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Abstract. This paper is concerned with Nicholson’s blowflies equation, a kind of time-delayed
reaction-diffusion equation. It is known that when the ratio of birth rate coefficient and death
rate coefficient satisfies 1 < % < e, the equation is monotone and possesses monotone traveling
wavefronts, which have been intensively studied in previous research. However, when Z > e, the
equation losses its monotonicity, and its traveling waves are oscillatory when the time-delay r or
the wave speed c is large, which causes the study of stability of these nonmonotone traveling waves
to be challenging. In this paper, we use the technical weighted energy method to prove that when
e < % < €2, all noncritical traveling waves ¢(x 4 ct) with ¢ > c« > 0 are exponentially stable, where
cx > 0 is the minimum wave speed. Here, we allow the traveling wave to be either monotone or
nonmonotone with any speed ¢ > c« and any size of the time-delay r > 0; however, when 5 > e?

with a small time-delay r < [r —arctan \/ln F(n B —2) ]/d\/ln P (In B — 2), all noncritical traveling

waves ¢(x + ct) with ¢ > ¢« > 0 are exponentially stable, too. As a corollary, we also prove the
uniqueness of traveling waves in the case of g > e2, which to the best of our knowledge was open.

Finally, some numerical simulations are carried out. When e < g < €2, we demonstrate numerically
that after a long time the solution behaves like a monotone traveling wave for a small time-delay,
and behaves like an oscillatory traveling wave for a big time-delay. When 5 > €2, if the time-delay
is small, then the solution numerically behaves like a monotone/nonmonotone traveling wave, but if
the time-delay is big, then the solution is numerically demonstrated to be chaotically oscillatory but
not an oscillatory traveling wave. These either confirm and support our theoretical results or open
up some new phenomena for future research.
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1. Introduction and main results. We consider a time-delayed reaction-
diffusion equation

ov(t, x) 0%v(t, x)
1.1 - D

(1.1) ot 0x?
with the initial data

+dv(t,z) =bv(t —r,2)), (t,x) € Ry X R

(1.2) v(s,x) =wvo(s,x), s€[-r0], z€R.

This model represents the population distribution of single species such as the Aus-
tralian blowfly [10, 11, 16, 28, 34], which is derived from the original delay ODE model
[12] based on Nicholson’s experimental data [30, 31]. Here, v(¢, z) denotes the mature
population at time ¢ and location x; D > 0 is the spatial diffusion rate of the mature
population; d > 0 is the death rate of the mature population; > 0 is the maturation
delay, the time required for a newborn to become matured; and b(v) is the birth rate
function satisfying
(Hi) two constant equilibria of (1.1): v_ = 0 is unstable and v, is stable, namely,
b(0) =0, dvy = b(vy), d—b'(0) <0, and d — b'(vy) > 0;
(Hz) the unimodality condition: b(v) > 0 has only one positive local maximum
at the point v, € (0,v4), and b(v) is increasing on [0, v,] and decreasing on
[V, +00), which also implies &' (0) > 0 and b’ (v4) < 0;
(H3) b € C?[0,00) and |V'(v)] < b/(0) for v € [0, 00).
A typical example is the so-called Nicholson’s birth rate function

(1.3) b(v) =pve”*, a>0, p>0,

where p > 0 is the impact of the birth on the immature population. Equation (1.1)

with the particular birth rate function (1.3) is called Nicholson’s blowflies equation.
Clearly, the so-called Nicholson’s blowflies equation possesses two constant equi-

libria,

1

a

v =0 and vy = lng,

and vy > 0 for § > 1. Linearizing (1.1) without the delay (r = 0) around v, and
setting v = v — vy, we get
(1.4) Vg — DUy = (V' (v1) — d).

Notice that b'(v_) —d =p—d >0 and b'(vy) —d = —dIn5 < 0, s0 v =0 is an
unstable node of (1.4), and vy = 21In % is a stable node of (1.4). Thus, Nicholson’s
blowflies equation (1.1) possesses one unstable node v_ and one stable node vy. Such
an equation is called a monostable equation, like the classic Fisher-KPP equation

Vp — Vg = (1 — v).

The traveling wavefronts for (1.1) connecting with vy at far fields are the special
solutions to (1.1) in the form of ¢(x + ct) > 0, namely,

(15) ¢/ (§) = D" (€) + dg(€) = b(a(& — er)),
d)(ioo) = V4,

where E =z +ct,’ = d%, and c is the wave speed.
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The main purpose of this paper is to investigate the stability of the traveling
waves, in particular for the challenging case of oscillatory traveling waves when the
equation is nonmonotone.

First of all, let us provide some background on the existence of traveling waves
¢(x + ct) of (1.5). When 1 < & < e, the birth rate function b(v) = pve™®" is mono-
tonically increasing for v € [0,v4]. As shown in [35], So and Zou proved by the
upper-lower solutions method that there exists a minimal wave speed ¢, = ¢4 (r) > 0
(the so-called critical wave speed, which is given by the characteristic equation of the
linearizing equation of (1.5) around the equilibrium v_ = 0), when ¢ > ¢,, for any
time-delay r > 0, the traveling wavefronts ¢(z + ct) exist and are monotone. The
uniqueness (up to a constant shift) was shown by Aguerrea, Gomez, and Trofimchuk
[1] recently by means of the Diekmann-Kaper theory. However, when £ > e, the birth
rate b(v) is nonmonotone on [0, v], where b(v) is increasing in (0, 1) and decreasing
in (%, v4); then the story may be totally different and quite challenging, because the
waves may not be monotone but cross-oscillatory as numerically indicated. Unfor-
tunately, the simple but useful method of upper-lower-solutions has failed to prove
the existence of traveling waves. In this case, Faria, Huang, and Wu [4] applied
the Lyapunov—Schmidt reduction method together with the perturbation argument
to show the existence of traveling waves under certain conditions, that is, when the
time-delay r is small, i.e., r < 1; then the traveling waves ¢(x + ct) of (1.5) with a
large speed ¢ > ¢, > 0 exist. This work was then immediately improved upon by
Faria and Trofimchuk [5, 6] through a detailed analysis of heteroclinic solutions, and
by Ma [19], who constructed two auxiliary functions and applied Schauder’s fixed-
point theorem, namely, for e < & < e? with any size of time-delay r, the traveling
waves ¢(x + ct) with ¢ > ¢, > 0 exist. The waves are nonmonotone either for a large
time-delay r such that

(1.6) d(lng—l)re”"“ > 1,

or for a large speed ¢ > ¢*, where ¢* = ¢*(r) > 0 is given by the characteristic equation
of the linearizing equation of (1.5) around the equilibrium v;. Remarkably, Gomez
and Trofimchuk [7] recently showed that, for e < & < €2, the waves are monotone if
and only if (¢,r) is in a certain region D (see Figure 1), i.e., ¢ € [c.(r), c*(r)] with
some 7 > 0. Precisely, let r > 0 be the root of the equation

(1.7) d(lng — l)zedﬂ'l =1,

which is also the critical point for the solution possibly to cause oscillations for the
linear delay ODE [36]

(1.8) V'(t) + du(t) = b (vy )v(t —r);

if 0 < r < r, then ¢* = oo, and thus all traveling waves ¢(z + ct) are monotone
for ¢ > ¢,. Furthermore, when r > r, if 5 is close to e such that e = 2.7819--- <
B < vy = 2.808---, then the wavefronts are still monotone for ¢ € [c., c*], where
vp = 2.808--- is the largest number for £ such that c.(r) = ¢*(r) has no solution.
However, if vy < § < €2, then there exists ro > 0, which is the unique intersection
point of ¢, (r) and ¢*(r) and satisfies o > r, such that the wavefronts are monotone
for (¢,7) € [cx,c*] X [r,70]. In the other case, when (c¢,r) is out of the mentioned

region D, the traveling waves are slowly oscillating around v;. The uniqueness of the
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c*(n

@

cx(n

. time-delay r i ro time-delay r

The case: e<p/d < or =2.808... The case: 2.808...<p/d < or = e”2

Fic. 1. Domain of (¢,r) € D for monotone traveling waves in the case of e < % <e2.

waves up to shift in this case has also been proved by the Diekmann—Kaper theory in
[1]. Finally, when £ > €2, the wavefronts exist only for 7 in some bounded set [38, 37],
and the wavefronts are slowly oscillating at +oco when the time-delay r satisfies (1.6).
Notice that, as specified in [37], if » > 1, even though ¢ > c,, there will be no
traveling waves, or if ¢ > 1, there also will be no traveling waves. However, the
study in this case is quite incomplete and leaves many questions unanswered. For
example, can uniqueness be proved for this case? what is the necessary condition for
the nonexistence of traveling waves? and so on. Here, as a corollary of our stability
theorem, we will give a positive answer concerning the uniqueness of traveling waves.
Now we summarize the existence and uniqueness of traveling waves of (1.5) as
follows.
THEOREM 1.1 (existence of traveling waves). Let b(v) = pve™*".
1. When 1 < % < e, then there exist two numbers c. > 0 and A\, = Ai(cx) > 0,
which are giwen implicitly by

(1.9) ch — DA2 +d =V (0)e ™" and ¢, — 2D\, = ' (0)e,re o7,

with b'(0) = p, such that

(a) for ¢ < ci, no traveling waves ¢(x + ct) exist;

(b) for ¢ > c., the traveling waves ¢(x + ct) of (1.5) exist and are unique up
to shift. Particularly, when ¢ > c., there exist two numbers depending
on the speed ¢, \1 = Ai(c) > 0 and A2 = Aa2(c) > 0, as the positive roots
of the equation

(1.10) cAi — DN +d =V (0)e N, i =1,2,
satisfying
(1.11) A —=DN+d>V(0)e " for A <\ < .

