGRP) METHOD

5.1. Motivation

The distribution of wakeup activities may differ as workload phase changes. The sam-
pling window period determines the finest granularity at which phase changes can
be resolved. Generally, sampling period must be sufficiently short to capture minute
phase changes in workload behavior; however, memory size must also be large enough
to store significant wakeup information. Moreover, the time between pre-wakeup and
incoming issued instructions varies and is therefore difficult to match to wakeup time
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(i.e., the pre-wakeup table notices the wakeup changes at any time). Instead, a long
sampling window provides much earlier wakeup to increase wakeup space but can-
not apply aggressive power gating for even a few idle cycles. The longer sampling
window also provides a safe wakeup margin at very low hardware cost. Since branch
instructions have strong temporal locality, a branch is likely to be refetched within the
last n branch instructions in which n varies at 8–64 [Baniasadi and Moshovos 2002;
Baniasadi 2005]. Hence, in this study, captured wakeup activity is stored in the pre-
wakeup table indexed by the prior branch address.2

5.2. The Power Gating with Reference Pre-Wakeup Scheme

Power gating is applied by providing one or more header transistors (local power gat-
ing switches) for each functional unit (Figure 5(a)). Transistors are turned off in sleep
mode to cut off the leakage path. The time-based approach is used for gating control
to determine whether power gating is needed. The PGRP-buffer, a very small mem-
ory structure used for short-term storage of execution history, is a pre-wakeup table
for confirming gating decisions and identifying suitable pre-wakeup time. Execution
status in each functional unit is monitored, and the activity information is written
into the Execution Status Register (ESR). Each entry in PGRP-buffer has three fields:
a tag or branch address (br addr), branch taken flag (taken), and pre-wakeup flags
(prewakeup flag). Each bit in the pre-wakeup flags records the wakeup decision of
a functional unit. The branch taken flag determines which path the current branch
takes. The instruction address and its direction can index PGRP-buffer once a branch
is executed. If an entry is found, pre-wakeup flags are examined to determine whether
any functional unit requires wakeup.

The time-based finite state machine is logically associated with each functional unit
[Hu et al. 2004]. Functional units are normally in the working state (Figure 5(a)). When
the number of consecutive idle cycles reaches a predetermined threshold (Tidledetect),
power gating is enabled, and the functional unit enters a break even state and then
a sleep state; the leakage savings obtained by power gating in the break even state
compensates for the inherent energy cost of turning the sleep transistor on and off
during power mode transition, and net leakage savings can be achieved in sleep state.
Any ready instructions assert insn detected signal to wake up the functional units in
wakeup state. In PGRP scheme, the time-based finite state machine is inserted with a
prewakeup flag signal to provide early wakeup control. The predictor collects a history
of wakeup activities and uses these information to notify the processor to execute
instructions in the near future by asserting a prewakeup flag signal.

The PGRP-buffer lookup is performed when a branch is being executed. Branch di-
rection is combined with the address of the last-executed branch to form a control
event that must be matched with the event in PGRP-buffer. As soon as the predic-
tor observes a control event (i.e., a hit in PGRP-buffer), PGRP wakes up the needed
functional unit. The execution activities within each functional unit are monitored by
ESR. Once wakeup overhead is incurred, the ESR value is entered into a 32-entry
PGRP-buffer (Section 6.4 discusses the impact of varying table size). For each branch
execution, PGRP-buffer is read first to determine whether any functional unit requires
wakeup. The activity information in the ESR is then written to the PGRP-buffer only
when wakeup overhead is incurred by a functional unit. An example of the pre-wakeup
prediction is illustrated in Figure 6. The initial pre-wakeup prediction operates in five
steps described as following:

2According to actual simulation result in Figure 12, leakage energy reduced by PGRP and time-based
approach is almost the same. PGRP has little impact on the power gating time even though pre-wakeup is
controlled by branch instruction.
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(a) Power gating with reference pre-wakeup architecture.
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Fig. 5. Power gating with reference pre-wakeup scheme.

