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For the steady-state solution of a differential equation from a one-dimensional multistate model in trans-
port theory, we shall derive and study a nonsymmetric algebraic Riccati eq@atienXF~ — FT X +

XBTX = 0,whereF* = (I — F)D* andB* = BD¥ with positive diagonal matriceB= andpos-

sibly low-ranked matrice§ and B. We prove the existence of the minimal positive solutkhunder

aset of physically reasonable assumptions and study its numerical computation by fixed-point iteration,
Newton’s method and the doubling algorithm. We shall also study several special cases. For example
whenB andF are low ranked thetX* = I" o (3f_; Ui Vi) with low-rankedU; andV; thatcan be
computed using more efficient iterative processes. Numerical examples will be given to illustrate our
theoretical results.

Keywords algebraic Riccati equation; doubling algorithm; fixed-point iteration; Newton’s method,;
reflection; transport theory.

1. Introduction
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Transport theory has been an active area of research, associated with masters like R. E. Bellman and

S. Chandrasekhar (see the referenceduang(1995)). A one-dimensional model was studied first
in Juang(1995), starting a series of numerical studies, for examplé&uii2005), Bai et al. (2008),
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FiG. 1. The one-dimensional rod.

Bini et al. (2008),Lin et al. (2008), andVlehrmann & Xu(2008), in the past 15 years. We shall study
a different one-dimensional multistate model fr@allmanet al. (1973) andBellman & Wing (1975,
equation (1.37), p. 15) that is generalized slightly in this paper.

We start from a simple one-dimensional ‘rod’ or line segment that extends fronx @nad denote
a generic point in the rod by, as in Fig.1. Particles move to the right and left along this rod without
colliding with one another while interacting with the rod itself without affecting it. We first assume that
all particles are of the same type and have the same speed. The objective is to obtain information about
the density of the beam of particles as a function of the position

We further assume that the probability of a particle @hoving in either direction) interacting with
the rod while moving a distance of is given by the expression

o(2) 4+ 0(4), (1.1)

wheres () > 0 is the macroscopic cross-section ar{g) aenotes higher-order terms. As a result of

this interaction, an expected averagef@) andb(z) new particles emerge at the poinin the same
(forward) and opposite (backward) directions, respectively, as the original particle. Particles travelling
to the left ofz = 0 and the right ok = x are lost to the system. Particles injected at the left and right
ends, together with the new particles generated through the collision process, make up the total particle
population of the system.

Initially, let us assume a time-independent state, where the expected particle population is stationary
and independent of the time at which the system is observed. We défingendo (z) to be theexpected
numbers of right- and left-moving particles, respectively, passing through thezxedach second. (The
adjective ‘expected’ is sometimes neglected but is necessary due to the stochastic nature of the prob-
lem.) From the definition in (1.1) the probability of particles passing through fréonz + 4 without
interacting with the rod is * ¢ (2) 4 + 0(4). The expected contribution to(z + 4) from this type of
occurrence is

1—06@4+0(MNu@ = [(1—0@) DU + o(4). (1.2)

However, some right- (or left-) moving particles passing thromgtill interact with the rod before
reachingz+ 4. Each such event will produce an expected nunflqey (or b(z)) of particles proceeding
in the direction of interest. The expected contributiona@@+ 4) from these types of occurrences are

o2 f(@u(@ 4+ 0(4), c(@b(z)v(2) 4 + o(4). (1.3)

Other events can take place but the contributions & and insignificant. Hence, summing the con-
tributions in (L.2) and {.3) yields

uz+ N =[1-0(@Du@ + 0@ f(@u(2)4 + o (2)b(2)v(2) 4 + o(4). (1.4)
Taking the limit4 — 0in (1.4) leads to the following differential equation far

d
d—‘; = o[ @) — 1Ju@ +b@v(@)}, u(0)=0. (1.5)
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A similar particle counting process also produces the following differential equatien for
do
g =~ c@b@u@ +[T@) - 1@}, () =1 (1.6)

For a multistate model we allow different states (e.g., speed, energy, type or any other features
other than direction that distinguish between the particles). The macroscopic cross-sectionjtbr the
state issj(z) > 0 and the probability in (1.1) resulting in the emission of particles injthestate then
reads

0j(2) 4+ o(4).

