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Proportional-Derivative Unknown Input Observer Design Using 

Descriptor System Approach for Non-Minimum Phase Systems 
 

Huan-Chan Ting, Jeang-Lin Chang, and Yon-Ping Chen 

 

Abstract: This paper considers the problem of estimating the state of an MIMO linear system with un-

known inputs in the state and output. Through a series of linear transformations in the state and output 

equations, the original system can be transformed into a descriptor system form. The proposed propor-

tional derivative observer can accurately estimate the system state and avoid the peaking phenomenon. 

Moreover, the approach developed in this paper does not require the derivatives of the output and can 

be applied to the system with unstable zeros (with respect to the relation between the output and the 

unknown input). Finally, our algorithm can prove the valid feasibility and the property of disturbance 

attenuation through demonstrating a simulation-base example. 
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1. INTRODUCTION 

 

External disturbances and coefficient variations of a 

plant bring difficulties designing the controller. These 

unknown perturbations are incorporated into the system 

model, as unknown inputs. When the system is subject to 

the unknown inputs, the standard Luenberger observer 

can not obtain the perfect estimation. As a result, the 

design of state observer for systems with unknown inputs, 

called the unknown input observer (UIO) design, is an 

important topic in several control applications [1-19]. 

However, these papers [1-4] only consider the unknown 

input in the state equation. In this regard, Darouach et al. 

[2] presented a full-order UIO, and Hou and Muller [3] 

established a reduced-order UIO. UIO can also apply to 

the fault detection and isolation problems [5-8]. When 

there exists unknown inputs in state and output equations 

of the system model, these papers [9-14] developed 

different design methods under some constraints of 

system matrices. Alwi et al. [13] proposed an effective 

sliding mode observer to estimate states and noises for 

LTI systems with disturbances and measurement noises. 

Sharma and Aldeen [15,16] decoupled the unknown 

inputs from the rest of the system through a series of 

coordinate transformations. There are two necessary and 

sufficient conditions to check the existence of a stable 

UIO. These two important conditions are that the transfer 

function matrix between the unknown input and the 

system output must be minimum phase and with relative 

degree one. If one of the conditions mentioned above is 

not satisfied, how to design a stable UIO is a difficult 

research problem. Releasing the minimum phase 

condition, this paper proposes a reduced-order UIO 

design method to effectively estimate the state in which 

there exists unknown inputs in the state and output 

equations of the system with unstable zeros. In contrast 

with [13], they presented a specific linear matrix 

inequality (LMI) to design parameters of the observer 

and guarantee the estimation convergence simultane-

ously. In this paper, the matrix stabilizing the estimated 

error dynamics is determined by a pole-placement 

method, and then another independent matrix is used to 

suppress the effect of unknown inputs. 

On the other hand, Boutayeb et al. [17] involved the 

descriptor system approach to design a nonlinear 

observer for simultaneously estimating the system state 

and unknown inputs. Based on the same method, 

Fernando and Trinh [18] designed a reduced-order 

functional observer of the linear systems where both 

input and output disturbances are presented. Gao and 

Wang [20] developed the descriptor system observer to 

reduce the effect of measurement noises. They 

constructed a modified proportional derivative observer 

to asymptotically estimate the system state and output 

noise at the same time.  

In this paper, we introduce the descriptor system 

approach, developed by Gao and Wang [20], into the 

observer design for linear systems with unknown inputs 

in the state and output. A series of similar transform-

ations is first proposed to transform the original system 

into a descriptor system form. Then a proportional 

derivative observer is designed to estimate the system 

state in which the derivative gain and the proportional 

gain can adjust the unknown input amplification and 

ensure the robust stability of the estimation error 

dynamics, respectively. Although the perfect estimation 
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is impossible, the proposed algorithm can be successfully 

implemented in the systems with unstable invariant zeros 

and the estimation error is finally bounded in a small 

region around zero. Moreover, the observer in this paper 

does not require the derivative of the output and is 

capable of avoiding the peaking phenomenon.  

In the next section, a class of controlled systems is 

first introduced with some important assumptions in 

relation to the system matrices. Sections 3 and 4 describe 

some coordinate transformation and the unknown input 

observer design. To verify the developed observer, a 

numeric example is shown in section 5. Finally, section 6 

gives concluding remarks. 