2. Whene < & < €2, the traveling waves exist and are unique up to shift for
any gwen time-delay v > 0. Namely, there exist two numbers c, > 0 and A\,
which are the same as in (1.9), and the inequality (1.11) still holds, such that

(a) for ¢ < ci, no traveling waves ¢(x + ct) exist;

(b) for ¢ > c., the traveling waves ¢(x + ct) of (1.5) exist and are unique
up to shift. Particularly, ¢(x + ct) is monotone for (¢,r) in a certain
region D and nonmonotone for (c,r) out of D (see Figure 1). Precisely,
(i) if 0 <r <r, then ¢(x + ct) is always monotone for ¢ > c,;

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/25/14 to 141.217.58.222. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

STABILITY OF NONMONOTONE TRAVELING WAVES 1057

(ii) ife < & <wy=2.808--- even ifr > r with c € [c«, c*], then ¢p(x+-ct)
is monotone, where ¢, = c.(r) is given by (1.9), and ¢* = c¢*(r) is
determined by
(1.12)

EN = DN d =V (vy)e”N T, ¢ —2DN = —b (vy)ctre N T

with b’ (vy) = d(1 —In &);

(iii) if vo < & < € and r € [r,ro] with ¢ € [cs,c*], then ¢(x + ct) is
monotone, where ro > 1 is the unique intersection point of c.(r)
and c¢*(r);

(iv) otherwise, when (c,r) & D, then ¢(x + ct) is nonmonotone, and
slowly oscillates around vy .

3. When 5 > €? and 0 < r < 1, then the traveling waves ¢(x + ct) exist for
cx < ¢ < ¢ and are slowly oscillating around vy. Ifr > 1 orc> 1, no
traveling waves exist. No uniqueness of the wavefronts in this case is proved
at this moment.

As mentioned before, the main goal of this paper is to show that these traveling
waves, including nonmonotone waves, are asymptotically stable as t — oo. Here, let
us provide further details on the progress of stability of the traveling waves in this
direction. When 1 < & < e, for the monotone traveling waves ¢(x + ct) of (1.5),
Schaaf [32] in 1987 first studied the linearized stability of wavefronts for time-delayed
monostable equations using a spectral method. Since then, this topic was barely
touched upon until 2004, when Mei et al. [28] showed nonlinear (local) stability of
the wavefronts by a technical weighted energy method. Then Mei and coauthors
[17, 23, 24, 27] further obtained global stability using both the weighted energy method
and the comparison principle. These results were then extended to more general time-
delayed reaction-diffusion equations with monostability by Lv and Wang [18] and Wu,
Li, and Liu [39]. Recently, the global stability of critical wavefronts ¢(z + c.t) with
optimal convergent rates was obtained by Mei, Ou, and Zhao [25] and Mei and Wang
[29] using the Fourier transform and Green’s function method plus energy estimates.
Notice that these stabilities rely on the monotonicity of both the equation and the
wavefronts. However, when £ > e, equation (1.1) lacks monotonicity and the traveling
waves may oscillate around v ; research on the stability of such oscillatory waves was
only recently carried out in [40]. Because of the lack of monotonicity, the equation
doesn’t possess the comparison principle, and we cannot expect global stability. But
we may still be able to get local stability, because the weighted energy method doesn’t
require the monotonicity of the equations and works for any nonmonotone equation
if it possesses some viscosity or a damping or relaxation effect [3, 14, 20, 26]. Under
such considerations, recently Wu, Zhao, and Liu [40] first showed asymptotic stability
for nonmonotone traveling waves, but they needed to restrict 4 to be sufficiently close
to e, & ~ e, and the wave speed to be sufficiently large, ¢ > c.. It is interesting to
note that the L?-weighted energy method developed in our previous works [23, 28] is
useful only when e < & < e?, because a restriction d — [/ (v4)| > 0 is necessary when
we establish the desired L? energy estimate of the solution for ¢(z + ct) near the far-
field state v4. Thus, such a restriction causes the stability of the waves in the case of
E> €2 to fail, and so the problem remains open. Another interesting and important
issue is the stability of those slower waves with a small speed arbitrarily close to the
minimum speed ¢y, i.e., ¢ > ¢, but |¢ — ¢i| < 1, in particular the stability of critical
wave ¢(x+c,t). Answering these questions will be the main task of the present paper.
In fact, in this paper we will prove that for e < & < e? all traveling waves ¢(x + ct)
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with ¢ > ¢, including those oscillating waves, are exponentially stable when the initial
perturbations around the waves in a certain weighted Sobolev space are small enough.
Here, the time-delay r > 0 can be allowed to be arbitrary. However, for & > e2, if the
time-delay r satisfies 0 < r < [r —arctan \/InE(In § — 2) |/d\/In E(In & — 2), then all
noncritical traveling waves, including the Obcﬂlatlng waves, are abymptotlcally stable,
too. This condition on r should be optimal, because it is the sufficient and necessary
condition for stability of the solution to the linear delay differential equation (1.8);
cf. [2]. The adopted approach for proving the stability of traveling waves in this
paper is still the technical weighted energy method, but in order to treat the case
when ¢(x + ct) is near v (or, say,  — 00), in contrast to previous studies, we use the
nonlinear Halanay’s inequality (see Lemma 3.9 below) to get the desired exponential
decay estimate. However, for & > e? with large time-delay r > 1, as we numerically
demonstrate in the last section of the paper, the solution is chaotically oscillatory and
doesn’t behave like an oscillatory traveling wave (in fact, to the best of our knowledge,
no traveling waves exist in this case). Such phenomena leave us with many challenges.
Stability of the critical wave ¢(z + c,t) in the case of the nonmonotone equation
unfortunately remains an open problem, since current methods have failed. So a new
strategy has to be developed in the future.

Before stating our main result, let us make the following notation. Throughout
the paper, C' > 0 always denotes a generic constant, while C; > 0 (i = 0,1,2,...)
represents a specific constant. Let I be an interval, typically I = R. L?(I) is the space
of the square integrable functions defined on I, and H*(I) (k > 0) is the Sobolev space
of the L?-functions f(x) defined on the interval I whose derivatives %f (i=1,...,k)
also belong to L?(I). L2 (I) denotes the weighted L2-space with a weight function
w(x) > 0, and its norm is defined by

£z = ([ v s )"

HE(I) is the weighted Sobolev space with the norm given by

k
17l = (;/lwm

Let T' > 0 be a number and B a Banach space. We denote by C([0,7]; B) the space
of the B-valued continuous functions on [0,7] and by L?([0,T]; B) the space of the
B-valued L*-functions on [0, 7.

Throughout this paper, we consider (1.1) with a bit general birth rate b(v) satis-
fying (Hy)—(Hgs). Let ¢(x + ct) be a given noncritical traveling wave with ¢ > ¢, even
if it is monotone or slowly oscillatory around vy. Here, c¢. = c.(r) and A\, = A\ (1)
satisfy (1.9) with a general unimodality b(v), and, correspondingly, ¢ and A satisfy
(1.11). We define a weight function related to such a number A > 0,

2

(x) dx) 1/2.

(1.13) w(z) = e 22@=20) X € (A, \p), with a sufficient large number zq > 1.

Now we state the stability of traveling waves for (1.1) with a general nonmonotone
birth rate.

THEOREM 1.2 (stability of monotone/nonmonotone traveling waves). Let the
birth rate function b(v) be general and satisfy (H1)—(Hs), and assume either d >
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|6/ (vy)| with any time-delay r > 0, or d < |b/(v4)| but with a small time-delay 0 <
r < T, where

(1.14) . ™ arctan(y/[t'(v )]? — d?/d)

o' (v4)|? — d?

For any given traveling wave ¢(x + ct) with ¢ > ¢, to (1.1), whether it is monotone
or monmonotone, suppose that vo(s,z) — ¢(z + cs) € C([—r,0;C(R) N HZ(R)) N
L3([—r,0}; H2(R)), and limy— 1o [vo(s, z) — ¢(x + ¢5)] =: up,(s) € C[—r,0] exists
uniformly with respect to s € [—r,0]. There exist some constants 6o > 0, 0 < pg =
pa(p,d,r, b’ (vy)) < d, and 0 < p = p(p,d,rye, \,b'(vy)) < pe, all independent of x,
t, and u(t,x), when the initial perturbation is small:

0
max [[(vo — )E + (w0 — DO + [ w0~ )(6) By ds < 5.

s€[—r,0] o

Then the solution v(t,x) of (1.1) and (1.2) is unique, exists globally in time, and
satisfies

(1.15)

v(t,z) — ¢(x +ct) € C([-r,00); C(R) N H2(R)) N L*([—r,00); H2(R)) N Cynig[—7,00)

and

(1.16) sup [v(t,z) — ¢(x +ct)| < Ce ™, t>0,
TER

where Cypif[—r, T, for 0 <T < oo, is defined by

Cunif[—r,T] :={u(t,z) € C([-r,T] x R) such that

(1.17) 1i141_1 et2tu(t, z) exists uniformly in t € [—r,T], and
Tr—r+00

lim w,(t,z) = lm wug.(t,z) =0
T ——+00 T ——+00

uniformly with respect to t € [—r,T|}.

