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For the steady-state solution of a differential equation from a one-dimensional multistate model in trans-
port theory, we shall derive and study a nonsymmetric algebraic Riccati equationB− − XF− − F+X +
XB+X = 0, whereF± ≡ (I − F)D± andB± ≡ BD± with positive diagonal matricesD± andpos-
sibly low-ranked matricesF and B. We prove the existence of the minimal positive solutionX∗ under
a set of physically reasonable assumptions and study its numerical computation by fixed-point iteration,
Newton’s method and the doubling algorithm. We shall also study several special cases. For example
when B and F are low ranked thenX∗ = Γ ◦

(∑4
i =1 Ui V

T
i

)
with low-rankedUi andVi that can be

computed using more efficient iterative processes. Numerical examples will be given to illustrate our
theoretical results.

Keywords: algebraic Riccati equation; doubling algorithm; fixed-point iteration; Newton’s method;
reflection; transport theory.

1. Introduction

Transport theory has been an active area of research, associated with masters like R. E. Bellman and
S. Chandrasekhar (see the references inJuang(1995)). A one-dimensional model was studied first
in Juang(1995), starting a series of numerical studies, for example, inLu (2005),Bai et al. (2008),

c© Theauthor 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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1454 T. LI ET AL.

FIG. 1. The one-dimensional rod.

Bini et al. (2008),Lin et al. (2008), andMehrmann & Xu(2008), in the past 15 years. We shall study
a different one-dimensional multistate model fromBellmanet al. (1973) andBellman & Wing(1975,
equation (1.37), p. 15) that is generalized slightly in this paper.

We start from a simple one-dimensional ‘rod’ or line segment that extends from 0 tox and denote
a generic point in the rod byz, as in Fig.1. Particles move to the right and left along this rod without
colliding with one another while interacting with the rod itself without affecting it. We first assume that
all particles are of the same type and have the same speed. The objective is to obtain information about
the density of the beam of particles as a function of the positionz.

We further assume that the probability of a particle atz (moving in either direction) interacting with
the rod while moving a distance ofΔ is given by the expression

σ(z)Δ + o(Δ), (1.1)

whereσ(∙) > 0 is the macroscopic cross-section and o(∙) denotes higher-order terms. As a result of
this interaction, an expected average off (z) andb(z) new particles emerge at the pointz in the same
(forward) and opposite (backward) directions, respectively, as the original particle. Particles travelling
to the left ofz = 0 and the right ofz = x are lost to the system. Particles injected at the left and right
ends, together with the new particles generated through the collision process, make up the total particle
population of the system.

Initially, let us assume a time-independent state, where the expected particle population is stationary
and independent of the time at which the system is observed. We defineu(z) andv(z) to be theexpected
numbers of right- and left-moving particles, respectively, passing through the pointz each second. (The
adjective ‘expected’ is sometimes neglected but is necessary due to the stochastic nature of the prob-
lem.) From the definition in (1.1) the probability of particles passing through fromz to z + Δ without
interacting with the rod is 1− σ(z)Δ + o(Δ). The expected contribution tou(z + Δ) from this type of
occurrence is

[1 − σ(z)Δ + o(Δ)]u(z) = [(1 − σ(z)Δ)]u(z) + o(Δ). (1.2)

However, some right- (or left-) moving particles passing throughz will interact with the rod before
reachingz+Δ. Each such event will produce an expected numberf (z) (or b(z)) of particles proceeding
in the direction of interest. The expected contributions tou(z+ Δ) from these types of occurrences are

σ(z) f (z)u(z)Δ + o(Δ), σ (z)b(z)v(z)Δ + o(Δ). (1.3)

Other events can take place but the contributions are o(Δ) and insignificant. Hence, summing the con-
tributions in (1.2) and (1.3) yields

u(z + Δ) = [(1 − σ(z)Δ)]u(z) + σ(z) f (z)u(z)Δ + σ(z)b(z)v(z)Δ + o(Δ). (1.4)

Taking the limitΔ → 0 in (1.4) leads to the following differential equation foru:

du

dz
= σ(z){[ f (z) − 1]u(z) + b(z)v(z)}, u(0) = 0. (1.5)
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RICCATI EQUATION FROM A ONE-DIMENSIONAL MULTISTATE TRANSPORT MODEL 1455

A similar particle counting process also produces the following differential equation forv:

−
dv

dz
= σ(z){b(z)u(z) + [ f (z) − 1]v(z)}, v(x) = 1. (1.6)

For a multistate model we allown different states (e.g., speed, energy, type or any other features
other than direction that distinguish between the particles). The macroscopic cross-section for thej th
state isσ j (z) > 0 and the probability in (1.1) resulting in the emission of particles in thej th state then
reads

σ j (z)Δ + o(Δ).