Step1. Both brancha address and direction are stored in the branch register.
Step2. If a wakeup overhead is incurred, wakeup information is stored in the ESR
register.
Step3. PGRP-buffer Update. When branchb is executed, both wakeup information
(ESR register) and brancha (branch register) are stored in the PGRP-buffer.
Step4. PGRP-buffer Lookup. During the next iteration loop, pre-wakeup informa-
tion is obtained when brancha is executed again.
Step5. Pre-wakeup of needed functional units.

The first three steps capture a wakeup information into PGRP-buffer when a wakeup
overhead is incurred. Steps 4 and 5 provide pre-wakeup for required functional units.
In this example, brancha is executed leading up to a wakeup overhead and therefore
is the particular branch associated with pre-wakeup prediction. During next iteration,
executing brancha provides early wakeup in sequence.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 16, Publication date: October 2011.



16:12 C.-C. Yeh et al.

branchb brancha

PGRP-buffer

IMULbrancha 1
Branch
Register

Step 4.
PGRP-buffer
lookup

pre-wakeup flag

IMUL
wakeup

Step 5.
pre-wakeup
of IMUL

ESR
Register

Step 2.
wakeup overhead

Step 3.
PGRP-buffer
update

Step 1.
branch address
 & direction

brancha IMUL
op

IMUL
op

Step 3.
PGRP-buffer
updateTwakeup Twakeup

Wakeup
Overhead Pre-wakeup

Fig. 6. Example of pre-wakeup prediction.

A large PGRP-buffer has additional area and energy consumption, but reduced table
size may not capture sufficient information to predict wakeup. Increasing Tidledetect
can reduce table size by avoiding most wakeup activities; however, power gating time
is reduced. To capture enough pre-wakeup information in a small table while keeping
Tidledetect sufficiently low to reduce leakage energy efficiently but without impairing per-
formance, the wakeup information is entered into the PGRP-buffer only when wakeup
overhead substantially affects processor performance.

Finally, considering the branch predictor, the most recent branch prediction history
is maintained in a prediction history table, which also records the execution history
of functional units. However, the branch predictor does not capture the history of two
possible prediction paths concurrently. Augmenting branch predictor with an addi-
tional execution history field for each functional unit may require significant additional
hardware.

5.3. Optimizations

Two issues arise when using the given base predictors to perform wakeup. The first
problem is determining which prior branch provides sufficient lead time for prewakeup
when a wakeup overhead is first incurred. The second problem is how to handle a low
accuracy pre-wakeup (i.e., predicted incoming instructions are not actually executed).

5.3.1. Lead Time Control. Pre-wakeup prediction should provide sufficient lead time.
Wakeup latencies depend on the circuit parameter, wakeup overheads may be incurred
by functional units that have already been pre-waked up since wakeup is too late to
make functional units available in time.

The example of wakeup overhead in Figure 7 depicts a pre-wakeup condition. Ini-
tially, a multiplier instruction is executed several cycles after branchb. If the multiplier
is already power gated (Figure 7(a)), the pre-wakeup determined by branchb provides
the multiplier for execution. Clearly, the multiplier instruction is stalled by Tstall cycles
as the pre-wakeup is too late to catch up with the multiplier instruction. The nonzero
wakeup overhead reminds the predictor that branchb could not provide enough wakeup
time and enables a change of pre-wakeup by selecting an earlier branch. Hence, the
pre-wakeup strategy further pre-wakes the multiplier in an earlier branch (brancha),
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(a) Earlier pre-wakeup example. Pre-wakeup at branchb has stalled cycles
Tstall, earlier pre-wakeup at brancha avoids performance overhead.
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(b) Integrating further pre-wakeup with PGRP.

Fig. 7. Earlier pre-wakeup scheme.

which incurs only negligible wakeup overhead (Figure 7(a)); thus, the multiplier in-
struction (e.g., mul $1, $2, $6) is not stalled.

Accordingly, each wakeup overhead is checked to determine whether a new entry
must be indexed by an earlier branch and inserted into the PGRP-buffer. The pre-
dictor tracks the last several branches and corresponding pre-wakeup information in
a shift register by updating it whenever a branch is executed. Figure 7(b) shows the
PGRP architecture extended with the early wakeup mechanism. The current branch
and previous branch registers are implemented as a sequential table, which holds
multiple branch addresses from the branch address register. These branch addresses
are selected based on the pre-wakeup information captured in the PGRP-buffer. In
some functional units, when wakeup overhead is incurred, the predictor first checks
for pre-wakeup activity in corresponding functional units. Initially, the prior branch is
selected as the pre-wakeup branch; otherwise, the branch that is earlier than the prior
pre-wakeup branch is used.