Similarly, we have functionsij(z) andvj(z) (j = 1,...,n) representing the expected number of
particles in statg, moving to the right and left, respectively, past the paiaaich second. We define the
matrix functionsF (z) = [ fi;(2)], B(2) = [bij (2)], F(2) = [fij(2)] andB(2) = [bi; (2)], where

fii@ =a@[fij@-dj], bij@ =0a@bij@), (,j=1,...,n),

dij is the Kroneckew, and fjj (z) andbjj(z) arethe expected numbers of particles travelling, respec-
tively, in the forward and backward directions, respectively, after the collision of a particle ofjstate
emitting particles of state A similar argument to that leading t@.5) and {.6) then produces

du ~ ~ do ~ ~
Pl F(2)u + B(2)v, i B(7u+ F(2)v,

withu = [ug,...,un]", » = [v1,...,0n]" andthe conventiorM = [mij] (capital letters for matrices
and the corresponding lower-case letters with indices for elements), and the initial conglitions: 0
ando; (X) = dij (correspondingo the initial injection of a particle of statefrom the right).

From the above discussion we exp&ctF > 0 to satisfy

Z(fij+bij)<1 vi. (1.7)

We will allow the critical case of equality irlL(7) (the ‘pure scattering’ case Bellman & Wing (1975,
equation (4.1), p. 55)) later.

To carry out the invariant imbedding procedure the functiBrendT are introduced, wheng;j (X)
is the expected number of particles emergent each secang atin statel from a rod of lengthx when
the only input is one particle per second in stpt the right endz = x, andtjj (x) is defined similarly
except the emergence is at the other 2rd0. Consider a rod of length+ 4 with the sub-rod of length
x imbedded. Assuming that the reflecting response fund®@) = [r; (2)] is known, the transmission
response functioil (z) = [tjj (z)] can be defined through a differential equation derived from a particle
counting process.

Counting all the significant events as enumeratetlVing (1962), and allowing different macro-
scopic cross-sections:-(z) > 0 for sources from the left and the right, the following equation for
R(x) = [rij (x)] can be derived:

dR(x)
dx

whereB* = BD*, F* = (I — F)D¥, D* =diagp"} > 0,andB andF are possibly low ranked. (In
Wing (1962) the signs of the linear terms on the right-hand sidé &) (vere positive. We change these

=B~ (X) - RX)F~(x) — FT(X)R(X) + RX)BT(x)R(x), R(0)=0, (1.8)
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signsto make the resulting nonsymmetric algebraic Riccati equation (NARE).8) (More consistent
with notation in other papers on NAREs. Note that thg} wereindependent of direction iBellman
et al. (1973) andWing (1962).) After the determination d®, the functionT can be derived from the
simpler equation

dT (x ~ ~
d>(< ) =TX[FX) +BX)R(X)], T@O)=I.
For the steady-state solution for a particutar1.8) leads to
B~ —XF~™ —FtX 4+ XB*X =0, (1.9)

with R replacedby the usual variablX for NAREs.

2. Existence of a solution

Some relevant definitions are as follows. . For any matriteB € R™" we write A > B or A > B
if their elements satisf@; > bII orgj > b,J, respectively, for all and j. A real square math is
called aZ-matrix if all of its off-diagonal elements are nonpositive. It is clear that Zmyatrix A can
be written ass| — B with B > 0. A Z-matrix A is called arM-matrix if s > p(B) wherep (-) is the
spectral radius, and it is a singulE-matrix if s = p(B) and a nonsingulaM-matrix if s > p(B)

We have the following useful results froBerman & Plemmong$1994) andGuo & Higham (2007,
Theorem 1.1).

LEMMA 2.1 For aZ-matrix A the following statements are equivalent:
(@) Aisa nonsingulaM-matrix;
(b) 5‘1 > 0;
(c) Av > 0O for some vectop > 0.