 

2. PROBLEM FORMULATION 

 

Consider the following MIMO linear system with the 

unknown input as 

( ) ( ) ( ) ( ),

( ) ( ) ( ),

t t t t

t t t

= + +

= +

x Ax Bu Dd

y Cx Fd

�
 (1) 

where ,

n

∈x � ,

m
∈u � ,

l
∈d �  and p

∈y �  are the 

system state vector, the control input vector, the 

unknown input vector, and the system output vector, 

respectively. Suppose that system (1) is detectable and 

the system matrices with appropriate dimensions are 

known. Without loss of generality, we assume that 

rank( )F =k and rank( ) p=C  where p l≥  and 0 k<  

.l≤  Although the input d(t) is unknown (cannot be 

measured), the target is to design a UIO which can 

accurately estimate the system state x(t) for any instant 

of time. Using the standard Luenberger observer to 

estimate the state of system (1) precisely is difficult due 

to the existence of unknown inputs. Busawon and 

Kabore [21] have shown that the conventional 

Luenberger observer is not adequate for handling 

measurement noises. Several authors [1-4,9-16] have 

solved this problem and proposed different UIO design 

methods. There exists two conditions checking the 

existence of a stable UIO [1-4,9-16]. The first is that the 

system with respect to the relation between the output 

and the unknown input must be minimum phase, i.e. the 

invariant zeros of the system are located on the left-half 

open plane. The second is that the relative degree of the 

transfer matrix function from the unknown input to the 

system output is one. For a linear system with the 

unknown inputs in the state and output equations and 

unstable invariant zeros, a UIO design using the 

descriptor system approach is proposed in this paper.  

 

3. COORDINATE TRANSFORMATION AND 

SYSTEM ANALYSIS 

 

Since rank( ) ,k=F  applying the singular value 

decomposition [22] can obtain 

,

k

 
=  
 

0 0
UFV

0 I
 (2) 

where the matrices p p×
∈U �  and l l×

∈V �  are 

nonsingular. Define the following vectors 

1

2

( )
( )

( )

t

t

t

 
=  

 

d
d V

d
 and ( ) ( ),t t=y Uy  (3) 

where 
1

l k−
∈d �  and 

2
.

k
∈d �  As a result, system (1) 

can be rewritten as 

1 1 2 2

2

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),
k

t t t t t

t t t

= + + +

 
= +  

 

x Ax Bu D d D d

0
y Cx d

I

�

 (4) 

where =C UC  and 
1 2

[ ].=DV D D  Assuming rank 

1 1
( ) rank( ) ,l k= = −CD D  there exists a transformation 

1

n n×

∈T �  such that the matrix 
1

D  can be partitioned as 

1

1 1
,

 
=  
 

D
TD

0
 (5) 

where 
( ) ( )

1

l k l k− × −

∈D �  is invertible. Let 
1 2

[ ] =C C  

1

1

−

CT  where 
( )

1

p l k× −

∈C �  and 
( )

2
,

p n l k× − +

∈C �  we 

can obtain that 

1

1 1 1 1

1

1 2 1 1

rank( ) rank( )

  rank rank( ) .l k

−=

  
 = = = −   

  

CD CT TD

D
C C C D

0

 (6) 

From 
1

rank( ) l k= −D  and (6) we have 
1

rank( ) =C  

.l k−  Define the transformation 1

1

1

p p
+

×
 

= ∈ 
Φ 

C
U �  

where 
( )

1
.

p p l kT × − +

Φ ∈�  The matrix 1

1 1 1 1
( )T T+ −

=C C C C  

is a null space of 
1
.