Similarly, we have functionsu j (z) and v j (z) ( j = 1, . . . , n) representing the expected number of
particles in statej , moving to the right and left, respectively, past the pointz each second. We define the
matrix functionsF(z) = [ fi j (z)], B(z) = [bi j (z)], F̃(z) = [ f̃i j (z)] and B̃(z) ≡ [b̃i j (z)], where

f̃i j (z) = σi (z)[ fi j (z) − δi j ], b̃i j (z) = σi (z)bi j (z), (i, j = 1, . . . ,n),

δi j is the Kroneckerδ, and fi j (z) andbi j (z) arethe expected numbers of particles travelling, respec-
tively, in the forward and backward directions, respectively, after the collision of a particle of statej
emitting particles of statei . A similar argument to that leading to (1.5) and (1.6) then produces

du

dz
= F̃(z)u + B̃(z)v, −

dv

dz
= B̃(z)u + F̃(z)v,

with u = [u1, . . . , un]T, v = [v1, . . . , vn]T andthe conventionM = [mi j ] (capital letters for matrices
and the corresponding lower-case letters with indices for elements), and the initial conditionsui (0) = 0
andvi (x) = δi j (correspondingto the initial injection of a particle of statej from the right).

From the above discussion we expectB, F > 0 to satisfy
∑

i

( fi j + bi j ) < 1 ∀ j . (1.7)

We will allow the critical case of equality in (1.7) (the ‘pure scattering’ case inBellman & Wing(1975,
equation (4.1), p. 55)) later.

To carry out the invariant imbedding procedure the functionsR andT are introduced, whereri j (x)
is the expected number of particles emergent each second atz = x in statei from a rod of lengthx when
the only input is one particle per second in statej at the right endz = x, andti j (x) is defined similarly
except the emergence is at the other endz = 0. Consider a rod of lengthx+Δ with the sub-rod of length
x imbedded. Assuming that the reflecting response functionR(z) = [ri j (z)] is known, the transmission
response functionT(z) = [ti j (z)] can be defined through a differential equation derived from a particle
counting process.

Counting all the significant events as enumerated inWing (1962), and allowing different macro-
scopic cross-sectionsσ±

j (z) > 0 for sources from the left and the right, the following equation for
R(x) ≡ [ri j (x)] can be derived:

dR(x)

dx
= B−(x) − R(x)F−(x) − F+(x)R(x) + R(x)B+(x)R(x), R(0) = 0, (1.8)

whereB± ≡ BD±, F± ≡ (I − F)D±, D± ≡ diag{σ±
k } > 0, andB andF are possibly low ranked. (In

Wing (1962) the signs of the linear terms on the right-hand side of (1.8) were positive. We change these
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1456 T. LI ET AL.

signsto make the resulting nonsymmetric algebraic Riccati equation (NARE) in (1.9) more consistent
with notation in other papers on NAREs. Note that the{σk} wereindependent of direction inBellman
et al. (1973) andWing (1962).) After the determination ofR, the functionT can be derived from the
simpler equation

dT(x)

dx
= T(x)[ F̃(x) + B̃(x)R(x)], T(0) = I .

For the steady-state solution for a particularx, (1.8) leads to

B− − XF− − F+X + XB+X = 0, (1.9)

with R replacedby the usual variableX for NAREs.

2. Existence of a solution

Some relevant definitions are as follows. For any matricesÂ, B̂ ∈ Rm×n we write Â > B̂ or Â > B̂
if their elements satisfŷai j > b̂i j or âi j > b̂i j , respectively, for alli and j . A real square matrix̂A is
called aZ-matrix if all of its off-diagonal elements are nonpositive. It is clear that anyZ-matrix Â can
be written ass I − B̂ with B̂ > 0. A Z-matrix Â is called anM-matrix if s > ρ(B̂), whereρ(∙) is the
spectral radius, and it is a singularM-matrix if s = ρ(B̂) and a nonsingularM-matrix if s > ρ(B̂).
We have the following useful results fromBerman & Plemmons(1994) andGuo & Higham(2007,
Theorem 1.1).

LEMMA 2.1 For aZ-matrix Â the following statements are equivalent:

(a) Â is a nonsingularM-matrix;

(b) Â−1 > 0;

(c) Âv > 0 for some vectorv > 0.

THEOREM 2.2 Let us consider the NARE

XĈ X − XD̂ − ÂX + B̂ = 0, (2.1)

whereÂ, B̂, Ĉ andD̂ are real matrices of sizesm × m, m × n, n × m andn × n, respectively. Assume
that

M =
[

D̂ −Ĉ
−B̂ Â

]
(2.2)

is a nonsingularM-matrix or an irreducible singularM-matrix. Then the NARE has a minimal non-
negative solutionS. If M is irreducible, thenS > 0, and Â − SĈ and D̂ − ĈS are irreducible
M-matrices. IfM is a nonsingularM-matrix, thenÂ − SĈ andD̂ − ĈSare nonsingularM-matrices. If
M is an irreducible singularM-matrix with positive left and right null vectors [uT

1, uT
2]T and[vT

1 , vT
2 ]T

(whereu1, v1 ∈ Rn andu2, v2 ∈ Rm) satisfying

uT
1v1 6= uT

2v2,

then

MS = In ⊗ (Â − SĈ) + (D̂ − ĈS)T ⊗ Im

is a nonsingularM-matrix. If M is an irreducible singularM-matrix with uT
1v1 = uT

2v2, thenMS is an
irreducible singularM-matrix.
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RICCATI EQUATION FROM A ONE-DIMENSIONAL MULTISTATE TRANSPORT MODEL 1457

We have the following existence result.