Simulation of the first 2000M instructions from the SPEC2000 suit revealed that,
when Twakeup is 20 cycles, <1% performance degradation is achieved with four levels of
earlier branch addresses. Of course, the predictor can further advance pre-wakeup by
adding a relatively earlier branch when overhead is still incurred.

5.3.2. Pre-Wakeup Check Function. Recurrent wakeups of functional units that have
been allowed for power gating are usually anticipated by the instructions in a loop
many times so that recurrent wakeup patterns appear predictable; however, a number
of branches may behave in a bipolar manner and the simulations showed that the
predictor often mispredicts pre-wakeup events in some benchmarks, which significantly
degrade prediction accuracy and reduce power gating time.

In this study, an unnecessary wakeup caused by incorrect prediction can be prevented
by inserting a pre-wakeup check register to find out whether predicted instructions are
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Fig. 8. Profiling of pre-wakeup accuracy and hit rate with and without pre-wakeup check function (assuming
a PGRP-buffer with thirty-two entries). (a) Average accuracy of all SPEC2000 applications for each functional
unit. (b) Hit rates of PGRP-buffer with different sizes. lucas and bzip2 show the highest and lowest hit rate,
respectively.

actually executed upon (behind) each pre-wakup and to prevent most prediction er-
rors by correcting (removing) low accuracy data. Typically, recurrent wakeups within
a short time interval can result in serious performance impact. Moreover, since the
penalty for incorrect pre-wakeup is relatively small (it cannot continue leakage reduc-
tion for Tidledetect cycles); on the rare occasions when anticipated instructions are not
actually executed behind the pre-wakeups (incorrect prediction), pre-wakeup is still
worthwhile. Instead, frequent mispredictions (e.g., two consecutive misses used by this
study) indicate that the functional unit is usually not required behind the pre-wakeup
and has long idle time, so pre-wakeup check function corrects (removes) the relative
wakeup information.

Prediction accuracy is defined as the fraction of predicted pre-wakeup in which in-
structions for the functional unit have actually been executed (as shown in Figure 8(a)).
Investigations on the check ability in order to improve prediction accuracy are also
shown. The average accuracy of pre-wakeup prediction by the original PGRP is only
78.65%. The pre-wakeup check function removes incorrect pre-wakeup predictions, so
accuracy improves to 95.5%. The first two functional units, IALU1 and IALU2, achieve
near 100% accuracy because they constantly execute instructions. Most functional
units have accuracy as high as 92% with the exception of IMUL, for which accuracy
was only 83.16%.

Hit rate. Figure 8(b) shows the hit rates, which are calculated as the ratio of the hit
number in PGRP-buffer versus fraction of branch instructions that should be associated
with pre-wakeup prediction (i.e., pre-wakeup branch), for varying PGRP-buffer size
from 16 to 64. Pre-wakeup behavior is retained by PGRP with only a very small table
size. Hit rate can be improved by increasing PGRP-buffer size to provide additional
pre-wakeups and maintain performance. Notably, the size of the PGRP-buffer should
be carefully chosen to keep sufficient pre-wakeup information and to maintain a high
hit rate. However, the PGRP-buffer must also be small enough to satisfy the access
latency, area, and hardware cost constraints. A PGRP-buffer with thirty-two entries
obtains an average hit rate of 99.26%. In contrast, pre-wakeup check function removes
incorrect pre-wakeup information, which decreases hit rate to 95.49%.

The high hit rate means that most pre-wakeup branches are found in the PGRP-
buffer; thus, PGRP can provide early wakeups sufficiently without incurring recurrent
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wakeup overheads. Note that low hit rate does not certainly indicate that pre-wakeup
is unsuccessful (e.g., 50.3% for bzip2) since wakeup events are too rare to require
sufficient pre-wakeups (e.g., Table II shows that there are only 0.03% of branches in
bzip2 needed for pre-wakeup prediction). Thus, evaluation of pre-wakeup efficiency
should also take pre-wakeup branch ratio into account. The branch instructions are
split into two groups: the pre-wakeup branch instructions, which are predicted for
pre-wakeup of functional units, and the other dynamically predicted functional units
that do not require wakeup. The size of the pre-wakeup branch depends on the specific
application, so smaller or larger fractions of branches can be used for pre-wakeup
prediction.