T
C  Multiplying U1 and 

1

1

−

CT  

attains 

121

1 1 1 1 2

22

,

l k−−
 

 = =   
 

I C
U CT U C C

0 C
 (7) 

where 
12 1 2

+
=C C C  and 

22 1 2
.= ΦC C  Furthermore, 

we introduce a transformation 
12

2

l k

n l k

−

− +

− 
=  
 

I C
T

0 I
 and 

define 
1 1

2 1

2

−
 

= = 
 

z
z T T x

z
 where 

1

l k−
∈z �  and 

2
∈z  

.n l k− +

�  Notice that 

11 12 11 1 1

2 1 1 2 2 1

21 22 2

12 121

2 1 2 1

22 22

, ,

, and .
k

− − −

−

   
= =   
   

    
= =    
    

A A B
T TAT T T TB

A A B

0D F
T TD U

ID F

 (8) 

Based on the mentioned transformations above, system 

(4) can be transformed into the following form: 
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1 11 1 12 2 1 12 2 1 1
( ) ( ) ( ) ( ) ( ) ( ),t t t t t t= + + + +z A z A z B u D d D d�

2 21 1 22 2 2 22 2

1 1 12 2

2 22 2 22 2

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

t t t t t

t t t

t t t

= + + +

= +

= +

z A z A z B u D d

y z F d

y C z F d

�

 (9) 

where 
1

l k−
∈y �  and 

2
.

p l k− +
∈y �  Observing (9) can 

obtain 
1 1 12 2

.= −z y F d  Substitute 
1
z  into (9) to obtain 

( )
2 22 2 2 21 1

22 21 12 2

22 2 2 21 1 2 2

2 22 2 22 2

( ) ( ) ( ) ( )

          ( )

        ( ) ( ) ( ) ( ),

( ) ( ) ( ),

t t t t

t

t t t t

t t t

= + +

+ −

= + + +

= +

z A z B u A y

D A F d

A z B u A y D d

y C z F d

�

 (10) 

where 
2 22 21 12

.= −D D A F  In the following, a reduced-

order observer algorithm is proposed by the descriptor 

system form of estimating simultaneously the system 

state z2 and the unknown input d2. Define a vector 

2n l k− +

∈w �  as 
2

2

 
=  
 

z
w

d
 and 

22 2

2 21

1

, ,

, , and .

n l k

k

k

− +
  

= =    −   

   
= = =    
     

A DI 0
E H

0 I0 0

0uB A
G v M

Iy0 0

 (11) 

Then the descriptor system form of system (10) is given 

by 

22 22 2

2 2

2 21

2

1

2

( ) ( )

( ) ( )

( )
( )

( )

( ) ( ) ( ),

n l k

k

k

t t

t t

t

t

t

t t t

− +
     

=       −      

   
+ +    
     

= + +

A Dz zI 0

0 Id d0 0

0uB A
d

Iy0 0

Hw Gv Md

�

�

[ ] 2

2 22 22 1

2

( )
( ) ( ),

( )

t

t t

t

 
= = 

 

z
y C F C w

d
 (12) 

where C1=[C22 F22]. The detectability of (12) is proven 

in the following lemmas. 

Lemma 1: If the following conditions hold: 

1
rank    

n
s

n l k s
+

  − −
= + − ∀ ∈   

  

I A D

C 0
�  and 

1 1
rank( ) rank( ) ,l k= = −CD D  

then the pair (A22, C22) is detectable. 

Proof: According to 
1 1

rank( ) rank( ) l k= = −CD D  

and (8), we have 

1

11 12 1

21 22

22

rank

rank

n

l k

n l k

l k

s

s

s

−

− +

−

  − −
   
  

 − − −  
  − −  =
  
      

I A D

C 0

I A A D

A I A 0

I 0 0

0 C 0

 

( )22

22

rank 2 .
n l k

s
l k n l k

− +
 −  

= + − = + −  
  

I A

C
 

Since 1rank    ,n
s

n l k s
+

  − −
= + − ∀ ∈   

  

I A D

C 0
�  we 

can ensure the following relationship, 

22

22

rank    
n l k

s
n l k s

− + +
 −  

= − + ∀ ∈  
  

I A

C
�  

and complete the proof. � 

Lemma 2: The descriptor system (12) is completely 

detectable, i.e., 

(i) 
1

rank 2 ,   ,
s

n l k s
+

 −  
= − + ∀ ∈  

  

E H

C
�  

(ii) 
1

rank 2 .n l k
  

= − +  
  

E

C
 

The completely detectable system represents that it has 

neither unstable finite nor infinite output decoupling 

zeros [22,23]. 