Remark 1.

1. Notice that w(xz) > 1 only for & < xg, and lim, oo w(2) = 400, lim, 0 w(x)
= 0. Thus, if f € H2(R), then we cannot always guarantee the boundedness
of f as & > xp. So, different from our previous works [23, 24, 27, 28] where
the weight functions are selected to be greater than 1 for all z, and the initial
perturbation in H2 with w > 1 implies lim, 1 [vo(s, ) — ¢(z + ¢s)] = 0,
here we restrict the initial perturbation only in C'(R) N H] for w(+o00) = 0,
with a uniform convergence as © — +o00. This allows the initial perturbation
to be uniformly bounded only at z = oo but may not be vanishing, namely,
lim, s oo[vo (s, 2) — @ + ¢8)] =: up,00(s) # 0.

2. Technically, in the later proof, we need to select the weight function w(z) =
e~ 2M@=20) for X € (A1, A2) (see (1.10)). This makes the initial perturbation
around the wavefront like |vg(s, ) — ¢(x + cs)| = O(1)e Ml as 2 — —oc. If
the initial perturbation decays much faster, namely, A > Ao, the initial per-
turbation |vg(s, z) — ¢(x +cs)| obviously belongs to C([—r,0]; C(R)NHL(R));
then the stability theorem, Theorem 1.2, directly implies the exponential con-
vergence of the solution v(¢, ) to the traveling wave ¢(x + ct).
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COROLLARY 1.3 (uniqueness of traveling waves). Let the birth rate function b(v)
be general and satisfy (Hy)-(Hs), and let either d > |/ (vy)| with any time-delay
r >0, ord< |b(vy)| but with small time-delay 0 < r < F. Then, for any traveling
waves ¢(x + ct) of (1.1), whether they are monotone or nonmonotone, with the same
speed ¢ > ¢, and the same exponential decay at & = —o0,

(1.18) o(&) = O(l)e_Allgl as & — —o0,

and they are unique up to shift.

Now we are going to state the stability result for Nicholson’s birth rate case. Let
b(v) = pve”®; then v_ =0, vy = 1In&, v, = 1, and b(v) automatically satisfies
the conditions (H;)—(Hs). As a direct application of Theorem 1.2, we immediately
obtain the following stability of monotone/nonmonotone traveling waves for the case
with Nicholson’s birth rate b(v) = pve=*".

THEOREM 1.4 (stability of monotone/nonmonotone traveling waves). Let b(v) =
pve~ . For any given traveling wave ¢(x + ct) with ¢ > ¢, connecting with v— = 0
and vy = 51n§, whether it is monotone or nonmonotone, suppose that vo(s,x) —
¢(x + cs) € C([-r,0]; C(R) N H2(R)) N L3([—r,0]; H2(R)) and lim,_, 1 [vo(s, x) —
o+ ¢s)] =: up,00(s) € C[—r,0] exists uniformly with respect to s € [—r,0], and the
inatial perturbation is small:

0
s o0 = IE + o0 = 0O + [ w0 = D)) s < 3
for some positive number §y > 0.
1. When e < b < ¢?, for any time-delay r > 0, the solution v(t,z) of (1.1) and
(1.2) is unique and exists globally in time in the space (1.15), and the stability
(1.16) with some constant p > 0 holds for all t > 0.
2. When & > e? but with small time-delay 0 < r < T, where

_ Pn2 —
(1.19) I arctanp lng(lnd 2)’

the solution v(t,x) of (1.1) and (1.2) also is unique and exists globally in
time in the space (1.15), and the stability (1.16) with some constant j1 > 0
holds for all t > 0.

Remark 2.

L. In Theorem 1.4, for e < & < €2 with an arbitrary time-delay r > 0, we prove
that all noncritical traveling waves with ¢ > ¢,, whether they are monotone
or nonmonotone, are time-exponentially stable. Here, when r is small such
that 0 < r < r, where r is defined in (1.7), the solution time-asymptotically
converges to a certain monotone traveling wave, while, when r > r, in a cer-
tain region D for ¢ and r, the solution still behaves like a monotone traveling
wave. But when c is really large with ¢ > ¢* or the time-delay r is large, such
that (¢, r) is out of the region D, then the solution behaves like a certain oscil-
latory traveling wave after a large time. All of these cases will be numerically
demonstrated later (see Cases 1-3 in the last section of the paper).

2. When & > e, and the time-delay r is not large, 0 < r < 7, where 7 is defined
in (1.19), we prove that all noncritical traveling waves with ¢ > ¢,, whether
they are monotone or nonmonotone, are time-exponentially stable. It can
be easily verified that 0 < r < 7 for § > e?. Particularly, we numerically
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demonstrate in Cases 4 and 5 in section 5 that when 0 < r < r, the solution
v(t, z) behaves like a monotone traveling wave, and when r < r < 7, the
solution v (¢, x) behaves like a nonmonotone traveling wave.

3. Notice that when £ > €2, as shown in [2], the sufficient and necessary condi-
tion for the stability of the solution to the linear delay differential equation
(1.8) is 0 < r < 7. So, when & > e? and r > T, we never expect any stability
of traveling waves, even the traveling waves might not exist (at least, when
r > 1, no traveling waves exist). In fact, from our numerical study later in
Cases 6 and 7, we find that the solution doesn’t behave like a traveling wave,
but always oscillates chaotically at some points. Unfortunately, we are not
clear about the asymptotic behavior of the solution for this challenging case.

4. When ¢ = c¢,, the approach developed in this paper cannot be applied, and
the stability of critical wave ¢(x + c.t) remains an open problem. A new
strategy will be developed in the future.

COROLLARY 1.5 (uniqueness of traveling waves). Let b(v) = pve™®. Ife < 5 <
e? with any time-delay v > 0, or if & > €2 but with small time-delay 0 < r < T, where
7 is defined in (1.19), then, for all traveling waves ¢(x + ct) to (1.1) with the same
speed ¢ > ¢, and the same exponential decay at —oo, whether they are monotone or
nonmonotone, these waves are unique up to shift.

Remark 3. Corollary 1.5 solves the uniqueness of monotone/nonmonotone trav-
eling waves for & > e. Since uniqueness of the traveling waves for e < § < e? was
proved recently by Aguerrea, Gomez, and Trofimchuk [1], here we answer the open
question on the uniqueness of traveling waves for the case £ > e2.

The paper is outlined as follows: In section 2, we reformulate the original equa-
tion to the perturbed equation around the given traveling wave, and we give the
corresponding stability theorem for the new equation. In section 3, we consider (1.1)
with a general nonmonotone birth rate function. We use the weighted energy method
to establish the desired a priori estimates and use the nonlinear Halanay inequality
to treat the case when ¢(z + ct) nears vy. This plays a crucial role in the proof of
stability. Based on the stability theorem, in section 4 we prove the uniqueness of
those monotone/nonmonotone traveling waves. Finally, in section 5, we carry out
some numerical simulations which also confirm and support our theoretical results.
The chaotic oscillations for the solutions in the case of £ > €2 and r > 7 open up a
new avenue for future research.

2. Reformulation of the problem. This section is devoted to the proof of
stability of those monotone or nonmonotone traveling waves. We consider (1.1) with
a general nonmonotone birth rate function b(v) satistying (H;)—(Hs).

Let ¢(x + ct) = ¢(§) be a given traveling wave with speed ¢ > c,, and

u(t,§) :=v(t,x) — p(x +ct),  uo(s,§) :=vo(s,z) — ¢(x + cs).
Then, from (1.1)—(1.5), u(t, &) satisfies

% —|—cg—z —D% +du —b(p(§ —cr))u(t —r,&—cr)

(2.1) = Qu(t—r.E—cr)), (t,€)€ Ry xR,
U(Saf) = uO(Saf)v s € [_Tv 0]7 fe R,

where

(2.2) Q(u) := (¢ +u) — b(¢) — V' (¢)u,
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with ¢ = ¢(§ — cr) and uw = u(t —r, & — cr).
Letting T' > 0, we define the solution space as
(2.3)
X(=r,T) = {ulu(t,€) € C([-r, T]; C(R)NH (R))NL*([=r, T]; H,(R))NCunis [, T]}

equipped with the norm

(2.4) M1 = sup(Jult) + u(®)Fs )

Particularly, when T' = co, we denote the solution space by X (—r,c0) and the norm
of the solution space by M, (c0).