THEOREM2.2 Let us consider the NARE

XCX—XD—-AX+B=0, (2.1)

whereA, B, C andD are real matrices of sizes x m, m x n, n x mandn x n, respectively. Assume

that
D -C
M = [_§ A } (2.2)

is a nonsingulaM-matrix or an irreducible singulavl-matrix. Then the NARE has a minimal non-
negative solutionS. If M is irreducible, thenS > 0, and A — SC and D — CS are irreducible
M-matrices. IfM is a nonsingulaM-matrix, thenA — SC andD — C Sare nonsingulaM-matrices. If
M is an irreducible singulak-matrix with positive left and right null vectorsif, ul]™ and[o], 0117
(whereusy, v1 € R" anduy, v2 € R™) satisfying

o1 # Uj02,
then
Ms=I1h®(A-SC)+(D-CYT® Im

is a nonsingulaM-matrix. If M is an irreducible singula¥-matrix with U101 = uzvz, thenMg is an
irreducible singulaM-matrix.
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We have the following existence result.
THEOREM 2.3 Under assumptiorl(7), the unique minimal non-negative soluti¥f of (1.9) exists.

Proof. From Theoren?.2we need to show that th&-matrix

| =F)D~ —-BD* _J, |F B D~
M‘[ ~8p~  (-FD*] ' 7|8 F D+ 23)
is a nonsingulaM-matrix. Note thatA is an M-matrix if and only if AT is an M-matrix. Applying
Lemmaz2.1, we need to find a vector> 0 such thaM v > 0, which is trivial from (1.7). O

2.1 NARE as an eigenvalue problem

The NARE (L.9) can be reformulated as the following eigenvalue problem:

| | F- -—-Bt | -F -B D~
i[x=lx]sm=le 2= Al I o) e
From(1.7) it is easy to see that the eigenvaluesiodre shifted slightly fromtaf, splitting equally on
opposite sides of the imaginary axis. Using the Gerschgorin theoremDéétjr) = {x € C: [x —a| <

r}, the eigenvalues are in J, D(o,, aoy )] U [UkD(—ak*, aak+)], divided equally on opposite sides
of the imaginary axis, witlx = (||F + BJ|1) < 1 from (1.7).

REMARK 2.4 For the critical case with = 1 a simple application of the Gerschgorin theorem implies
that the matrice#d in (2.4) andM in (2.3) may be singular. However, the potential singularity may be
detected or excluded by applying the extensions of the Gerschgorin theokonir& Johnsor(1985,
Section 6.2). Consider all of the Gerschgorin disksHf containingthe origin. At least one of the
corresponding inequalities should not be satisfied with equality. In other words, we may have to exclude
the ultra-critical case that all of the first or lastows have their corresponding off-diagonal row sums
equal to unity.

Note that, even ifH or M are singular, the existence result in Theor2 still holds provided
thatM is irreducible. With the additional requirement for the null vectors as in The@@pNewton’s
method in Sectiod.1will be quadratically convergent.

2.2 NARE as a nonlinear equation

To compute the minimal non-negative soluti#r for the NARE (L.9), consider it in component form
as follows:

(0, +0;")%j = (BDij +x.(FD7).j + (FD)i.x | +x.(BDF)x,j.

(Herex;. andx.; denotetheith row andjth column, respectively, oK, and(-)i; denoteghe element
@i, j) of a matrix.) Equivalently, we have

X =¢(X)=T0(BD™ +XFD™ +FD*X+ XBD*X), I'=[@; +¢")7, (2.5)

with X beinga Hadamard product. Note that Theor@r, (2.5) and the assumpti@d > 0 imply that
X* > 0.
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We have the following theorem fot* andthe fixed-point iteration.

THEOREM 2.5 Let X© = 0 and X*tD = $(X®). Then, under assumptior.f), we have the
following

() the iterates satisfix* > X®+tD > x® > o BD~ > 0;

(i) X® - X* ask - oo.

Proof. Itis easy to show thaX® = " o BD~ > 0from (2.5). For (i) consider the difference between

X* = ¢(X*) andX® = ¢ (XKD asfollows:
X* = X® = pop(x* = X*D)FD~ 4+ FDH(X* — X&)
+ (X* = X*k=D)BD*TX* + Xk-DBp*+(x* — Xx*=D)y].
Inductionwill then complete the argument fot¢* — X® > 0'in (i). Similarly, induction on the
difference betweeX Kt = 4 (X®) andX® = ¢ (X*-D) leadsto X k+D — X&) > Qin (i).