Proof: From rank(F22)=k and Lemma 1, we have 

22 2

1

22 22

22

22

rank rank

rank

2    

n k

k

n k

s
s

s
k

n l k s

−

−

+

 − −  
 −     =     
       

 −  
= +  

  

= − + ∀ ∈

I A D
E H

0 I
C

C F

I A

C

�

 

and 

1

22 22

22

rank rank

rank( ) 2 .

n l k

n l k n l k

− +
  

     =     
       

= − + + = − +

I 0
E

0 0
C

C F

F

 

Hence, system (12) is completely detectable. The proof 

of the lemma is finished. � 

Design 
( ) ( )2

1

12 22

n l k p l k− + × − +

+

 
= ∈ 
 

0
K

K F
�  where the 

gain matrix 
12

k k×
∈K � is invertible and 

22

+
=F  

1

22 22 22
( ) .T T−

F F F  Note that 

( )

[ ]

1

1 1

1

22 22

12 22

1 1

22 22 12 12

.

n l k

n k

k

−

−

− +

+

−

+ − −

+

   
= +        

    
= =    

−     

E K C M

0I 0
C F M

0 0 K F

I 0 00

IF C K K

 (13) 
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4. OBSERVER FORMULATION AND DESIGN 

 

The proportional derivative observer for system (12) is 

designed as 

( )
1 1 1

1

1 1 1 1 2

1

1 1 1 2

( ) ( ) ( ) ( )

( )( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ),

t t

t t

t t t

−

−

+ = +

+ + + − +

= + +

E K C H LC

H LC E K C K L y Gv

w E K C K y

�η η

η

 (14) 

where 2n l k− +
∈�η is an auxiliary state of the observer 

and 
2 2

2

ˆ
ˆ

ˆ

n l k− +
 

= ∈ 
 

z
w

d

�  denotes the estimation of w. 

Adding 
1 2

K y�  into both sides of the first equation in 

(12) obtains 

1 1 1

1 2 2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

t t t

t t t

+ = + +

+ − +

E K C w H LC w Gv

K y Ly Md

�

�
 (15) 

Substitute ( )
1

1 1 1 2
ˆ

−

= − +w E K C K yη  into (14) to 

obtain 

1 1 1

2 1 2

ˆ ˆ( ) ( ) ( ) ( )

( ) ( ) ( ).

E K C w H LC w

Ly K y Gv

t t

t t t

+ = +

− + +

�

�

 (16) 

Define 
2

2

ˆ
 

= − =  
 

z
w w w

d

�
�

�
 as the estimation error of 

w. It follows from (15) and (16) that the dynamics of w�  

can be expressed as 

( )1

1 1 1 2

1

1 1 1

1

1 1 2

1 1

1 1 1 12 2

( ) ( ) ( ) ( ) ( )

(( ) ) ( )

( ) ( )

(( ) ) ( ) ( ),

t t t

t

t

t t

−

−

−

− −

= + + +

= + −

+ +

= + − +

w E K C H LC w Md

E K C H NC w

E K C Md

E K C H NC w K d

�� �

�

�

 (17) 

where 1

1 1
( ) .−

= − +N E K C L  As a result, the design rule 

is to choose the gain K12 reducing the effect of d2, and 

the matrix N ensuring the stability of the error dynamics. 

Define the estimation state 1 1 12 2

1 2

2

ˆ

ˆ

ˆ

−

 −
=  

 

y F d
x T T

z
 and 

the estimation error 

121

1 2
( ) ( ),

n l k

t t
−

− +

− 
=  

 

0 F
x T T w

I 0
� �  (18) 

where the dynamics of w�  is given by 

1 1

1 1 1 12 2
( ) (( ) ) ( ) ( )t t t

− −

= + − +w E K C H NC w K d�� � . 

The estimation performance of the developed observer is 

shown in the following theorem. 

Theorem 1: Consider system (4) which satisfies the 

following conditions 

1
rank    

n
s

n l k s
+

  − −
= + − ∀ ∈   

  

I A D

C 0
�  and 

1 1
rank( ) rank( ) ,l k= = −CD D  

and the observer (14). If the unknown input d2 is 

bounded and the matrix 1

1 1 1
(( ) )−

+ −E K C H NC  is 

stabilizing by N, then the estimation error is finally 

bounded in a small region. 