To explore the underlying principles of the proposed wakeup prediction method, the
following scenario from benchmark gcc demonstrates the capture of a wakeup event,
which is the underlying pre-wakeup mechanism in PGRP.

5.4. Recurrent Wakeup Activities

Repeatedly executing power-gated functional units cause recurrent wakeup activities,
which result in predictable activities, thereby predicting the execution demands of
functional units in the near future.

To clarify how recurrent wakeup overhead patterns are prevented by the proposed
pre-wakeup scheme, the wakeup activities of integer multiplier (IMUL) for benchmark
gcc with 12000 instructions over 18000 cycles were profiled (Figure 9(a)), and the
processor executed the nested loop behind 3390 cycles (Figure 9(b)). Figure 9(a) illus-
trates power gating and pre-wakeup activities using a vertical bar in the Power gating
and Pre-wakeup subgraph. The symbols “bra” and “brb” under the vertical bars in
the Pre-wakeup graph correspond to the branch instructions in Figure 9(b) leading to
the IMUL instruction. The stall cycles at IMUL for time-based approach and the pre-
wakeup prediction are presented for the same time frame. The address distribution of
executed branch is also shown.

Effective pre-wakeups in functional units for sustained periods incurs little or no per-
formance degradation. Accurate prediction is essential and depends on the application
program characteristics. Recurrent wakeup overheads incurred by time-based power
gating as shown in Figure 9(a) clearly illustrates this point (see top of figure). Initially,
power gating is efficiently enabled with no stalling cycles. However, after 3800 cycles,
executing IMUL every 300–500 cycles causes 20-cycle stall episodes, which cannot be
prevented by time-based approach with Tidledetect of 150 cycles.

The top subgraph shows the address trace of branch instructions. The wakeup over-
heads were profiled as explained above, and the relevant address of branch instruc-
tions were plotted across the two distinct execution phases. The starting address was
4833.536M. As the distribution shows, the subgraph shows two bands with approxi-
mate address of 4832M and 4833M and with strong temporal locality in their address
patterns. Analysis of the overall address patterns reveals two distinct phases, A and
B, and recurrent wakeup overheads incurred at phase B. Lastly, Figure 9(a) (bottom
of figure) shows that recurrent wakeup overheads are successfully prevented by the
pre-wakeups at branches (brb and bra) in front of IMUL instructions after 5630 cycles.

Determine Pre-wakeup time. Instruction execution behind long idle periods is
uniquely identifiable by tracking control flow instructions in order of occurrence. As
discussed in Section 5.3.1, pre-wakeup time is easily determined by analyzing several
leading overheads. As Figure 9(a) shows, wakeup overhead incurred at 3777 cycles
causes 20 stalled cycles and provides notification of pre-wakeup. Hence, in Figure 9(b),
information of branch brb in front of the IMUL instruction is stored in the PGRP-buffer.
When branch brb is executed again, pre-wakeup of IMUL is determined at 5119 cycles.
Nevertheless, eight stall cycles remain because pre-wakeup at brb is too late to prevent
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instruction.

wakeup overhead successfully. Clearly, the earlier branch bra before brb is a better
pre-wakeup candidate. Hence, at 5630 cycles, further pre-wakeup of IMUL provides a
successful on-demand execution without wakeup overhead.

5.5. Performance/Energy Trade-Off

The same simulation is conducted with thirty-two entries in PGRP-buffer (Figure 10)(as
in the experiment described in Section 4.2). Simulation results for time-based power
gating (Figure 4) are shown for comparison purpose. Performance impact decreases lin-
early as Tidledetect increases, indicating that applying the time-based approach in PGRP
still prevents ineffective power gating during short idle periods. Energy overhead of
mesa is negligible (Eother = −0.45%) due to a slightly longer run-time (0.62%) when
Tidledetect is 150 cycles. Hence, overall energy savings in the processor is 4.78%. More-
over, lucas can also use the same low Tidledetect and obtains 4.05% energy reduction. In
contrast, time-based power gating can only use high Tidledetect of 300 cycles due to the
significantly longer run-time for mesa when Tidledetect is shorter than 300 cycles; hence,
the energy savings obtained by lucas is only 0.39%.