For (i) convergence is implied by (i) with the limK* = lim_, o X® = X* becauséi) implies
thatX* > X* > 0andX* is minimal. O

3. Low-ranked B and F

When the full-ranked decompositiofs = |:1F2T andB = BlB; areof rankm and p, respectively,
(2.5) implies that

X =T 0(B1B)D™ + Z1F; D™ + F1Z) + Z37)) (3.1)
with the auxiliary variables
Zi=XF1, Zy=X'D'F,, Z3=XB;, Zs=X'D'B,. (3.2)

SubstitutingX in (3.1) into 3.2), we have 20+ p)n nonlinear equations for thg@ + p)n unknowns
inZj(j =1,...,4)as follows:
Z1=[I' o (B1B] D™ + Z1F] D™ + F1Z] + Z3Z})]F,
Zy=[I'T o (D™BB] + D™FZ] + ZoF + Z4Z])|DHFo,
Z3=[I o(B1B]D™ + Z1F] D~ + F1Z] + Z32])]By,
Z4=[I'"o(D™ByB] + D™FoZ] + ZoF] + Z42])]D* By,

(3.3)

(cf. the 2 equations in 2munknowns inJuang(1995) for a simpler NARE wittm = p = 1). Similarly,
X can be retrieved using(1) after theZ; areobtained. It is obvious from Theoreth5 and (3.3) that
Z;i>0(j=1,...,4andX > 0.

The convergence of various iterative schemes for the set of nonlinear equati®nsan be shown.
First letR; (j = 1,...,4) be thejth right-hand side ing3). Starting fromz{” = 0 (j = 1,....4),
we shall consider the following iterative methods.

(1) Simple iteration (Sl): foj,l =1, ...,4 we have

Ki .
MY =R, K=k (LD (3.4)

Theright-hand sidesR; only involve the previous iteratﬁ(k).
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(2) Modified simple iteration (MSI): foij,| =1, ...,4 we have

k+1) _ (G =~ [k+1 ifl <j,
Z; =Rj(....Z, ", ..), kjy= [ K otherwise. (3.5)
The right-hand sideR; involve Zl(k), as well ale(k“) if they have been computed.
(3) Nonlinear block Jacobi method (NBJ): forl =1, ..., 4 we have
k+1) _ o ki) oo |k+1 ifl =],
Z; =Rj(....Z,",..), kjy= [ K otherwise. (3.6)

The right-hand sideR; involve Zl(k), as well aszl(kH) with | = j andthe corresponding terms

moved to the left-hand sides.
(4) Nonlinear block Gauss—Seidel method (NBGS):jfdr=1, ...,4 we have

k+1 ifl <j,

k otherwise. (3.7)

k+1 (Kj1) -
Z}+)=Rj(...,Z| o), Kii z[

The right-hand sideR; involve 2% andz*™ (whenavailable), as well ag ™" with | = |
andthe corresponding terms moved to the left-hand sides.

From the above formulae we obviously have the following inequalities for the indices:
k=kj <kj <kj, k=kj<kjy<kjp (j,l=1,...,4). (3.8)
The following simple lemma will be repeatedly applied in the proof of Thedse2n

LEMMA 3.1 LetU = [uij], V = [vij] andW = [wij] € R"*9 benon-negative, and lef = [7j] €
R"*N be positive. Consider the linear system

U—-[IoUVNHIW=R, (3.9)
anditsith row has the form
u(l —R)=ri, (3.10)
where
n
(R)sj = D Tilviswij, (3.11)
=1
fori =1,...,nands, j =1,...,q. In addition, assume that
u'(l = P =T, (3.12)

whereP* is constructed as ir(11) witho|s replacedoy vy, = (V*)is, " is theith row of R* and
R*>R>0, U*>0 V*>V. (3.13)
Thenl — P* andl — B arenonsingulaM-matrices and

PP>PR, (I-PY)t>0-P)t>0 (3.14)
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Proof. From @3.11) and 8.13) we have that’, ;" > Oandl — P* is aZ-matrix. Consequently, the

transpose 0f3.12) and Lemma.1limply that (the transpose of)— P* is a nonsingulaM-matrix with

a non-negative inverse arftl — P*)o > 0 for some vectop > 0. From @.11) B is linear inV, with