THEOREM 2.3 Under assumption (1.7), the unique minimal non-negative solutionX∗ of (1.9) exists.

Proof. From Theorem2.2we need to show that theZ-matrix

M =
[
(I − F)D− −BD+

−BD− (I − F)D+

]
=
{

I −
[

F B
B F

]}[
D−

D+

]
(2.3)

is a nonsingularM-matrix. Note thatA is anM-matrix if and only if AT is an M-matrix. Applying
Lemma2.1, we need to find a vectorv > 0 such thatMTv > 0, which is trivial from (1.7). �

2.1 NARE as an eigenvalue problem

The NARE (1.9) can be reformulated as the following eigenvalue problem:

H

[
I
X

]
=
[

I
X

]
S, H ≡

[
F− −B+

B− −F+

]
=
{[

I
−I

]
+
[
−F −B

B F

]}[
D−

D+

]
. (2.4)

From(1.7) it is easy to see that the eigenvalues ofH are shifted slightly from±σ∓
k , splitting equally on

opposite sides of the imaginary axis. Using the Gerschgorin theorem, withD(a, r ) ≡ {x ∈ C: |x −a| 6
r }, the eigenvalues are in [

⋃
kD(σ−

k , ασ−
k )] ∪ [

⋃
kD(−σ+

k , ασ+
k )], divided equally on opposite sides

of the imaginary axis, withα ≡ (‖F + B‖1) < 1 from (1.7).

REMARK 2.4 For the critical case withα = 1 a simple application of the Gerschgorin theorem implies
that the matricesH in (2.4) andM in (2.3) may be singular. However, the potential singularity may be
detected or excluded by applying the extensions of the Gerschgorin theorem inHorn & Johnson(1985,
Section 6.2). Consider all of the Gerschgorin disks ofHT containingthe origin. At least one of the
corresponding inequalities should not be satisfied with equality. In other words, we may have to exclude
the ultra-critical case that all of the first or lastn rows have their corresponding off-diagonal row sums
equal to unity.

Note that, even ifH or M are singular, the existence result in Theorem2.2 still holds provided
that M is irreducible. With the additional requirement for the null vectors as in Theorem2.2, Newton’s
method in Section4.1will be quadratically convergent.

2.2 NARE as a nonlinear equation

To compute the minimal non-negative solutionX∗ for the NARE (1.9), consider it in component form
as follows:

(σ−
j + σ+

i )xi j = (BD−)i j + xi ∙(F D−)∙ j + (F D+)i ∙x∙ j + xi ∙(BD+)x∙ j .

(Herexi ∙ andx∙ j denotethe i th row and j th column, respectively, ofX, and(∙)i j denotesthe element
(i, j ) of a matrix.) Equivalently, we have

X = φ(X) ≡ Γ ◦ (B D− + XF D− + F D+X + XB D+X), Γ ≡ [(σ −
j + σ+

i )−1], (2.5)

with X beinga Hadamard product. Note that Theorem2.3, (2.5) and the assumptionB > 0 imply that
X∗ > 0.
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1458 T. LI ET AL.

We have the following theorem forX∗ andthe fixed-point iteration.

THEOREM 2.5 Let X(0) = 0 and X(k+1) = φ(X(k)). Then, under assumption (1.7), we have the
following

(i) the iterates satisfyX∗ > X(k+1) > X(k) > Γ ◦ BD− > 0;

(ii) X(k) → X∗ ask → ∞.

Proof. It is easy to show thatX(1) = Γ ◦ BD− > 0 from (2.5). For (i) consider the difference between
X∗ = φ(X∗) andX(k) = φ(X(k−1)) asfollows:

X∗ − X(k) = Γ ◦ [(X∗ − X(k−1))F D− + F D+(X∗ − X(k−1))

+ (X∗ − X(k−1))BD+X∗ + X(k−1)BD+(X∗ − X(k−1))].

Inductionwill then complete the argument forX∗ − X(k) > 0 in (i). Similarly, induction on the
difference betweenX(k+1) = φ(X(k)) andX(k) = φ(X(k−1)) leadsto X(k+1) − X(k) > 0 in (i).