Now we state the stability result for the perturbed equation (2.1), which auto-
matically implies Theorem 1.2.

THEOREM 2.1 (stability). Let b'(vy) and r satisfy either d > |b'(vy)| with
arbitrarily given r > 0, or d < |V/(vy)] with 0 < r < T, where T is defined in
(1.14). For any given traveling wave ¢(x + ct) = ¢(&§) with ¢ > c., suppose that
ug(s,&) € C([-r,0;;C(R) N H2(R)) N L*([-r,0}; H2(R)), and lime_, 4o up(s, &) =:
Up.00(8) € C[—r,0] exists uniformly in s, where w(€) = e~2 E=20) with a sufficient
large number xq > 1. Then there exist some constants ég > 0 and p > 0 which
are independent of u, t, and & when M, (0) < §y. The solution u(t,§) of (2.1) then
uniquely and globally exists in X (—r,00) and satisfies

t

lu()lIE + a7 +/0 e 20 [lu(s) | 2 ds

0
@5)  <Ce( max fuo()E + luoO)l + [ uo(s)lFryds)
fort € [0,00).

By using the continuity extension method [27, 28], the global existence of u(t, &)
and its exponential decay estimate announced in Theorem 2.1 directly follow from the
local existence result and the a priori estimate given below.

PROPOSITION 2.2 (local existence). Under the assumption in Theorem 2.1, for
any gwen traveling wave ¢(x + ct) = ¢(§) with ¢ > c., suppose up(s,§&) € X (—r,0),
and M, (0) < &1 for a given positive constant 61 > 0. Then there exists a small ty =
to(01) > 0 such that the local solution u(t,&) of (2.1) uniquely exists for t € [—r, to]
and satisfies u € X (—r,to) and M,(to) < ¢y M, (0) for some constant ¢y > 1.

Proof. The proof for the local existence of the solution is standard, because it
can be proved by the well-known iteration technique [21, 22]. In contrast to previous
works, here we need to show that the local solution is also in Cypn; f[—r, to] for some
small ¢ty > 0 which will be determined later. We just sketch the proof as follows.

Let u(®(t,&) € X(—r,t); for example, we choose u(9(t,€) = ug(t,€). Then we
define the iteration u(®*tY = P(u(™) for n > 0 by

8u(n+1) 8u(n+1) 82u(n+1)
(2.6) S g~ D g H A = gt =g — ),

("t (s, €) = ug(s,€), s€[-r0], £ €R,

where

g(u™) = b(¢ +u™) — b(e),
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which can be also written in the integral form
W = [ Gl 0u0(0.€ )

t
(2.7) +/ e~ dt=s) / G(n,t — s)g(u(”)(s —r,&—n+cr))dnds.
0 R

We also have

e“ztu("“)(t,g

)
_ e—(d—#2)t/ G(n,t)uo(0,& —n)dn
R

¢
(2.8) +/ e*d(tfs)e“ﬁ/ G(n,t —s)g(u'™ (s —r, & — 1+ cr))dnds
0 R

and

Ofu™(t,€)
= e*dt/ G(r],t)aguo((),ﬁ —n)dn
R
t
+ / e 1= / G(n,t — $)0Fg(u™ (s — r,€ =+ cr))dnds
0 R
i /R DL G (1, t)uo(0,€ — n)dy
t

(2.9) +/eﬂwﬂ> G, t — 8)g(u™ (s — 1€ — 7+ cr))dnds,
0 R

where 0 < po = pa(p, d,r,b'(v4)) < d is a decay exponent for the delayed ODE (3.21)
and specified in Lemma 3.10, and G(7,t) is the heat kernel

1 _ (nten)?
e 4Dt .
Var Dt

Notice that (™ € Cunif[—7, to], namely, limg_, o0 e“Qtu(")(t, &) = e“ﬁug) (t) € Cl—r,to]
and limg_, o 8§u(”) (t,€) = 0 all exist uniformly in ¢ for k = 1,2; we are going to prove
wntl) Cunif[—r,to]. First of all, we note that

G(nv t) =

lim u(" TV (t,¢)

£—o0

—f“/Gmwhmmm@—mm

t
= uo,oo(())e_dt + / e_d(t_s)g(ugz)(s —r))ds

0
= u("*V(¢),  uniformly with respect to t € [—r, to].
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Now we prove that e#2tu(*+1) (¢, €) is uniformly convergent as & — co. In fact,

lim sup |e"?ul" (¢, &) — er2tuT (1))
§—00 0< <t

t
= lim sup /e_d(t_s)em(t_sw)
§—000<t<ty Jo

x/Q%mt—ﬁwﬂk”wmes—né—n+WD—gngs—ﬂwm%
R

t
< lim sup /e_ (t=s) gpz(t=s+r)
T E—00 <<ty

<[ Glnt—s) sup (e lglu (s =g =t er)) — g(ul2) (s = 1))
SE[Oto]

< C lim sup/ —d(t—s) g2 (t—s+r)
0

§—00 0< <t

X / G(n,t —s) sup (6“2(5_T)|u(")(8 —ré—n4er) —u (s — r)|)dnds
R s€1[0,t0]

t
—C sup / o d(t=s) s (t—s+r)

0<t<to

/ G(n,t —s) hm sup (6”2(54)|u(")(s —rE—n+er)—ul (s — T‘)|)d77d8

£—00 5[0, 0]

Here we used the uniform convergence of

lim sup |e"2tu(™(t,€) — e"2tu(V ()] =0
£00 tc0,t0)

and the uniform boundedness of

t
/ e—d(t—s)e,uQ(t—s+r)dS —
0

6H2T
O 1 e ldmme)t <
d—uJ e I <

/ G(n,t —s)dn = 1.
R
Similarly, noting the facts

G(1,t)lp=+0c =0 and (0yG(n,1))[p=t0c =0,
we can prove that, for k = 1,2,

: k, (n+1)

6#27’

d— po

and

_dt/ 8§G(T},t) hm uo(0,& —n)dn

+/ —d(t— S)/ a’f G(n,t —s) hm g(u™ (s —r,& —n+ cr))dnds

—uOoo dt/ak 777
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t
+/ e 1 g(ul (s —T))/ Oy G(n,t — s)dnds
0 R

=0, uniformly with respect to ¢t € [—r, o).

Furthermore, by taking the regular energy estimates

/Ot/R (é@g(?ﬁ) X u}(ﬁ)aiju(wrl))dgds7

we can estimate
t
Ihﬁ”*”(ﬂnﬁg-%jéIhﬁ"+”0ﬂnégd8

0 t
@unsc@wwmﬁ+/|mmm%w+éuwwgﬁyﬂ,temm,

for some positive constant C' > 0. From (2.7), we have

(2.11) [V (@®)le < Clluo(0)|c +Cto sup [[ul™ ()], t € [0,t0)]-

te[—r,to]

Combining (2.10) and (2.11), we prove

0
Moo (t) < O maax Juo()]E + Juo(O) g + [ o)y ds)

-

+ CtoM,,in (to)-

Thus, we can prove that u(®*t1) = P(u(") defined in (2.6) maps from X (—r,t0) to
X(—r,tg) and is a contraction mapping in X (—r,tg) by providing 0 < ¢y < 1 and
maxge(—r0) [[uo(s)||& + ||u0(0)||%112u + fi)r ||u0(s)||%112uds < 1. Hence, by applying the
Banach fixed point theorem, we can prove local existence of the solution in X (—r, o).
Since the convergence lim,, o u(™ (t,€) = u(t,€) is uniform for (¢,€) € [0,t0] x R,
and u(™ ¢ Cunif0, o], we can also guarantee u € Cypif|0, to]. O

PROPOSITION 2.3 (a priori estimates). Under the assumption in Theorem 2.1,
let we X (—r,T) be a local solution of (2.1) for a given constant T > 0. Then there
exist positive constants 63 > 0, Co > 1, and p > 0 independent of T and u(t, &) such
that, when M, (T) < 62,

t
[u(IE + ()7 +/ e u(s) |3y ds
0
0
(212) < Coe " (max o) E + [o(0) +/

-

Juo(s) I3 ds )

fort €[0,7].

The proof for the a priori estimates of the solution in the designed solution space
X (—r,T) is technical and plays a crucial role in this paper. We leave this for the next
section.

Proof of Theorem 2.1. Since this can be proved similarly as done in [27, 28], here
we sketch the proof as follows. Let do, Cp, and p be the positive constants given in
Proposition 2.3 which are independent of T" and u. Now let us choose

) ]
01 = max{+/CocoM,(0),02}, o= max{é, 025 }
v Coco
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By Proposition 2.2, there exists tg = to(d1) > 0 such that u(t,&) € X(—r,tg). From
the selection of §p and 1, we can further confirm M, (tg) < 5. Then, applying
Proposition 2.3, we can establish the exponential decay estimate (2.12) for ¢ € [0, to].
Next, let us consider (2.1) with the new initial data u(s, §) for s € [to—r, to]. Again, by
Proposition 2.2, we can prove that the solution to the new Cauchy problem (2.1) exists
for time ¢ in [tg, 2t]; namely, we extend the time interval of the solution to [—r, 2¢¢],
or say, u(t,£) € X(—r,2tg). Then, by using Proposition 2.3, we can establish the
exponential decay estimate (2.12) for ¢ € [0,2tg]. Repeating this procedure, we can
prove global existence of the solution u(t,&) € X (—r, c0) with the exponential decay
estimate (2.12) for ¢ € [0, 00). For details, we refer the reader to [27].