6. EXPERIMENTS

To compare time-based and PGRP policies to the theoretically best policy, this study
applied Ideal policy [Hu et al. 2004] during simulations. This policy consumed the
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Fig. 10. Evaluation of PGRP for the benchmarks mesa and lucas, Twakeup and Tbreakeven are fixed at 20 cycles.
Higher is better.

least energy but performed as well as the base model because the policy was assumed
to contain knowledge of functional units required in the future. Notably, wakeup time
Twakeup is used inside the idle period, and the unit is ready for execution at the start of
the busy period.

As the organization of PGRP-buffer is identical to that of a cache, the CACTI [Tarjan
et al. 2006] tool with 0.18μm technology can estimate energy consumption by the
PGRP-buffer.3 Energy consumption was 0.093nJ, 0.16nJ, and 0.37nJ for 16, 32, and

3Only lower 10 bits of branch address is used to find the pre-wakeup, instead of its full 64-bit address.
Throughout all simulation scenarios, using fewer bits address does not affect the prediction accuracy. But
CACTI still use 64 bits to estimate PGRP-buffer energy consumption as this is the minimum word size
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64 entries, respectively. Although PGRP-buffer consumed additional energy, the access
number was trivial since it is only read for each branch execution and is written when
nontrivial wakeup overhead is incurred.

In addition to the augmented PGRP-buffer, hardware overhead included ten 8-bit
idle threshold counters (i.e., Tidledetect could reach maximum 256 cycles), one 21-bit pre-
wakeup check register and one 10-bit register (i.e., the ESR). The Hspice simulation of a
typical 8-bit counter, 10-bit register and 21-bit register consumed 0.0003nJ, 0.00051nJ,
and 0.00152nJ, respectively. As discussed in Section 5, the ESR is accessed by PGRP-
buffer only when a branch instruction is executed and is updated when any functional
unit is used. The 8-bit counter only operates when the corresponding functional unit is
not power gated. Throughout the simulations, total energy overhead comprised <0.3%
on the processor.

6.1. Idle Interval Distribution and Power-Gating Schemes

Each program phase in an application program has different idle interval distributions
in functional units. In the simulation, for example, the percentage of idle time longer
than 150 cycles in IMUL4 is plotted for the first 2000M instructions from the mesa
benchmark (Figure 11(a)). Clearly, few IMUL instructions with idle periods shorter
than 750 cycles are executed behind 410M cycles. Considering that energy consumption
of functional units (Figure 11(b)), the original case does not use a power-gating scheme;
Tidledetect is 150 cycles in the case of Time150 as well as PGRP32. The PGRP-buffer
in PGRP32 has thirty-two entries. An additional case, Time750, is simulated using
high detection threshold to prevent power gating of short idle periods to minimize
wakeup overhead, but the energy benefit is also reduced. The ideal case would exploit
any beneficial idle opportunity for power gating so that the processor can obtain the
best energy benefits without performance degradation. The energy traces of the three
different simulations represent similar waveform fluctuations.

First, energy is reduced from 20.9mJ to 9.89mJ by Time150 and PGRP32, in which
two policies have the same energy reduction as most idle periods are >750 cycles,
and no wakeup overhead is identified by PGRP32 for pre-wakeup operations. How-
ever, Time750 can only be reduced to 11.02mJ because the power-gating time is de-
creased due to high threshold of 750 cycles. Considering the time behind 410M cycles,
power-gating time is decreased as pre-wakeup is used by PGRP32. Hence, PGRP32
has higher power dissipation than Time150 does; however, execution time for Time150
is increased, which accounts for 7.11% of the increase in execution time and which re-
duces overall processor energy by only 3.05%. Although energy benefits for functional
units obtained by Time150 (38.96%) were greater than those achieved by PGRP32
(35.45%), PGRP32 achieved a 5.69% processor energy reduction with 0.54% perfor-
mance overhead, which is closest to the 8.17% obtained by the Ideal policy. Conversely,
Time750 skips the idle periods of <750 cycles to avoid wakeup overhead; thus, Time750
incurs a smaller increase in run-time (0.81%) than Time150 does. However, energy ben-
efits by Time750 are decreased to only 28.14%. Time150 would assumedly have a high
Tidledetect to avoid performance overhead. However, as Tidledetect (e.g., Time750) increases,
the reduction in leakage energy diminishes.