V* > VimplyingthatP* > B, | — B > | — P*and(l — B)v > (I — P*)» > 0. Lemma2.1then

implies thatl — P, is a nonsingulaM-matrix with a non-negative inverse arl14) follows. O
With the additional subscripts = S, M, 7, G for the four different methods (3.4)—(3.7), respec-

tively (and ignoring them when the result holds for all the methods), we have the following results that

are similar to those iGuo & Lin (2010).

THEOREM 3.2 We shall assume that (7) holds and we have the splittifg= F1F] andB = B1B;,
with the full-rankedB;, By, F1, F> > 0. We have forj = 1,...,4 andk = 0, 1, ... that the following
holds

() the iterates satisf)ZT > ijk“) > ZJ(k) > 0, exceptZJ(O) =0;
(i) Z{9 - z; ask > oo;
(i) 0 < 25 < 25 < Zg3:

) 0< 28 <2 <2,

Proof. For NBJ and NBGS the formulae i8.Q8) (ignoring the superscriptk+ 1) on the left-hand sides
and(k) on the right forZ; asin (3.6) and 8.7)) are equivalent to

Zy—[I' o (Z1F)]D"Fi=Ry = [I" o (B1BJ D™ + F1Z] + Z3Z))]Fy, (3.15)
Zy— [T o (Z2FDHIDTFo =R = [I'T o (D™ BB] + D™ FoZ] + Z4Z))|D*F,,  (3.16)
Z3—[I'0(Z3Z})]Bi=Rs=[I"0o(B1BJD~ + Z1F, D~ 4+ F1Z])]By, (3.17)

Z4—[I'"0(Z4ZDH]D By =Ry =[I'T o (D™ B2B] + D™F2Z] + Z,F)]D*B,.  (3.18)

The operators on the left-hand side &.15)—(3.18) are of similar form and we need to invert them
with known right-hand side®; . For the generic terry — [I" o (UVT)]W for I = [7;] € R™" and
U = [ujj], V = [vij], W = [wi;] € R™9 (with g = mor p), the(i, j) component equals

q n
{U—[Fo(UVDHIW}ij = ujj — ZUis(Zﬁwlswu), (3.19)
s=1 I=1

implying that thei th row in (3.15)—(3.18) has the generic for@.10) withB;, € R9*9 (i = 1,...,n) as
in (3.11). Note that;; andf; in (3.10) are théth rows ofU and the right-hand sidB in (3.15)—(3.18)
or Tablel below, respectively.

We shall prove (i) by induction.

For thek = 0 case in (i), except foZ4 in NBGS, it is easy to see fron8(3) and (3.4)—(3.7) that
Z}l) arewell defined and

zy >z > z}o) =0 (j=1,...,4), (3.20)
where the limits (indicated bg)*) are guaranteed to exist by Theore3 or 4.1 together with 8.2).

Note from Tablel and ZJ@ = Othat thePR, areconstantin8.10) forZ; andZ, in NBJ and NBGS, and
P = Ofor Zz andZ4 in NBJ as well a&Z3 in NBGS (because the correspondivig in Tablel vanish).
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TABLE 1 Constructionof B in (3.10)or (3.19)for NBJ andNBGS

Method U r % w R

Both VANE D~ = = Ry

zJ+D r'o+ F1 F2 R,

z§h r zy B1 Rs

NBJ z§ ro+ z{ B, Ra

NBGS z{ ot z{§ By R

For Z4 in NBGS the iteration has the following form that is similar 8X0):
@ Dy _+0
u [l =P =1, (3.21)
where Pi(l) islinear inV = Zél), which has been proved to satisfy

z3>2z">o. (3.22)

From(1.7) and 8.20) we haver! > 0 (from methods other than NBGS) arjt > ?i(o) > 0. With (3.21)
in place of 3.10), orui(l), Pi(l) andfi{o) in place ofu;, P, andrj, respectively, Lemm&.1then implies

thatl — Pi(l) is nonsingular andl — Pi*)‘1 >l - Pi(l)]‘l > 0. Consequentlwi(l) andthust,rl) are
well defined, and we have

u =0 =P 20N —PII =P = ZixzP > zP =0

We have proved thke = 0 case in (i).