3. A priori estimates. This section is devoted to establishing the a priori es-
timates, which are the core of the paper. The adopted approach is still the weighted
energy method but with a new development. Here, the birth rate function b(v) is, in
general, considered as an unimodality function satisfying (Hy)—(Hs).

First of all, we are going to establish the energy estimates for wu(¢,£) in the
weighted Sobolev space H2 (R).

LEMMA 3.1. Let u(t,&) € X(—r,T). Then

g + [ e [ 1B,(6) = CMLT €l (s, s
0
B <0 (O + [ lun(s);ds),

-

where
R _ _162;”_ / M
(3.2) By.pw() == Apw(§) — 21 n( DI (o(&) 0 @)
and
WO L DYWLl en)
(3:3) Ayu(6) 1= e 8l 2= 3 (L) it (9(e—er) |- IV (0() ™

and p and n both are arbitrarily given positive constants at this moment, but will be
specified later.

Proof. As shown in our previous work [23], we multiply (2.1) by e***w(&)u(t, ),
where i > 0 is a constant and will be specified later in Lemma 3.3. Then we have

1 1
{iez“twlﬂ} + ezw{icwu2 - Dwuu§}£ + De** wuf + De* w'ueu
¢
/
+{ = 55 +d—nfertuu? — e tw(©ult, b (9(¢ — er)ult —r.§ — er)
(34) = e w(@u(t,€)Q(ult —r,& —cr)).
By the Cauchy-Schwarz inequality

D w'\2
|De?Mw'uue| < Defwu? + =2 — ) wu?,
€Ty w

we reduce (3.4) to

1 1
{ 562“twu2 }t + 62“t{ §cwu2 — Dwuug }5
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{5 B e

2w 4
— e w()ult, Y (¢(6 — er))ult —r, & — cr)
(3.5) < eMw(ult, )Q(ult — 1, & — cr)).

Integrating the above inequality over R X [0, t] with respect to £ and ¢, and noting the
vanishing term at far fields,

1 00
{gchQ — Dwuug}‘£:7oo =0,
because \/wu € H?(R) (see Lemma 3.7 below), this implies, by the property of
Sobolev space H%(R), that (v/wu)|¢=+o0 = 0 and (y/wug)|e=t oo = 0. Thus we further
have

_2// 2us () (A€ — er))uls, E)uls — 1, € — cr)deds

< luo(0)[172 +2 2w LOQ(u(s —r,& — cr))déds.
g SO / K

Again, by using the Cauchy-Schwarz inequality

262w () (6 — er)u(s, uls — 1, € — er)
< A (D€ - o)l [ (5,) + Tt =g — )]

for any 7 > 0, and by change of variables, we have
‘ / / 205(E) (€ — er))u(s §)u(s—r,§—cr)d§ds‘
< / /R 25 w(E)[B (66 — er))lu?(s, €)deds
i [ @ e - s =g — erjacds
— / t [ el ¢ = en)l s, )deds
e / [ eute e o) (s, dcds

[by setting £ —cr — &, s—1 — 8]

<n / / P10 (E)[H ((€ — cr)u(s, €)deds
2189 cr)|b’ u s
+e // (& + en)l (6(6)) [u? (5, €)ded
(3.7) —|— e? /_ / w(€& + er) |V (o(& ))|ug(s,§)d£ds.
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Substituting (3.7) into (3.6), we have

2 Ju(t)

L2+ / / 2B, w(©w(E)u? (s, €)déds
< Juo0)|2; +2 / / 2W900(€ u(s, €)Q(uls — 1. & — cr))déds
(3.8) oten / / 1€ -+ o) U (6(6) i3 (s, £)deds,

where B, () is given in (3.2).
On the other hand, by the definition of M, (T) (see (2.4)),

|u(ta€)| S OMU(T) for ¢ € [OvT]a 5 € Rv
and by the Taylor expansion
Q)| = [b(u+ ¢) — b(¢) — V' (d)ul < Clul?,

where C' > 0 is independent of u, we can estimate the nonlinear term as
t
[ [ e u©uts. Qs g — enagas
o JR
t
< CMU(T)/ / 25w (€)|u(s —r, & — cr)|*déds
o JRr

[ [ @ luts, o Pdeds
—r R
T) / /R 2 (E)[u(s, €)|2deds

0
(3.9) + CMu(T)/_ /Re2ﬂsw(§+cr)|u0(s,§)|2d§ds.

Here, the last estimate can be followed from (3.7), and w(¢ + cr) = e 22 w(&).
Substituting (3.9) into (3.8), we have

20|y (1) |2 5 te2“3 - w(E)u?(s s
et u(t)|2, + / /R By p(€) — OM,(T)]uw(€)s? (s, €)déd

0
< C(luo)E; + [ o)l ds),

-

which immediately implies (3.1). Thus, the proof is complete. d
LEMMA 3.2. Let n = e~ ", Then there exists a constant C; > 0 such that

(3.10) Apw()>C1 >0  for&€R.
Proof. By (H3), notice that
b'(¢)] <¥'(0) forall¢>0

and

w(& + CT) _ 6—2)\cr
w(§) '
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Then by using the fact (1.11), i.e.,
cA+d—DN —b(0)e " >0 forec>ec, and A€ (A1, \2),
we can guarantee that A, ,,(§) as defined in (3.3) is always positive, that is,

A () = —cw/(f) +9d— 2(1;’}/((5)))2

w(§) 2
o e—)\cr / —er _ e)\cr ’LU(f + CT)
¥ (0(€ — en)| = o7 HST

b'(6(6))]
> 2[CA +d — D)2 — b/(o)e*)\cr]

(3.11) =:C; >0

for £ € R with ¢ > ¢, and A € (A1, A2). O

Remark 4. The choice of i and the weight function w(§) are also delicate and
important, because with a different setting for n and w(¢), we may not be able to get
the positivity (3.11) of A, (&) for every speed ¢ > ¢,. Otherwise, as in [28, 27, 18,
39, 40], we need to restrict the speed to be large, ¢ > c.. It is worth pointing out
that such a technical selection of = e**" was first given by Gourley in [9] on the
linear stability of wavefronts for an age-structured population model.

LeEMMA 3.3. Let u(t,§) € X(—r,T). Then there exists a constant p11 > 0 such
that, for 0 < p < p1, it holds that

0

t
(3.12) Ju(®lz+ [ &0 u(o) [ ds < e (o) + | lualo)l3 ds).
0 —r
provided M, (T) < 1.
Proof. By (3.10), we estimate B, ,, . (§) as defined in (3.2) as

Bpnl€) = Aye(€) = 2= (€ = Dl (o)
Ol - 2,U _ b/(O)e—)\cr(EQ,ur _ 1)

(3.13) = Cy >0

Y

by selecting p to be small enough such that

(3.14) 0<p <,

where 1 > 0 is the unique positive solution of the equation
(3.15) C1 — 2 — V' (0)e A (e2M7 — 1) = 0.

Applying (3.13) to (3.1), we get

t
[u®ly + [ e 00 [ €y — Ml (s )dds
0 R
0
<ce @ (JunO)s + [ luo(s)lEs ds).

-

which then implies (3.12) by letting M, (T") < 1. Thus, the proof of this lemma is
complete. a
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Next we derive the estimates for the higher order derivatives of the solution.
LEMMA 3.4. Let u(t,&) € X(—r,T). Then it holds that

t
Jue(®)2: + / €29 ||y () |24 ds

0
(3.16) < Oe*2ut(||u0(0)||§{3u + / Huo(s)H%I}Uds),
provided M,(T) < 1.

Proof. Differentiating (2.1) with respect to £ and multiplying it by e**fw(&)ue (¢, ),
then integrating the resultant equation with respect to £ and ¢ over R x [0,t] and ap-
plying Lemma 3.3, we can similarly prove (3.16). The details are omitted. d

Similarly, by taking

t
//552(2.1)><w(§)8§u déds
0 R

and applying Lemmas 3.3 and 3.4, we obtain the energy estimates for wu¢e.
LEMMA 3.5. Let u(t,&) € X(—r,T). Then it holds that

t
Jucc®lEg + | e uge(s)] ds
0

(3.17) < e (Jua )l + | o) s ds).
provided M, (T) < 1.

Remark 5. In order to establish the energy estimate (3.16), technically we need
a good enough regularity for the solution u(¢,€). To do this, the usual approach is
via the mollification [22, 25], e.g., let us mollify the initial data such that it can be
in C*°, which then ensures the solution u will have good enough regularity. Thus,
the approach taken in the proof of Lemma 3.4 is applicable. Here, for the sake of
simplicity, we omit the details. Actually, the same mollification procedure is also
needed in the proof of Lemma 3.1, but we ignore it for the same reason.