6.2. Energy Savings in Functional Units

As mentioned in Section 4.1, most short idle periods in each benchmark are <150 cycles.
Dynamic power gating maintains performance only when Tidledetect is high enough to

provided by CACTI. Hence, the storage overhead is only 84 bytes, which is less than 0.26% of 2K-entry BTB
size.
4FALU1 and FMUL have also similar percentage of idle periods greater than 150 cycles.
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Fig. 11. Simulation for the first 2000M instructions of mesa.

skip frequent transitions from sleep to active mode. Thus, this study only considers
Tidledetect with >150 cycles.

Figure 12 presents the percentage of energy reduction in functional units. Simulation
results are reported as normalized metric where normalization is given with respect to
the functional units of the baseline processor without power gating. Time-based power
gating uses six different Tidledetect. The PGRP is simulated using different table sizes
for PGRP-buffer, which demonstrates its pre-wakeup effect during power gating. For
example, the pre-wakeup table for PGRP16 contains sixteen entries.

Most benchmarks achieve close to 60% energy reduction in functional units when
Tidledetect was 150 cycles. Percentage of energy reduced for INT applications exceeded
that for FP applications as idle time in FALUs and FMULT for INT applications usually
exceeded 900 cycles (Figure 3). Additionally, the graphs for Time and PGRP schemes
almost overlap, which indicates that the aggressive pre-wakeup policy of PGRP pre-
wakes the functional units in which power-gating time is reduced; however, pre-wakeup
had little impact on leakage energy reduction.
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Fig. 12. Percentage of energy reduction in functional units, Higher is better.

Average energy reduction achieved by the Ideal policy was 54.11%, and the difference
between the Ideal policy and other policies was only 8.53% when Tidledetect was 150
cycles. Hence, although time-based and PGRP schemes prevent power-gating within
short idle intervals, significant reduction of leakage energy in functional units is still
possible. Finally, as Tidledetect increases, the energy savings by the Time and PGRP
schemes decrease (when Tidledetect is >300 cycles, the energy benefit of lucas is reduced
from 25.7% to 2.41% because lucas has many middle idle periods as discussed in
Section 4.1 and Figure 3(b).). Thus, in any power-gating control policy, Tidledetect should
be minimized.

6.3. Pre-Wakeup Prediction Accuracy

Figure 13 shows the average pre-wakeup prediction accuracy (the number of pre-
wakeups with actual instruction executions/the number of pre-wakeups) in the func-
tional units.
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Fig. 13. Average prediction accuracy of functional units (except IALU1 and IALU2) for PGRP32.

Table II. Hit Rate, Pre-Wakeup Branch Ratio, and Branch Instruction Ratio

INT Hit Pre-wakeup Branch FP Hit Pre-wakeup Branch
Suite Rate Ratio Ratio Suite Rate Ratio Ratio
gzip 99.02 0.05 8.41 wupwise 99.99 1.34 3.99
vpr 98.65 21.12 8.33 swim 97.88 0.03 1.77
gcc 83.51 0.15 14.76 mgrid 99.88 21.37 0.95
mcf 99.99 1.99 20.07 applu 98.35 15.55 3.25

crafty 96.29 7.07 9.47 mesa 97.81 18.10 7.76
parser 97.47 7.43 14.52 galgel 99.96 12.63 6.32

eon 99.57 12.83 10.06 art 99.99 7.45 10.79
perlbmk 96.36 5.45 12.63 equake 99.99 1.76 19.78

gap 99.48 24.50 5.48 facerec 99.60 12.58 5.69
vortex 90.15 1.45 15.76 ammp 95.35 0.86 23.16
bzip2 50.30 0.03 9.58 lucas 99.99 11.11 3.72
twolf 98.97 24.85 12.09 fma3d 97.42 0.02 17.89