Assuming that (i) holds up to some valuelgfwe shall prove thék + 1) case. The conclusion can
be easily drawn for SI and MSI by considering the differences betw@&d) énd 8.5) for successive
values ofk as well as the limiting case whén— oco. For NBJ and NBGS in3.6) and 8.7) for Z; and

Z>, we have thatPi(S) = P* = B (for all s) are constant a¥ = F, F1 from Table1. The limiting

case in 8.12) or a trivial application of Lemma limply that [I| — F’i(s)]‘1 > 0 (for all s). For NBJ and
NBGS for Z3 and Z4, the iterations take the following generic form, as in (3.10):

uS - P =7 (s=0,1,...,k+1), (3.23)

with 7 and P**Y dependenbn vV = z{¥ or Z{T*Y (for NBGS for the iteration forZs, where
2§ > z§+D whenthe iterations in (3.7) are executed in the intended ojder 1, ..., 4). From
the induction hypothesis and the linearity Rfwith respect taZ; (for all j) in (3.15)—(3.18), we have
U* > 0,V* >V > 0andR* > R® > 0.With (3.23) in place of 8.10), oru’>"™, PV and
Fi‘s) in place ofu;, P andrj, respectively, Lemm&.1 implies thatl — Pi(s+1) (s=0,1,....k+1)
are nonsingulaM-matrices with non-negative inverse; > Pi(k+2) > Pi(k+l) and(l — Pi*)—1 >
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[1 - Pi(k+2)]‘l >[Il - F’i(k“)]‘1 > 0. From successive values sf= k, k + 1 and the limiting case
k — oo, appropriate differences yield

Ui* — ui(k+2) — ﬁ*[l _ Pi*]—l _'lz'i(k—i-l)[l _ Pi(k+2)]_l
ok k+1 *y — k+1 K+2) — . K42 .
Similarly, we have

Ui(k+2) _ ui(k+1) _ Fi(k+1)[I _ Pi(k+2)]_l _r~i(k)[I _ Pi(k+1)t]_1 >0.

Thusaz* > z*+2 > z&*D (j = 1,..., 4) and the induction for (i) is complete.

For (ii) a similar argument as in the proof of (ii) in Theoréh® can be applied. For (iii) and (iv)
we note that the iterateg® areincreasing towards their respective Iimit$, andR; and F~Qj presere
the order of positivity of their arguments. We shall prove the inequalities again by induction. The ini-
tial cases folk = 0 are obvious. Assume that the results hold for some valde 6fom 3.8), for
j=1,...,4andk=0,1,...we have

ZED =R(.. 28 ) <SRG Z ) S RIC, zﬁ'f) =80,

ZEW =R 28 <R 2R < Rj(...,zfﬁf;),...) =z,

ZW TV =Ry(.... zﬁ&”f) <R (...,zg‘:{'),...) <R{(..., zgj”,...) =z,

For the right-most inequalities in (iv) consider the iterations in the general form (3.23). We then have

k+1) _ (k) k+1)y-1 _ +K) (k+1)y-1 _ +K) (k+1)y-1 _ , (k+1)
uzi _rj,i[l — PJi ] <rg,i[l — Pj’i ] grg,i[l — Pg,i ] = Ug;

i k+1) o pk+l) o o) =) (k1) ~ Z(k+1) i ion i
smcer)i < Pgi andrj’igrg,i.ThusZJ’j <Zg,j , and induction is complete. O

REMARK 3.3 The assumption thaBj, F; > 0 (i = 1,2) is just a convenient sufficient condition

for Theorem3.2. There are many other weaker but more tedious sufficient conditions that we can
write down. For example, by careful application &15)—(3.18) in the proof, we can make the al-
ternative assumption, with, = (’'D~) o B andW, = (D™ 1"'D ™) o B, that the following matrices are
positive:

FoF; WiBy, WiF1, BJWiBy; FpWa, BJW,B;.