Combining Lemmas 3.3 and 3.4, we prove the following a priori estimates.
LEMMA 3.6. Let u(t,€) € X(—r,T). Then

t
Ju@)2 + / &2 ||u(5)| |22 ds
0
0
(3.18) S (O +/ Juao(5)1132 ds)

-

provided M, (T) < 1.
Next, we establish the following Sobolev inequality.
LEMMA 3.7. Let u € H2(R). Then it is equivalent to /w u € H*(R) and

(3.19) IVw uller < Cllullas

and

(3.20) sup  |u(t,&)| < Cope ™, t > 0.
£€(—00,z0]
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Proof. Since u € H2(R), i.e., yw u € L*(R), vw ug € L*(R), and /w uge €
L?(R), it immediately yields d¢(vw u) = y/w ug — AvV/w u € L*(R) and Oge (vVw u) =
VW uge — 220/ ug + A2 /w u € L*(R). So, we prove that \/w u € H?(R). Thus, by
using the Sobolev inequality H? — C', we get ||v/w ullcr < C||ul| g2, which implies,
from (3.18) and the fact w(¢) = e~ 2M&=%0) > 1 for £ € (—o0, 2], that

sup  |u(t, &) < Cdoe ™, ¢ > 0.
£€(—o0,x0]

This completes the proof. a

Next, let us investigate the time-exponential decay of u(¢,&) at & = 4+o00. Let
u(t,&) € X(—r,T). By the definition of Cynf[0, T], we have that lim¢_, 4 o0 u(t,§) ex-
ists uniformly with respect to ¢ € [0, 7], and limg_, 1 oo ug(t, &) = limg 4 o0 uee(t,€) =0
uniformly with respect to ¢ € [0,T]. Denote z(t) := u(t, c0) and 2z¢(s) := ug(s, o0) for
s € [-r,0]. By taking & — oo to (2.1), we have

2'(t) +dz(t) = b (vi)z(t — 1) = Q(2(t — 1)),
(3:21) {z(s) = zo(s), s € [-r0].

In order to estimate this nonlinear delayed ODE, let us recall the exponential
decay of the solution for the following linear equation in a general form:

2(0)+ kiat) = kaz(t — 1),
(3.22) { =z0(s), se€[-r0],

where k1 and ko are arbitrarily given constants.
LEMMA 3.8 (see [2, 8, 13, 15, 33, 36]).
(i) When 0 < ko < ki, then, for any time-delay v > 0, it holds that

(3.23) |2(t)] < Me—stthika)t ¢ 5
for some positive constant 0 < &1 < 1, where M is chosen as

(3.24) M > max |z0(s)].
s€[—r,0]

(ii) When 0 < k1 < ko, then, for any time-delay r > 0, it diverges as
(3.25) |z(t)] = O(1)e”t, t>0,
where v > 0 is uniquely determined by
(3.26) vt ky = koe V",

which implies

1
(3.27) 0<v<—(Ink—Ink).
(iii) When ko < 0 < k1 and |ka| < k1, then, for any time-delay r > 0, it holds that
(3.28) |z(t)] < Ce™™, t>0,

for some v > 0.
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(iv) When ko < 0 < k1, |ko| > k1, then it holds that
(3.29) lz(t)| < Ce™™, >0,

for some v > 0 if and only if 0 < r < T, where

(3.30) T o= [w — arctan (k;l,/|k2|2 Y )}/ ka2 — k2.

(v) Here, for ko < 0 < ki, when time-delay r > r, where r > 0 is defined by
(331) |k2|£ek1f+1 =1,

then all solutions z(t) of (3.22) are always oscillatory.
The proof is standard. Here, (i)—(iii) are immediately derived from the textbooks
[13, 15, 33], (iv) is originally from the stability analysis for linear delay differential
equations by Boese [2] (see also the summery in the textbook [13]), and the oscillation
part (v) is a simple corollary of [36] (see also the textbook [8]).
Next, let us consider a nonlinear perturbation to the linear delay differential
equation (3.22):
(332) {z’(t) k() = kaz(t =) = af (1)) + By(=(t — ),

z(s) = zo0(s), s € [-r,0],
where k1, ka2, a, and 3 are some arbitrarily given constants, and f(z) and g(z) satisfy
(3.33) |f(2) < Clz[™ and |g(z)| < Clz[", m>1, n>1

We then obtain nonlinear stability as follows.

LEMMA 3.9. Let z(t) be the solution of (3.32). If |ko| < k1 with any time-delay
r > 0, or if |ke| > k1 but with small time-delay 0 < r < T, where T is defined in
(3.30), then it holds that

(3.34) [2()] < Cllzoll o (—rye ™", >0,

for some constant 0 < v = v(ky, ke, r) < ki1, provided ||zo||p~ < 1.

Proof. Inequality (3.34) can be proved by the iteration technique with the energy
estimates based on Lemma 3.8 and the Banach fixed point theorem. It can be also
proved by the Cl-perturbed Grownwall inequality; see the textbook [13]. So, the
details are omitted. d

Now we are at the stage to derive the time-exponential decay of u(t, ) for £ = co.

LEMMA 3.10. If d > |V/(v4)| with arbitrary time-delay r > 0, or if d < |b/(v)]
but with small time-delay 0 < r <T, where T is defined in (1.14), then

(3.35) lu(t,00)| < CM,(0)e "2t t >0,

for some 0 < pg = pa(p,d,r,b'(vy)) < d, provided M, (0) < 1.

Proof. For (3.21), in order to apply the nonlinear Halanay inequality (Lemma 3.9),
we take k1 = d and ko = b/(vy) < 0 in (3.32). Thanks to Lemma 3.9, either when
d > |b'(vy)| with any time-delay r > 0, or when d < |b'(vy)| with small time-delay
0 <r <7, then

(3.36) lu(t,00)| = |2(t)| < CM,(0)e "2t ¢ >0,
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for some constant 0 < puy = pa(p,d,r, b’ (vy)) < d, provided M, (0) < 1. The proof is
complete. a
Since

5lim leF2tu(t, €) — e"*'u(t, 00)] = 0 uniformly in ¢ € [0, T,
—00

namely, for any given positive number ¢ > 0, there exists a number zo = zo(g) > 1
but independent of ¢, such that when £ > x,

|8M2tu(t7€) - 6N2tu(t’ OO)| <g,
which implies
e Ju(t, )| — "' u(t, 00)|| < [ u(t, ) — e u(t, 00)| < e.

Notice that, from (3.35), e2t|u(t,00)| < C'M,,(0) is uniformly bounded with respect
to t; we then immediately obtain

ef2tlu(t, )] < CM,(0) +¢ for &€ > xg, t €[0,T].

Now, let us take ¢ = M, (0); we immediately prove the following lemma.

LEMMA 3.11. If d > |b/(vy)| with arbitrary time-delay r > 0, or if d < |b'(vy)]
but with small time-delay 0 < r < T, where T is defined in (1.14), then there exists
large number xo > 1 (independent of t) such that

(3.37) sup  Ju(t, &) < CM,(0)e "2t t > 0.

ge[wmoo)

Proof of Proposition 2.3. Combining (3.37), (3.18), and (3.20), we immediately
prove (2.12), namely,

t
u®l + Ol + [ e (o) ds
0
0
< Coe (e Jua(o)]% + [uo(lg + [ (o) ds)

- —r

for some positive constant Cp, where p is taken as 0 < p < min{pu, puo}. The proof
of Proposition 2.3 is complete. O

4. Proof of uniqueness of traveling waves. In this section, we prove Corol-
lary 1.3. As a special case, Corollary 1.5 directly follows from Corollary 1.3.

Let ¢1(z+ct) and ¢o(x+ct) be two different traveling waves with the same speed
¢ > ¢, and the same exponential decay at —oo:

¢1(6) = Ae Ml as ¢ —» —o0
and
$2(¢) = Be M as ¢ — —o0

for some positive constants A and B, where A\; = A;(c) > 0 is defined in (1.10). Let
us shift ¢o(z+ ct) to ¢a(x+ ct+ x2) with some constant shift zo. By taking £ — —oo,
obviously &€ + x2 < 0. Then

$o(€ + xy) = Be Mleto2l — pehi(&tae) — Bolizzp=hilél — ge—MlEl a5 ¢ 5 —o
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by selecting xo as

Thus, we have
|2 (€ + x2) — 1(8)] = O(L)e™ Ml for a > A\ as € » —oc.
This implies
$2(€ +22) — ¢1(6) € C(R) N Hyy(R).
Now we take the initial data for (1.1) by
vo(s, ) = ¢a(x + cs+xp), v € R, s € [—r,0].
Obviously, with such selected initial data, the corresponding solution to (1.1) is
v(t,x) = pa(x + ct + x2).

Applying the stability theorem, Theorem 1.2, when d > |b'(vy)| with any time-delay
r >0, or when d < |b/(vy)| but with 0 < r < 7, then

lim sup |¢a(z + ct + x2) — p1(z + ct)| =0,

t—o0 TER

namely, ¢o(z+ct+x2) = ¢1(xz+ct) for all z € R as t > 1. This proves the uniqueness
of the traveling waves up to a constant shift.