sixtrack 99.78 33.46 7.79
apsi 86.84 12.99 6.19

INT avg 92.48 8.91 11.76 FP avg 98.06 10.66 8.51

Table II shows the hit rate (number of branch instructions found in PGRP-buffer
/number of branch instructions that should be considered for pre-wakeup prediction,
i.e., pre-wakeup branch instructions), the pre-wakeup branch ratio (number of pre-
wakeup branch instructions/ number of branch instructions), and branch instruction
ratio (number of branch instructions/number of total instructions). Average hit rate
is 95.49%, the pre-wakeup branch ratio is 9.85%, and the branch instruction ratio
is 10.01%. Obviously, most benchmarks achieve high prediction accuracy and high hit
rate concurrently when a significant number of pre-wakeups (pre-wakeup branch ratio)
are required for avoiding wakeup overheads.

Recall that pre-wakeup is needed only when a branch address and its direction are
found in PGRP-buffer. As the hit rate, pre-wakeup branch ratio, and the number of
branch instructions decrease, the impact of prediction accuracy on power gating time
also decreases due to the fewer pre-wakeup activities. For example, the accuracies of
ammp and f ma3d are as low as 57.22% and 69.96%, respectively, which indicate that
most pre-wakeups do not have actual executions. The percentage of pre-wakeups for
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Fig. 14. Performance degradation. Lower is better.

all instructions is only 0.19% and 0.003%, respectively (hit rate * pre-wakeup branch
ratio * branch instruction ratio); hence, leakage energy reduction of PGRP32 is almost
the same with that of Time scheme (Figure 12). Instead, with the higher prediction
accuracy of 88.14% for twol f, PGRP32 obtains a slightly smaller benefit (53.33%) than
Time (55.8%) does since the percentage of pre-wakeups reaches as high as 2.47%. Of
course, performance impact of Time scheme (Tidledetect is 150 cycles) is reduced by PGRP
from 4.27% to 1.16% (Figure 14(a)).

6.4. Performance Impact

As Figure 14 shows, Time150 incurs a severe performance degradation since, as noted
above, benchmarks vpr, eon, mesa, and apsi have idle periods > 200 cycles (Figure 3).
Meanwhile, PGRP has a much smaller increase in run-time compared to the Time
scheme. Naturally, performance overhead for the Time and PGRP schemes decreases as
Tidledetect increases, i.e., Tidledetect must be high enough to avoid serious performance cost.
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Fig. 15. Percentage of processor energy reduction. Higher is better.

For benchmarks eon and apsi, when Tidledetect is 150 cycles, a significant performance
improvement is achieved when PGRP-buffer size increases from 16 entries to 32 entries.

Consequently, increasing the table size in PGRP-buffer prevents additional wakeup
overheads. When Tidledetect is 150 cycles, the increases in average runtime are
1.62%, 0.51%, 0.38%, and 0.33% for Time, PGRP16, PGRP32, and PGRP64 schemes,
respectively.

6.5. Total Processor Energy Benefits

The Time and PGRP policies obtained the same energy reduction in functional units
(Figure 12). Hence, most benchmarks obtained comparable processor energy benefits
(Figure 15). When Tidledetect is 150 cycles, the Time policy for benchmarks vpr, eon,
and mesa obtains a smaller energy benefit than PGRP does due to the impact of in-
creased runtime on overall processor energy. Since Time policy does not allow low
Tidledetect to prevent wakeup overheads, a high Tidledetect reduces energy benefits (e.g.,
Time policy for lucas decreases energy benefits from 4.06% to 0.39% when Tidledetect is
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Fig. 16. Percentage of processor ED2 reduction. Higher is better.

>300 cycles), and PGRP32 achieves the greatest (on average) energy benefits when
Tidledetect is 150 cycles.

6.6. Energy∗Delay2 (ED2 )

Figure 16 shows the Energy∗Delay2(ED2) for SPEC2000 applications. PGRP can
achieve a stable ED2 improvement for each benchmark because PGRP has negligi-
ble increase in run-time. Considering benchmarks apsi, eon, and mesa, the Time policy
represents a negative ED2 due to the significantly longer runtime. The PGRP obtains
an ED2 improvement comparable to that obtained by the Ideal policy.