For (ii) convergence is implied by (i) with the limit̃X∗ ≡ limk→∞ X(k) = X∗ because(i) implies
that X∗ > X̃∗ > 0 andX∗ is minimal. �

3. Low-ranked B and F

When the full-ranked decompositionsF = F1FT
2 and B = B1BT

2 areof rank m and p, respectively,
(2.5) implies that

X = Γ ◦ (B1BT
2 D− + Z1FT

2 D− + F1ZT
2 + Z3ZT

4 ) (3.1)

with the auxiliary variables

Z1 ≡ XF1, Z2 ≡ XT D+F2, Z3 ≡ XB1, Z4 ≡ XT D+B2. (3.2)

SubstitutingX in (3.1) into (3.2), we have 2(m+ p)n nonlinear equations for the 2(m+ p)n unknowns
in Z j ( j = 1, . . . , 4) as follows:






Z1 = [Γ ◦ (B1BT
2 D− + Z1FT

2 D− + F1ZT
2 + Z3ZT

4 )]F1,

Z2 = [Γ T ◦ (D−B2BT
1 + D−F2ZT

1 + Z2FT
1 + Z4ZT

3 )]D+F2,

Z3 = [Γ ◦ (B1BT
2 D− + Z1FT

2 D− + F1ZT
2 + Z3ZT

4 )]B1,

Z4 = [Γ T ◦ (D−B2BT
1 + D−F2ZT

1 + Z2FT
1 + Z4ZT

3 )]D+B2,

(3.3)

(cf. the 2n equations in 2nunknowns inJuang(1995) for a simpler NARE withm = p = 1). Similarly,
X can be retrieved using (3.1) after theZ j areobtained. It is obvious from Theorem2.5 and (3.3) that
Z j > 0 ( j = 1, . . . , 4) andX > 0.

The convergence of various iterative schemes for the set of nonlinear equations (3.3) can be shown.
First let Rj ( j = 1, . . . , 4) be the j th right-hand side in (3.3). Starting fromZ(0)

j = 0 ( j = 1, . . . , 4),
we shall consider the following iterative methods.

(1) Simple iteration (SI): forj, l = 1, . . . ,4 we have

Z(k+1)
j = Rj (. . . , Z

(kj l )

l , . . .), kj l = k (∀ j, l ). (3.4)

Theright-hand sidesRj only involve the previous iteratesZ(k)
l .
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RICCATI EQUATION FROM A ONE-DIMENSIONAL MULTISTATE TRANSPORT MODEL 1459

(2) Modified simple iteration (MSI): forj, l = 1, . . . ,4 we have

Z(k+1)
j = Rj (. . . , Z

(̃kj l )

l , . . .), k̃ j l =
{

k + 1 if l < j,
k otherwise.

(3.5)

The right-hand sidesRj involve Z(k)
l , as well asZ(k+1)

l if they have been computed.

(3) Nonlinear block Jacobi method (NBJ): forj, l = 1, . . . ,4 we have

Z(k+1)
j = Rj (. . . , Z

(̂kj l )

l , . . .), k̂ j l =
{

k + 1 if l = j,
k otherwise.

(3.6)

The right-hand sidesRj involve Z(k)
l , as well asZ(k+1)

l with l = j andthe corresponding terms
moved to the left-hand sides.

(4) Nonlinear block Gauss–Seidel method (NBGS): forj, l = 1, . . . ,4 we have

Z(k+1)
j = Rj (. . . , Z

(ǩ j l )

l , . . .), ǩ j l =
{

k + 1 if l 6 j,
k otherwise.

(3.7)

The right-hand sidesRj involve Z(k)
l andZ(k+1)

l (whenavailable), as well asZ(k+1)
l with l = j

andthe corresponding terms moved to the left-hand sides.

From the above formulae we obviously have the following inequalities for the indices:

k = kj l 6 k̃ j l 6 ǩ j l , k = kj l 6 k̂ j l 6 ǩ j l ( j, l = 1, . . . , 4). (3.8)

The following simple lemma will be repeatedly applied in the proof of Theorem3.2.

LEMMA 3.1 Let U = [ui j ], V = [v i j ] andW = [wi j ] ∈ Rn×q benon-negative, and let̃Γ = [τ̃i j ] ∈
Rn×n bepositive. Consider the linear system

U − [Γ̃ ◦ (U VT)]W = R̃, (3.9)

andits i th row has the form

ui (I − Pi ) = r̃ i , (3.10)

where

(Pi )sj =
n∑

l=1

τ̃i l vl swl j , (3.11)

for i = 1, . . . , n ands, j = 1, . . . ,q. In addition, assume that

u∗
i (I − P∗

i ) = r̃ ∗
i , (3.12)

whereP∗
i is constructed as in (3.11) withvl s replacedby v∗

l s = (V∗)l s, r̃ ∗
i is the i th row of R̃∗ and

R̃∗ > R̃ > 0, U∗ > 0, V∗ > V. (3.13)

Then I − P∗
i and I − Pi arenonsingularM-matrices and

P∗
i > Pi , (I − P∗

i )−1 > (I − Pi )
−1 > 0. (3.14)
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1460 T. LI ET AL.