4. General case
For the general case witB andF being full ranked, the NARE (1.9), namely,
B-—XF~—F'X 4+ XB*X =0,

or the equivalentZ.5), can be solved by fixed-point iteration (as in Theoizs), Newton’s method
(Lu, 2005;Guo & Higham 2007;Lin et al.,2008) or doublingGuoet al.,2006;Chianget al.,2009).
The existence of the unique minimal positive solutdhof (1.9) is guaranteed by Theore2r8.
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4.1 Newton’'s method

Considering the NARE (1.9), I€®(X) denote the left-hand side of the equation. Attke 1)th iteration
with X® beingan approximate solution and®+tD = X® 4 5xk+1) Newton’s method requires the
solution of the Sylvester equation

(F+ — x®0BH)sx*k+D L sx*k+D(E~ — g+ x®0) = R(X®), (4.1)

The convergence of Newton’s method is guaranteed by the following theorem quotedGuan&
Higham(2007, Theorem 2.3).

THEOREM 4.1 Let S be the minimal positive solution ofL.(9). Then, under assumptioh.7), for the
Newton iteration (4.1) withX© = 0, the sequencéX ¥} is well defined,X® < X&+1 < Sfor all
k>0, and lim_ 0 X® =S

Theproof makes use of selected results from Theo2e®n In particular, when vectorized the above
Sylvester operator can be written as the matrix opersi@{with m = n) as in Theoren?.2.
4.2 Doubling

We shall quote the doubling algorithm for the general NARE), with the matrixM in (2.2) being a
nonsingulaM-matrix, fromGuoet al. (2006). Note that, per iteration, the doubling algorithm is faster
than Newton’s method, as concludedGuo et al. (2006), Guo (2007) and Tabl®, and we refer the
reader to the details in these references.

For the general NARE

XCX— XD - AX+B=0,

with the corresponding matrik in (2.2) being a nonsingulai-matrix, we first transfornA, B, C and
Dto

E,=1-2yV;Y, G, =2yD;'CW; %, F, =1-2yW; 1 H, =2yW;'BD;?,
with the parametey > max@i, ..., an; dit, . .., A} and
A, =A+yl, D,=D+yl, W,=A, -BD;'C, V, =D, -CA'B.
Thedoubling algorithm can then be summarized as follows:

Eo=E,, Fo=F,., Go=G,, Ho=H,,
Ext1 = Ex(l — GkH) ™ Ex, Fig1 = F(l — HkGr)~1F,
Gk+1 = Gk + Ex(l — GkHK)™1GkFk, Hiky1 = Hk + Fi(l — HG)~THkExk.

TABLE 2 Opemtion counts per iteation

B, F Method Flops

Low-ranked NBGS 8(M+ p+2)n?

General Fixed-point iteration 4n3
Newton’s method 36

Doubling 102n®
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Theiterates are well defined with — HcGg and | — GgHy beingnonsingulaM-matrices for allk,
andHy — X andGk — Y (thesolution to the adjoint algebraic Riccati equation2al) from below
guadratically ak — oo (seeGuoet al.,2006, Theorem 5.1).

Note that, ifD* = D, B=C = BD andA = D = (I — F)D, then we can halve the computation
asEx = Fx andGk = H for all k. Some saving in computation can also be made in Newton’s method
as the Sylvester equations in the iteration become Lyapunov equations.

5. Numerical examples

For comparison, we shall summarize the operation counts per iteration of various iterative methods in
Table2. We shall show only the dominant terms, assuming thgt m, p. For low-rankedB and F,

only the fastest method NBGS is considered. The slow fixed-point iteration method is also included for
comparison.

REMARK 5.1 For the simpler NARE considered iru (2005),Bai et al. (2008),Lin et al. (2008) and
Mehrmann & Xu(2008), the associated structure gave rise to iterative solution processes (analogous to
our Sl, MSI, NBJ and NBGS methods) of® computational complexity. The ‘fast’ Newton method in

Bini et al.(2008) is of Gn?) compleity and is uncompetitive. However, our NARE if.9), for both the
low-ranked and the general cases, has very different structures. It is likely that faster solution methods
can be found but we do not anticipate methods of less complexity than(tife ®BGS method (for

the low-ranked case) and thg1t3) doublingmethod (for the general case).