5. Numerical computations. In this section, we carry out some numerical
simulations in different cases. We take b(v) = pve™*’. Without loss of generality, we
may always fix d =1, D =1, a = 1, but leave p, r, and the initial data vo(s,x) to be
selectable. The initial data are taken as

(5.1) vo(s, ) = Jﬁ -+ 0.1(sin 33)670‘001(17500)2’ s € [—r,0],

which implies
[vo(s, ) — ve| = O(1)e 7l as 2 — +o0,

where k& > 0 can be selected in different cases. According to our stability theorem,
Theorem 1.4, when e < 5 < €2, for any time-delay r > 0, the solution v(t,x) is
expected to converge time-asymptotically to a monotone/nonmonotone traveling wave
with ¢ > ¢, where the wave is monotone for small time-delay r < r, but possibly
nonmonotone (oscillating around v, ) if » > r, where r > 0 is given in (1.7), i.e.,

d(lng — l)zefd"'l =1.

Inspired by Gomez and Trofimchuk’s analysis [7], there exists a certain region D (see
also the summary presented in Theorem 1.1) such that the wavefronts ¢(x + ct) are
monotone if and only if the speed ¢ and the time-delay r belong to D; namely, even
though r > r, if ¢ € [e4, ¢*], where ¢, and ¢* are defined in (1.9) and (1.12), the
wavefronts are still monotone, but the wavefronts are oscillatory around vy if the
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TABLE 1
Different cases for selection of p, v, and the initial data vo(s, ).

Case | p r Zone of & | Zone of r k for wvo Behavior of v(t, x)

1 6 |05 e<E< e? r<r k=1 monotone wave with
cx 2.1 € [cx, ]

2 6 | 05 | e<h<e? r<r k =0.075 | oscillatory wave with
cr 22> c*

3 6 10 | e< g <e? rr k=1 oscillatory wave with
c=~0.35

4 10 | 0.2 g > e? r<r k=1 monotone wave with
c~ 3.1

5 10 | 0.5 E>e? r<r<7T k=1 oscillatory wave with
cx 2.1

6 10 3 g > e? r>T k=1 unknown case in Theo-
rem 1.4

7 10 10 g > e? r>T k=1 unknown case in Theo-
rem 1.4

wave speed c is big, ¢ > ¢*, or the time-delay is big, r > 1, such that (¢,r) € D. Here,
we will numerically test it in three cases (see Cases 1-3 below). On the other hand,
when £ > €2 and 0 < r < 7, where

T = (w—arctan lng7 (1n§—2) )/(d 1n§ (1n§—2) >,

our stability theorem, Theorem 1.4, predicates that the monotone/nonmonotone trav-
eling waves are still exponentially stable. In this case, we will carry out two numerical
experiments to confirm it. One (Case 4) shows that, with 0 < r < r, the solution
v(t,x) converges to a monotone traveling wave, but the other (Case 5) shows the
convergence to an oscillatory traveling wave if r < r < 7. Finally, in the last two
cases (Cases 6 and 7), when § > e? with 7 > 7, we numerically show that the solution
will always chaotically oscillate and never behave like an oscillatory traveling wave.
We observe that when the time-delay r is getting bigger, then the amplitudes and
the widths of those chaotic oscillations become larger. Unfortunately we are not clear
about the asymptotic profile of the solution when 4 > e? and r > 7. The study on
this case is quite difficult and remains an open problem. Now we summarize all above-
mentioned cases in Table 1 and discuss each case individually with many numerical
simulations.

The adopted numerical scheme is the unconditionally stable Crank—Nicolson meth-
od to a finite computational domain [—L, L]. Here, we take L to be at least 800 so
that the computational domain is sufficiently large to avoid a numerical boundary
effect. The spatial step size is chosen to be Az = 0.1, and the temporal step size is
At = 0.05.

Case 1: e < £ < e? with time-delay » > r and ¢ € [c«, c*]; the case of
convergence to a monotone traveling wave. In this case, we take p = 6, r = 0.5,
and k = 1 in the initial data vo(s,z) (see (5.1)), which may allow us to expect the
solution to behave like a traveling wave with small wave speed, because, in our expe-
rience, when the initial perturbation decays faster at x = —oo, the solution usually
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150

100

50

-600 -400  -200 0 200 400 600

(a) I (b)

Fic. 2. Case 1: e < 5 = 6 < e with small time-delay v = 0.5 > r = 0.33304--- and faster
decaying nitial data vo(s,x). The solution v(t,x) behaves like a stable monotone traveling wave
o(z + ct) with small wave speed ¢ € [c«,c*]. (a) Three-dimensional mesh of v(t,z), and (b) the
contour of v(t, x).

. - -

(d) (e) (f)
FiG. 3. Case 1: e< £ =6 < €2 with small time-delay r = 0.5 > r = 0.33304---. From (a) to

(f), the solution v(t,x) plotted at times t = 0, 50, 100, 150, 200, 250, which behaves like a stable

monotone traveling wave (no change of the wave’s shape for the sense of stability) and travels from
right to left.

travels slower. We compute the solution v(¢,x) up to time ¢ = 250. The numeri-
cal simulations presented in Figures 2 and 3 confirm that the solution of Nicholson’s
blowflies equations (1.1) and (1.2) converges to a monotone traveling wave.

Figure 2 (a) shows that, after a small initial oscillation, the solution v(¢, z) quickly
behaves like a monotone traveling wave which travels from right to left (i.e., the wave
speed ¢ > 0). From the contour map shown in Figure 2 (b), we observe that the
interface region of left and right states, v_ and vy, travels from right to left. The
contour lines are straight and the width of interface region at each time appears
constant. Both facts indicate that the solution’s profile remains unchanged for larger
times. The wave speed can be also estimated from the contour line as ¢ ~ 2.1. Again,
in Figure 2 (a), and particularly in Figure 3, the increasing shape of the solution v (¢, x),
at different times ¢ = 50, 100, 150, 200, and 250, is the same and travels from right
to left. These phenomena indicate that the solution v(t,z) of Nicholson’s blowflies
equations (1.1) and (1.2) behaves like a certain monotone traveling wave ¢(x + ct)
with ¢ & 2.1; in other words, the solution v(t,z) converges time-asymptotically to
the monotone traveling wave ¢(x + ct) with ¢ &~ 2.1. This also completely matches
what was predicated in [7] for the case of existence of monotone traveling waves.
In fact, it can be verified that & satisfies e < 19 = 2.808--- < & =6 < e? and
r=0.5>r =0.33304--- and the critical wave speed (see (1.9)) ¢, = 1.8---, and

U
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¢ =24--- (see (1.12)), and then ¢ = 2.1 € [y, c*] = [1.8---,2.4- -], the region to
possess the monotone traveling waves.

Case 2: e < g < e? with r > r and ¢ > c*; the case of convergence to an
oscillatory traveling wave. We take p = 6 and r = 0.5 to be the same as in Case
1, but £ = 0.075 in the initial data vo(s,z) (see (5.1)), which may allow us to expect
the solution to behave as a traveling wave with a large wave speed, because the initial
data decays to 0 slowly like e=%-071%l We compute the solution v(t,z) for x from
—5000 to 5000 and for ¢ from 0 to 400. Figures 4 and 5 both indicate that the solution
v(t, z) behaves like an oscillatory traveling wave with small amplitude of oscillations.
In order to easily see those oscillations, we enlarge the part of oscillations for the
solution in Figure 5 (b). Notice that the shape of the solution at different large times
stays the same, and the oscillations never disappear. This means that the solution
v(t, z) converges to its corresponding oscillatory traveling wave ¢(z+ct). From Figure
4 (b), the contour line estimates the wave speed to be really big like ¢ ~ 22. This
also completely matches the theoretical prediction in [7], because it is just the case
to possess the nonmonotone traveling waves for e < 19 = 2.808--- < £ =6 < e2,
r=05>r=0.33304---,and cx~22>c"=24---.

Case 3: e < S < e? with large time-delay = >> r; the case of conver-
gence to an oscillatory traveling wave. In this case, we still take p = 6, but
r = 10. The initial data is the same as in Case 1. So, we verify that e < vy =
2808--- < B =6< e? and r = 10 > r = 0.33304---. The solution is expected to
converge to a certain oscillatory traveling wave. We compute it up to time ¢t = 500.

The numerical simulations in Figures 6 and 7 present the large time behavior of
the solution v (¢, z) of Nicholson’s blowflies equations (1.1) and (1.2). It can be easily
observed from Figure 6 (a) and Figure 7 that, after the initial oscillations, the solution
v(t, z) develops gradually with some small oscillations at the interface region of right
state vy, but these oscillations never disappear and keep the same shape. At times
not shown in Figure 7, the shape of solution v(¢, z) looks identical, but travels from
right to left.