Proof. From (3.11) and (3.13) we have thatu∗
i , r̃ ∗

i > 0 and I − P∗
i is a Z-matrix. Consequently, the

transpose of (3.12) and Lemma2.1imply that (the transpose of)I − P∗
i is a nonsingularM-matrix with

a non-negative inverse and(I − P∗
i )v > 0 for some vectorv > 0. From (3.11) Pi is linear in V , with

V∗ > V implying that P∗
i > Pi , I − Pi > I − P∗

i and(I − Pi )v > (I − P∗
i )v > 0. Lemma2.1 then

implies thatI − Pi is a nonsingularM-matrix with a non-negative inverse and (3.14) follows. �
With the additional subscriptsI = S,M,J ,G for the four different methods (3.4)–(3.7), respec-

tively (and ignoring them when the result holds for all the methods), we have the following results that
are similar to those inGuo & Lin (2010).

THEOREM 3.2 We shall assume that (1.7) holds and we have the splittingF = F1FT
2 andB = B1BT

2 ,
with the full-rankedB1, B2, F1, F2 > 0. We have forj = 1, . . . ,4 andk = 0,1, . . . that the following
holds

(i) the iterates satisfyZ∗
j > Z(k+1)

j > Z(k)
j > 0, exceptZ(0)

j = 0;

(ii) Z(k)
j → Z∗

j ask → ∞;

(iii) 0 6 Z(k)
S, j 6 Z(k)

M, j 6 Z(k)
G, j ;

(iv) 06 Z(k)
S, j 6 Z(k)

J , j 6 Z(k)
G, j .

Proof. For NBJ and NBGS the formulae in (3.3) (ignoring the superscripts(k+1) on the left-hand sides
and(k) on the right forZ j asin (3.6) and (3.7)) are equivalent to

Z1 − [Γ ◦ (Z1FT
2 )]D−F1 = R̃1 ≡ [Γ ◦ (B1BT

2 D− + F1ZT
2 + Z3ZT

4 )]F1, (3.15)

Z2 − [Γ T ◦ (Z2FT
1 )]D+F2 = R̃2 ≡ [Γ T ◦ (D−B2BT

1 + D−F2ZT
1 + Z4ZT

3 )]D+F2, (3.16)

Z3 − [Γ ◦ (Z3ZT
4 )]B1 = R̃3 ≡ [Γ ◦ (B1BT

2 D− + Z1FT
2 D− + F1ZT

2 )]B1, (3.17)

Z4 − [Γ T ◦ (Z4ZT
3 )]D+B2 = R̃4 ≡ [Γ T ◦ (D−B2BT

1 + D−F2ZT
1 + Z2FT

1 )]D+B2. (3.18)

The operators on the left-hand side of (3.15)–(3.18) are of similar form and we need to invert them
with known right-hand sides̃Rj . For the generic termU − [Γ̃ ◦ (U VT)]W for Γ̃ = [τ̃i j ] ∈ Rn×n and
U = [ui j ], V = [v i j ], W = [w i j ] ∈ Rn×q (with q = m or p), the(i, j ) component equals

{U − [Γ̃ ◦ (U VT)]W}i j = ui j −
q∑

s=1

ui s

(
n∑

l=1

τ̃i l vl swl j

)

, (3.19)

implying that thei th row in (3.15)–(3.18) has the generic form (3.10) withPi ∈ Rq×q (i = 1, . . . , n) as
in (3.11). Note thatui andr̃ i in (3.10) are thei th rows ofU and the right-hand sidẽR in (3.15)–(3.18)
or Table1 below, respectively.

We shall prove (i) by induction.
For thek = 0 case in (i), except forZ4 in NBGS, it is easy to see from (3.3) and (3.4)–(3.7) that

Z(1)
j arewell defined and

Z∗
j > Z(1)

j > Z(0)
j = 0 ( j = 1, . . . , 4), (3.20)

where the limits (indicated by(∙)∗) are guaranteed to exist by Theorems2.3or 4.1 together with (3.2).
Note from Table1 andZ(0)

j = 0 that thePi areconstant in (3.10) forZ1 andZ2 in NBJ and NBGS, and
Pi = 0 for Z3 andZ4 in NBJ as well asZ3 in NBGS (because the correspondingVs in Table1 vanish).
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TABLE 1 Constructionof Pi in (3.10)or (3.19)for NBJ andNBGS

Method U Γ̃ V W R̃

Both Z(k+1)
1 Γ D− F2 F1 R̃1

Z(k+1)
2 Γ T D+ F1 F2 R̃2

Z(k+1)
3 Γ Z(k)

4 B1 R̃3

NBJ Z(k+1)
4 Γ T D+ Z(k)

3 B2 R̃4

NBGS Z(k+1)
4 Γ T D+ Z(k+1)

3 B2 R̃4

For Z4 in NBGS the iteration has the following form that is similar to (3.10):

u(1)
i [ I − P(1)

i ] = r̃ (0)
i , (3.21)

whereP(1)
i is linear inV = Z(1)

3 , which has been proved to satisfy

Z∗
3 > Z(1)

3 > 0. (3.22)

From(1.7) and (3.20) we haveu∗
i > 0 (from methods other than NBGS) andr̃ ∗

i > r̃ (0)
i > 0. With (3.21)

in place of (3.10), oru(1)
i , P(1)

i andr̃ (0)
i in place ofui , Pi andr̃ i , respectively, Lemma3.1 then implies

that I − P(1)
i is nonsingular and(I − P∗

i )−1 > [ I − P(1)
i ]−1 > 0. Consequently,u(1)

i andthusZ(1)
4 are

well defined, and we have

u∗
i = r̃ ∗

i (I − P∗
i )−1 > r̃ (0)

i [ I − P(1)
i ]−1 = u(1)

i ⇐⇒ Z∗
4 > Z(1)

4 > Z(0)
4 = 0.