We shall consider two randomly generated examplesifer 64,128,256,512,1024 and 2048.
Example 1 ha3 and F being full ranked, and Example 2 h&sand F of rank 10. For the examples
the assumptions in Theorer@8and3.2 are satisfied. The numerical computation has been carried out
using MATLAB R2008b on a laptop with precision eps2.2204x 1016 (MathWorks, 2002).

For Example 1, fixed-point iteration, Newton’s method and the doubling algorithm have been com-
pared for various values of The iterations have been run until convergence with toleranee id—1°.
Theresults are summarized in Talde with t, denotingthe CPU timern = ty/tn/2 and#It being
the number of iterations required, for particular values.oT he iterates are also plotted in FRfor
n = 1024. Note that the residuals in Figsnd3 are plotted using a logarithmic scale.

Table 3 and Fig. 2 seem to indicate that the doubling algorithm performs better than
Newton’s method in CPU-time and the fixed-point iteration method is the slowest, as predicted in
Table2. The ratiog , illustratethe O(3) compleity of the methods. The graphs in F@illustrate the
guadratic convergence of the doubling algorithm and Newton’s method, with the fixed-point iteration
method obviously converging linearly. Newton's method is two to three times faster than the doubling
method in terms of number of iterations, but the latter has an advantage in operation count per iteration
by a factor of 3.6, resulting in its better efficiency in terms of CPU time. Note that the cputime command
in MATLAB ( MathWorks 2002) is not an exact reflection of CPU time consumed and should be used as
a rough guide only. Also, users have no control over some parts of the algorithms, such as the inversion
of the Sylvester operators by the MATLAB command lydfathWorks 2002) in Newton’s method.

For Example 2, only the fastest iteration method NBGS has been tested against the doubling method
and the results are summarized in TaBléfor n = 64,128,256,512,1024,2048) and Fig.3 (for
n = 1024), with tol = 1015, The O(?) compleity of NBGS and the Of®) compleity of the doubling
method are illustrated in the ratiog in Table4. The linear convergence of NBGS and the quadratic
convergence of the doubling method can be seen clearly in3FiyBGS usually requires less itera-
tions than the doubling method and is also more efficient in terms of CPU time because of its superior
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FiG. 3. Residuals for Example 2 (= 1024).

TaBLE 3 CPU times and iteration numbers for Example

Fixed-point iteration Newton Doubling
n th n #It th n #It tn n #It
64 0.249 — 79 0.062 — 5 0.062 — 12

128 1.809 7.26 96 1.108 17.8 5 0.561 9.04 14

256 9.111 5.04 98 3.994 360 5 2.371 423 13

512 78.35 8.59 125 20.05 5.02 6 18.22 7.68 16
1024 560.2 7.15 132 186.0 9.27 6 124.1 6.81 15
2048 5147 9.18 150 1965 10.5 6 1112 8.96 18
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TABLE 4 CPUtimes and iteration numbers for Exam@avith NBGS and doubling and thmethods

NBGS Doubling

n th M #It th n #It

64 0.468 — 12 0.125 — 13
128 1.203 2.57 10 0.625 5.00 13
256 3.718 3.09 8 4,094 6.55 14
512 13.67 3.67 7 25.66 6.27 15
1024 51.62 3.77 6 207.0 8.07 15

2048 170.1 3.29 5 1031 4,98 17

operationcount per iteration. For fixed ranks & and F the number of iterations required decreases
with respect ta, as indicated in the fourth column of Talle

6. Concluding remarks

For the one-dimensional multistate model in transport theory we need to solve a differential equation
to obtain the reflection functioR. For the steady-state solution we have derived an NARE from the
differential equation. We have proved the existence and uniqueness of the minimal positive solution of
the NARE. WhenB andF are low ranked the NBGS method 0f16%) compleity solves the NARE

efficiently. For the general case the doubling algorithm seems to be more efficient than Newton’s method.

The numerical results support our theoretical findings.

For future work we need to improve on the efficiency of the numerical algorithms for large values
of n. Finally, there are other similar models and problems in transport theory (Bellman &, 187§)
worthy of investigation.
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