In Figure 7, since the oscillations of the solution v(¢, 2) around the interface region
of v are slow and the amplitudes of oscillation are small, it is hard for us to see these
oscillatory phenomena. In Figure 8(a) we enlarge these oscillation parts of the solution
v(t, z) for t = 300, 350, 400, 450, and 500. It is also easily seen that the shape of
these oscillations for v(¢, x) at different times is the same. Furthermore, we test the
maximum of oscillations for v(¢, x):

5.2 h(t) = t,x) — vy
(5.2) ()= max, o(t.z) — v,

As shown in Figure 8 (b), we can observe that the maximum amplitude of oscillations
above vy (i.e., the function of h(t)) looks like a positive constant after a large time.
This means that the oscillations never disappear, and keep the same maximum am-
plitude. From the contour line shown in Figure 6 (b), we can estimate the traveling
speed for the solution v(t, x) as ¢ &~ 0.35. By solving c.(r) = ¢*(r), we get the unique
intersection point ro = 0.63178---. Since r = 10 > ro = 0.63178--- is out of the
domain D = [0, 9] X [cs, ¢*] for the existence of monotone traveling waves (see Figure
1), the wavefront is expected to be oscillatory around vy [7]. In fact, our numerical
results show that the original solution v(¢,z) behaves like such a stable oscillatory
traveling wave ¢(z + ct) with ¢ ~ 0.35 after a long time, which also perfectly match
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Fic. 4. Case 2: e < % =6 < €2 with small time-delay r = 0.5 > r = 0.33304--- and slowly
decaying initial data vo(s,x). The solution v(t,x) behaves like a stable oscillatory traveling wave
o(z + ct) with large speed ¢ > c¢*. (a) Three-dimensional mesh of v(t,z), and (b) the contour of
v(t, x).

(a) . )

Fic. 5. Case 2: e < % = 6 < e? with small time-delay r = 0.5 > r = 0.33304--- and
slowly decaying initial data vo(s,x). (a) Two-dimensional solution v(t,z) plotted at times t =
0, 50, 100, 150, 200, 250, 300, 350, 400, which behaves like a stable oscillatory traveling wave (no
change of the wave’s shape for the sense of stability) and travels from right to left. (b) Enlargement
of oscillation parts of v(t,x) around v4 for time t at 100, 200, 300, 400.

Fi1G. 6. Case 3: e < % =6 < €2 with large time-delay r = 10 > r = 0.33304 - - - . The solution
v(t, x) behaves like stable oscillatory traveling wave ¢p(x+ct). (a) Three-dimensional mesh of v(t, x),
and (b) the contour of v(t, z).

— [T

- - -

] Q ]
(d) (e) ‘ (f)

FiG. 7. Case 3: e < g = 6 < €2 with large time-delay r = 10 > r = 0.33304 ---. From (a) to
(f), the solution v(t,x) plotted at times t = 0, 300, 235, 400, 450, 500, which behaves like a stable
oscillatory traveling wave (no change of the wave’s shape for the sense of stability) and travels from
right to left.
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T

Mw\ ‘\n\“ﬁ”\w § ﬂ\\w\

0 l
» I

.

(a) . 1 : + : (b)

Fic. 8. Case 3: e < 5 = 6 < €2 with large time-delay » = 10 > r = 0.33304---. (a)
Enlargement of oscillations presented in Figure 7 for the solution v(t, x) plotted at timest = 0, 300,
350, 400, 450, and 500 (from right to left), and (b) the graph of h(t) given in (5.2).

m
A s
1 W\J i

() | (b)

Fic. 9. Case 4: = 10 > e? with small time-delay r = 0.2 < r = 0.22546 ---. (a) Three-
dimensional mesh of v(t,z) for t from 200 to 500, and x from —600 to 1000, and (b) the contour of
v(t, x).

what Gomez and Trofimchuk [7] theoretically analyzed, and demonstrate the stability
of oscillatory traveling wave ¢(z + ct) with ¢ &~ 0.35.

Case 4: § > e? with small time-delay » < r; the case of convergence to
a monotone traveling wave. Here, we take p = 10, » = 0.2, and vy (s, ) the same
as in Case 1. We can verify that £ =10 > e? and r = 0.2 < r = 0.22546 - - -. Thus,
the solution is expected to behave like a certain monotone traveling wave. In fact,
the numerical simulations shown in Figures 9 and 10 perfectly confirm this theoretical
prediction, and the contour line in Figure 9 (b) estimates the wave speed to be ¢ ~ 3.1.

Case 5: g > e? with r < r < 7; the case of convergence to an oscillatory
traveling wave. In this case, the parameters are taken as p = 10, r = 0.5, and
vo(s,z) as in Case 1. Thus, £ =10 > e2, and r satisfies

(5.3) 0.22546--- =7 <7 =05 <7 =2.93048 - - - .

Figures 11 and 12 show that the solution v(¢, x) behaves numerically like a stable
nonmonotone wave traveling from right to left. Since the amplitude of oscillation
around v4 is very small, we enlarge it in Figure 12 (b). Notice that when ¢ =
750, 900, 1050, 1200, 1350, we find that the amplitude of oscillations for the solution
v(t, z) around vy for the parts v > vy is really small,

h(t) := t,2) — vy~ 0.006,
(t) erF_aE‘,L]”( ) — vy

but almost identical for each time ¢, and never disappears. This indicates that, after
a long time, the solution v(t, z) stably behaves like an oscillatory traveling wave with
small amplitude of oscillations.
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Fia. 10. Case 4: g = 10 > e? with small time-delay 1 = 0.2 < r = 0.22546---. Two-
dimensional solution v(t,x) plotted at times t = 0, 300, 350, 400, 450, 460. The solution behaves
like a stable monotone wavefront traveling from right to left.

Case 6: S > e? with a big time-delay r = 3 > 7; the case of chaotic
oscillations. Let p = 10 and r = 3, and let the initial data vo(s,z) be the same as
in Case 1, such that

g >e?, r=3>7=293048 - .
However, as shown in Figures 13, 14, and 15, the behavior of solution v(t, z) is oscil-
latory but chaotic. Particularly, from Figures 14 and 15, we see that there is much
disorder oscillation around x = 200, and the intervals of oscillations around the lo-
cation x = 200 expand gradually. Such chaotic oscillations tell us that the solution
doesn’t behave like an oscillatory traveling wave.

Case T: g > e? with time-delay » = 10 > 7; the case of chaotic
oscillation. This case basically is the same as Case 6 by taking p = 10, vo(s, z) the

same as in Case 6, but » = 10 > 7 (a bit big), such that

L>e’ r=10>7=293048.-.
From Figures 16, 17, and 18, we observe that the behavior of solution v(t,x) is very
oscillatory and chaotic. Comparing Cases 7 and 6, we know that the larger the time-
delay, the bigger the oscillation amplitudes, and the wider the oscillation intervals in
. Obviously, the solution doesn’t behave like an oscillatory traveling wave, and its
asymptotic profile is still a mystery.
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Fia. 11. Case 5: % = 10 > €2 with small time-delay v < r = 0.5 < 7. (a) Three-dimensional
mesh of v(t,x) for t from 0 to 1500 and x from —1800 to 1800, and (b) the contour of v(t, x).

( a,) | - & +— A = ( b ) A e i oy i = = o 2

Fic. 12. Case 5: § =10 > e? with small time-delay r < r = 0.5 < 7. (a) Two-dimensional
solution v(t,z) plotted at times t = 0, 300, 400, 500, 600, 700. The solution behaves like a
stable nonmonotone wavefront traveling from right to left, but the oscillation amplitudes around
vy are small. (b) Enlargement of the oscillation parts of the solution v(t,x) plotted at times t =
750, 900, 1050, 1200, 1350. Although each amplitude of oscillation at different times for the solution
is really small, they are almost equivalent.

N

(a) U (b)

FiG. 13. Case 6: £ = 10 > €2 with big time-delay » = 3 > 7. (a). Three-dimensional mesh of
v(t, z) fort from 400 to 500 and x from —400 to 400, and (b) the contour of v(t,x).

af

Fic. 14. Case 6: % =10 > e? with big time-delay r = 3 > 7. Two-dimensional solution v(t,x)
plotted at times t = 200, 210, 220,..., 500 (the step is 10). The solution behaves like some chaotic
oscillations.
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Fia. 15. Case 6: % = 10 > €2 with big time-delay r = 3. Two-dimensional solution v(t,x)
plotted at times t = 288.75, 289.5, 2290.25,..., 300 (the step is 0.75). The solution behaves like
some chaotic oscillations.

(a) ' (b)

F1G. 16. Case 7: 5 =10 > €2 with big time-delay r = 10 > F. (a) Three-dimensional mesh of
v(t, x), and (b) the contour of v(t, ).

1 {Y t' o
W \M \JHM \ 1 ’

sh n" {0 \“ ‘M‘ M ’1

It w||lw I \\ ||I \

Fia. 17. Case T: % =10 > €2 with big time-delay r = 10 > 7. Two-dimensional solution v(t, x)
plotted at times t = 750, 770, 790,..., 1500 with identical step of 20. The solution behaves like
some chaotic oscillations.
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Fia. 18. Case T: % = 10 > €2 with big time-delay r = 10 > ¥. Two-dimensional solution v(t,z)
plotted at times t = 1445, 1448, 1451, ..., 1560 with identical step of 3. The solution behaves like
some chaotic oscillations.
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