We have proved thek = 0 case in (i).
Assuming that (i) holds up to some value ofk, we shall prove the(k + 1) case. The conclusion can

be easily drawn for SI and MSI by considering the differences between (3.4) and (3.5) for successive
values ofk as well as the limiting case whenk → ∞. For NBJ and NBGS in (3.6) and (3.7) for Z1 and
Z2, we have thatP(s)

i = P∗
i = Pi (for all s) are constant asV = F2, F1 from Table1. The limiting

case in (3.12) or a trivial application of Lemma3.1imply that [I − P(s)
i ]−1 > 0 (for all s). For NBJ and

NBGS for Z3 andZ4, the iterations take the following generic form, as in (3.10):

u(s+1)
i [ I − P(s+1)

i ] = r̃ (s)
i (s = 0,1, . . . , k + 1), (3.23)

with r̃ (s)
i and P(s+1)

i dependenton V = Z(s)
j or Z(s+1)

3 (for NBGS for the iteration forZ4, where

Z(k+2)
3 > Z(k+1)

3 whenthe iterations in (3.7) are executed in the intended orderj = 1, . . . ,4). From
the induction hypothesis and the linearity ofR̃ with respect toZ j (for all j ) in (3.15)–(3.18), we have

U∗ > 0, V∗ > V > 0 and R̃∗ > R̃(s) > 0. With (3.23) in place of (3.10), oru(s+1)
i , P(s+1)

i and

r̃ (s)
i in place ofui , Pi and r̃ i , respectively, Lemma3.1 implies thatI − P(s+1)

i (s = 0,1, . . . , k + 1)

are nonsingularM-matrices with non-negative inverses,P∗
i > P(k+2)

i > P(k+1)
i and (I − P∗

i )−1 >
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[ I − P(k+2)
i ]−1 > [ I − P(k+1)

i ]−1 > 0. From successive values ofs = k, k + 1 and the limiting case
k → ∞, appropriate differences yield

u∗
i − u(k+2)

i = r̃ ∗
i [ I − P∗

i ]−1 − r̃ (k+1)
i [ I − P(k+2)

i ]−1

= (̃r ∗
i − r̃ (k+1)

i )(I − P∗
i )−1 + r̃ (k+1)

i [ I − P(k+2)
i ]−1[ P∗

i − P(k+2)
i ]( I − P∗

i )−1 > 0.

Similarly, we have

u(k+2)
i − u(k+1)

i = r̃ (k+1)
i [ I − P(k+2)

i ]−1 − r̃ (k)
i [ I − P(k+1)

i t ]−1 > 0.

Thusa Z∗
j > Z(k+2)

j > Z(k+1)
j ( j = 1, . . . , 4) and the induction for (i) is complete.

For (ii) a similar argument as in the proof of (ii) in Theorem2.5 can be applied. For (iii) and (iv)
we note that the iteratesZ(k)

j areincreasing towards their respective limitsZ∗
j , andRj and R̃j preserve

the order of positivity of their arguments. We shall prove the inequalities again by induction. The ini-
tial cases fork = 0 are obvious. Assume that the results hold for some value ofk. From (3.8), for
j = 1, . . . ,4 andk = 0,1, . . . we have

Z(k+1)
S, j = Rj (. . . , Z(k)

S,l , . . .) 6 Rj (. . . , Z(k)
M,l , . . .) 6 Rj (. . . , Z

(̃kj l )

M,l , . . .) = Z(k+1)
M, j ,

Z(k+1)
S, j = Rj (. . . , Z(k)

S,l , . . .) 6 Rj (. . . , Z(k)
J ,l , . . .) 6 Rj (. . . , Z

(̂kj l )

J ,l , . . .) = Z(k+1)
J , j ,

Z(k+1)
M, j = Rj (. . . , Z

(̃kj l )

M,l , . . .) 6 Rj (. . . , Z
(̃kj l )

G,l , . . .) 6 Rj (. . . , Z
(ǩ j l )

G,l , . . .) = Z(k+1)
G, j .