In summary, the given evaluation of the Time and PGRP schemes indicates that the
best results are obtained by PGRP32, which has a history table with thirty-two entries
when Tidledetect is 150 cycles. This power-gating policy obtains average energy savings
of 6.82% (up to 12.94% for ammp) and an average ED2 improvement of 6.11% (up to
12.84% for the ammp), which is better than that obtained by the Time scheme (6.50%
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energy benefits, with an ED2 improvement of 3.34% when Tidledetect is 150 cycles.)
(e.g., benchmarks vpr, apsi, eon, and mesa have negative ED2). This configuration is a
good choice for minimizing performance cost and maximizes energy savings. Notably,
when Tidledetect is 150 cycles, PGRP consistently achieves significant energy reduction,
which confirms the effectiveness of the aggressive pre-wakeup scheme. Although the
Time scheme achieves similar energy benefits for most benchmarks, its limitation is
the need for a high Tidledetect to minimize performance cost. Hence, compared with the
Time scheme, PGRP not only obtains better benefits, it does so with lower performance
overhead. Finally, for all benchmarks other than twol f =1.16% and apsi =1.46%,
increased run-time was maintained <1%, which confirms the effectiveness of the PGRP
scheme.

6.7. Sensitivity Study of Leakage Power

Static power consumption is a growing concern in advanced technologies. According to
the 2001 International Technology Roadmap for Semiconductors (ITRS), leakage power
in 70nm technologies is likely to approach 50% of total power dissipation and to become
the main consideration in circuit power over the next several processor generations.
This study showed the extent of the leakage power problem, which should be addressed
by future technologies.

Figure 17(a) shows that, on average, PGRP32 reduces processor energy by 6.63%,
12.56%, and 15.33% when leakage power accounts for 10%, 30%, and 50% of total
power, respectively. Time750 and PGRP32 show similar energy reduction when (leak-
age power)/(total power) is 10%. However, if leakage power increases as in the cases of
eon, applu, mesa, lucas, sixtrack, and apsi, the differences become larger. The low energy
benefits obtained by Time750 scheme result from the long threshold time (750 cycles).
Although PGRP32 provides energy benefits similar to those obtained by TIME150,
PGRP32 obtains higher benefits due to the significantly increased runtime of vpr
(6.17%) and mesa (8.57%) incurred by Time150.

7. CONCLUSION

Subthreshold leakage power is a continuing problem in CMOS circuit design. Due to
the increased number of functional units in SoC design platforms, an aggressive power-
gating scheme is needed to reduce leakage energy. Fluctuating supply voltage arising
from power mode transitions require that wakeup (sleep to active mode transition)
time be set pessimistically to limit the maximum transient currents. Hence, efficient
power gating usually requires further effort to maintain performance (e.g., minimizing
wakeup time while limiting ground bounce [Abdollahi et al. 2007] and multiple sleep
modes [Singh et al. 2007]).

Time-based power-gating cannot avoid recurrent wakeup overheads as they rely on
information about the length of current temporary idle time to predict power-gating
opportunities; no information is shared across different power-gating activities. Our
pre-wakeup predictor works in concert with time-based approach to power gate func-
tional units after their idle time has exceeded the threshold, and restart far in advance
of corresponding instructions. The rationale for the predictor is that the past execution
behavior of loop-closing branches is usually a good guide to predict future execution
needs. Hence, with knowledge of the future execution pattern known, PGRP has a
chance to provide successful pre-wakeups.

The simulations in this study revealed that, when PGRP-buffer had thirty-two en-
tries and Tidledetect was 150 cycles, average performance impairment was 0.38%, and
1.46% in the worst case. Leakage energy in functional units was efficiently reduced
by 45.58%, which approaches the ideal policy (54.11%). Average processor energy
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Fig. 17. Percentage of processor energy reduction when leakage power account for 10%, 30% and 50% of the
total power. Higher is better.

savings were 6.83%. Thus, PGRP strives to predict when to perform early wakeup for
functional units, and a low Tidledetect consistently provides significant energy benefits
without adversely impacting performance.
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