For the right-most inequalities in (iv) consider the iterations in the general form (3.23). We then have

u(k+1)
J ,i = r̃ (k)

J ,i [ I − P(k+1)
J ,i ]−1 6 r̃ (k)

G,i [ I − P(k+1)
J ,i ]−1 6 r̃ (k)

G,i [ I − P(k+1)
G,i ]−1 = u(k+1)

G,i

sinceP(k+1)
J ,i 6 P(k+1)

G,i and̃r (k)
J ,i 6 r̃ (k)

G,i . ThusZ(k+1)
J , j 6 Z(k+1)

G, j , and induction is complete. �

REMARK 3.3 The assumption thatBi , Fi > 0 (i = 1,2) is just a convenient sufficient condition
for Theorem3.2. There are many other weaker but more tedious sufficient conditions that we can
write down. For example, by careful application of (3.15)–(3.18) in the proof, we can make the al-
ternative assumption, withW1 ≡ (Γ D−) ◦ B andW2 ≡ (D+Γ D−) ◦ B, that the following matrices are
positive:

F2FT
1 ; W1B1, W1F1, BT

2 W1B1; FT
2 W2, BT

2 W2B1.

4. General case

For the general case withB andF being full ranked, the NARE (1.9), namely,

B− − XF− − F+X + XB+X = 0,

or the equivalent (2.5), can be solved by fixed-point iteration (as in Theorem2.5), Newton’s method
(Lu, 2005;Guo & Higham, 2007;Lin et al.,2008) or doubling (Guoet al.,2006;Chianget al.,2009).
The existence of the unique minimal positive solutionX∗ of (1.9) is guaranteed by Theorem2.3.
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4.1 Newton’s method

Considering the NARE (1.9), letR(X) denote the left-hand side of the equation. At the(k+1)th iteration
with X(k) beingan approximate solution andX(k+1) = X(k) + δX(k+1), Newton’s method requires the
solution of the Sylvester equation

(F+ − X(k)B+)δX(k+1) + δX(k+1)(F− − B+X(k)) = R(X(k)). (4.1)

The convergence of Newton’s method is guaranteed by the following theorem quoted fromGuo &
Higham(2007, Theorem 2.3).

THEOREM 4.1 Let S be the minimal positive solution of (1.9). Then, under assumption (1.7), for the
Newton iteration (4.1) withX(0) = 0, the sequence{X(k)} is well defined,X(k) 6 X(k+1) 6 S for all
k > 0, and limk→∞ X(k) = S.

Theproof makes use of selected results from Theorem2.2. In particular, when vectorized the above
Sylvester operator can be written as the matrix operatorMS (with m = n) as in Theorem2.2.

4.2 Doubling

We shall quote the doubling algorithm for the general NARE (2.1), with the matrixM in (2.2) being a
nonsingularM-matrix, fromGuoet al. (2006). Note that, per iteration, the doubling algorithm is faster
than Newton’s method, as concluded inGuo et al. (2006),Guo (2007) and Table2, and we refer the
reader to the details in these references.

For the general NARE

XĈ X − XD̂ − ÂX + B̂ = 0,

with the corresponding matrixM in (2.2) being a nonsingularM-matrix, we first transform̂A, B̂, Ĉ and
D̂ to

Eγ = I − 2γV−1
γ , Gγ = 2γ D−1

γ ĈW−1
γ , Fγ = I − 2γW−1

γ , Hγ = 2γW−1
γ B̂D−1

γ ,

with the parameterγ > max{̂ai i , . . . , ânn; d̂11, . . . , d̂nn} and

Aγ = Â + γ I , Dγ = D̂ + γ I , Wγ = Aγ − B̂D−1
γ Ĉ, Vγ = Dγ − ĈA−1

γ B̂.

Thedoubling algorithm can then be summarized as follows:

E0 = Eγ , F0 = Fγ , G0 = Gγ , H0 = Hγ ,

Ek+1 = Ek(I − Gk Hk)
−1Ek, Fk+1 = Fk(I − HkGk)

−1Fk,

Gk+1 = Gk + Ek(I − Gk Hk)
−1Gk Fk, Hk+1 = Hk + Fk(I − HkGk)

−1HkEk.

TABLE 2 Operation counts per iteration

B, F Method Flops

Low-ranked NBGS 8(m + p + 2)n2

General Fixed-point iteration 4n3

Newton’s method 36n3

Doubling 102
3n3
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1464 T. LI ET AL.

The iterates are well defined withI − HkGk and I − Gk Hk beingnonsingularM-matrices for allk,
andHk → X andGk → Y (thesolution to the adjoint algebraic Riccati equation to (2.1)) from below
quadratically ask → ∞ (seeGuoet al.,2006, Theorem 5.1).

Note that, ifD± = D, B̂ = Ĉ = BD and Â = D̂ = (I − F)D, then we can halve the computation
asEk = Fk andGk = Hk for all k. Some saving in computation can also be made in Newton’s method
as the Sylvester equations in the iteration become Lyapunov equations.

5. Numerical examples

For comparison, we shall summarize the operation counts per iteration of various iterative methods in
Table2. We shall show only the dominant terms, assuming thatn � m, p. For low-rankedB and F ,
only the fastest method NBGS is considered. The slow fixed-point iteration method is also included for
comparison.

REMARK 5.1 For the simpler NARE considered inLu (2005),Bai et al. (2008),Lin et al. (2008) and
Mehrmann & Xu(2008), the associated structure gave rise to iterative solution processes (analogous to
our SI, MSI, NBJ and NBGS methods) of O(n) computational complexity. The ‘fast’ Newton method in
Bini et al.(2008) is of O(n2) complexity and is uncompetitive. However, our NARE in (1.9), for both the
low-ranked and the general cases, has very different structures. It is likely that faster solution methods
can be found but we do not anticipate methods of less complexity than the O(n2) NBGS method (for
the low-ranked case) and the O(n3) doublingmethod (for the general case).

We shall consider two randomly generated examples forn = 64,128,256,512,1024 and 2048.
Example 1 hasB and F being full ranked, and Example 2 hasB and F of rank 10. For the examples
the assumptions in Theorems2.3and3.2are satisfied. The numerical computation has been carried out
using MATLAB R2008b on a laptop with precision eps= 2.2204× 10−16 (MathWorks, 2002).

For Example 1, fixed-point iteration, Newton’s method and the doubling algorithm have been com-
pared for various values ofn. The iterations have been run until convergence with tolerance tol= 10−15.
The results are summarized in Table3, with tn denotingthe CPU time,rn ≡ tn/tn/2 and #It being
the number of iterations required, for particular values ofn. The iterates are also plotted in Fig.2 for
n = 1024. Note that the residuals in Figs2 and3 are plotted using a logarithmic scale.

Table 3 and Fig. 2 seem to indicate that the doubling algorithm performs better than
Newton’s method in CPU-time and the fixed-point iteration method is the slowest, as predicted in
Table2. The ratiosrn illustratethe O(n3) complexity of the methods. The graphs in Fig.2 illustrate the
quadratic convergence of the doubling algorithm and Newton’s method, with the fixed-point iteration
method obviously converging linearly. Newton’s method is two to three times faster than the doubling
method in terms of number of iterations, but the latter has an advantage in operation count per iteration
by a factor of 3.6, resulting in its better efficiency in terms of CPU time. Note that the cputime command
in MATLAB ( MathWorks, 2002) is not an exact reflection of CPU time consumed and should be used as
a rough guide only. Also, users have no control over some parts of the algorithms, such as the inversion
of the Sylvester operators by the MATLAB command lyap (MathWorks, 2002) in Newton’s method.

For Example 2, only the fastest iteration method NBGS has been tested against the doubling method
and the results are summarized in Table4 (for n = 64,128,256,512,1024,2048) and Fig.3 (for
n = 1024), with tol = 10−15. The O(n2) complexity of NBGS and the O(n3) complexity of the doubling
method are illustrated in the ratiosrn in Table4. The linear convergence of NBGS and the quadratic
convergence of the doubling method can be seen clearly in Fig.3. NBGS usually requires less itera-
tions than the doubling method and is also more efficient in terms of CPU time because of its superior
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RICCATI EQUATION FROM A ONE-DIMENSIONAL MULTISTATE TRANSPORT MODEL 1465

FIG. 2. Residuals for Example 1 (n = 1024).

FIG. 3. Residuals for Example 2 (n = 1024).

TABLE 3 CPU times and iteration numbers for Example1

Fixed-point iteration Newton Doubling

n tn rn #It tn rn #It tn rn #It
64 0.249 — 79 0.062 — 5 0.062 — 12

128 1.809 7.26 96 1.108 17.8 5 0.561 9.04 14
256 9.111 5.04 98 3.994 3.60 5 2.371 4.23 13
512 78.35 8.59 125 20.05 5.02 6 18.22 7.68 16

1024 560.2 7.15 132 186.0 9.27 6 124.1 6.81 15
2048 5147 9.18 150 1965 10.5 6 1112 8.96 18
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TABLE 4 CPUtimes and iteration numbers for Example2 with NBGS and doubling and themethods

NBGS Doubling

n tn rn #It tn rn #It
64 0.468 — 12 0.125 — 13

128 1.203 2.57 10 0.625 5.00 13
256 3.718 3.09 8 4.094 6.55 14
512 13.67 3.67 7 25.66 6.27 15

1024 51.62 3.77 6 207.0 8.07 15
2048 170.1 3.29 5 1031 4.98 17

operationcount per iteration. For fixed ranks ofB and F the number of iterations required decreases
with respect ton, as indicated in the fourth column of Table4.

6. Concluding remarks

For the one-dimensional multistate model in transport theory we need to solve a differential equation
to obtain the reflection functionR. For the steady-state solution we have derived an NARE from the
differential equation. We have proved the existence and uniqueness of the minimal positive solution of
the NARE. WhenB and F are low ranked the NBGS method of O(n2) complexity solves the NARE
efficiently. For the general case the doubling algorithm seems to be more efficient than Newton’s method.
The numerical results support our theoretical findings.

For future work we need to improve on the efficiency of the numerical algorithms for large values
of n. Finally, there are other similar models and problems in transport theory (Bellman & Wing, 1975)
worthy of investigation.
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