Proof:  Since 
1 1 12 21 1

1 2 1 2

2 2

,

− −

−   
= =   

   

z y F d
x T T T T

z z
 

the estimation error is 

1 12 2

1 2

2

121

1 2

ˆ( ) ( ) ( )

( ).
n l k

t t t

t

−

−

− +

 −
= − =  

 

− 
=  

 

F d
x x x T T

z

0 F
T T w

I 0

�

�

�

�

 

Hence, the term ( )tw�  dominates the estimation 

performance. In the following, we show that the pair 
1

1 1 1
(( ) , )−

+E K C H C  in (17) is detectable. From Lemma 

1 and  

( )

( )

1

2 1 1

1

1 1

1

2 1

1

1

rank

rank

rank

rank ,

n l k

n l k

p l k

s

s

s s

s

−

− +

− +

− +

  − +
  
    

 + − 
=    

  

   − 
=         

 −  
=   

  

I E K C H

C

E K C H

C

I K E H

0 I C

E H

C

 

it follows that 

( )
1

2 1 1

1

1

rank

rank 2 ,     .

n l k
s

s
n l k s

−

− +

+

  − +
  
    

 −  
= = − + ∀ ∈  

  

I E K C H

C

E H

C
�

 

Hence, the pair 1

1 1 1
(( ) , )−

+E K C H C  is detectable and 

there exists the gain matrix N stabilizing 1

1 1
(( )−+ ⋅E K C  

1
).−H NC  Furthermore, in order to satisfy the property 

of disturbance attenuation, choosing a high gain K12 to 

reduce the effect of d2 is recommended. The proof is 

completed. � 

Remark 1: When the matrix F  is full rank, system 

(1) can directly transfer to the descriptor system form 

(12) without the coordinate transformation (8). In this 

special case, the descriptor system form for system (1) is 

described as 

1 1 1 1 1 1

2 1

( ) ( ) ( ) ( ),

( ) ( ),

t t t t

t t

= + +

=

E w H w G u M d

y C w

�
 

where 
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1
,

 
=  
 

x
w

d
 ( ) ( )

1
,

n l n ln + × + 
= ∈ 
 

I 0
E

0 0
�  

1
,

l

 
=  

− 

A D
H

0 I
 

( )
1

,

n l m+ ×
 

= ∈ 
 

B
G

0
�  

( )
1

,
n l l

l

+ × 
= ∈ 
 

0
M

I
�  and 

2
. =  C C F  

Follow the same rule mentioned above to design the gain 

of observer K12 reducing the effect of the unknown input. 

Then design another parameter matrix N to place the 

desired eigenvalues of estimated error dynamics and 

avoid the peaking phenomenon. 

Remark 2: For system (1), the conventional UIO 

observer designs [1-4,9-16] can obtain the perfect 

estimation if the following condition is satisfied: 

rank    .
n

s
n l s

+
  − −

= + ∀ ∈   
  

I A D

C F
�  

The above condition implies that the system with respect 

to the relation between the output and the unknown input 

must be minimum phase. This condition has been altered 

that the pair ( , )A C is detectable in our proposed 

observer. 

 

5. NUMERICAL EXAMPLE 

 

To demonstrate the designed observer, we consider the 

following system: 

1

2

1 2 0 1 1 3

( )1 2 1 0 1 1
( ) ( ) ,

( )1 0 3 3 1 1

1 2 0 2 1 1

d t
t t

d t

−   
   − − − −     = +     − − −  
   

− − −      

x x�  

1 1

2 2

( ) ( )1 0 1 0 0 0
( ) .

( ) ( )0 1 1 1 0 1

y t d t
t

y t d t

      
= +      −      

x  

The invariant zeros of the system between the output and 

the unknown input are 1.7890 and 4.1445 0.3897 .i− ±  

Due to the unstable invariant zero 1.7890, the 

conventional UIO methods [1-4,9-16] can not be 

implemented in the system. Using the linear 

transformations proposed in Section 3, the above system 

can be transformed into the following form: 

1 1 2 2 1
( ) 4 ( ) [0.8 0.8 1.8] ( ) 0.6 ( ) ( ),z t z t t d t d t= − + − + +z�

2 1 2

2

1 1 2

2 2 2

2 0.4 0.2 0.6

( ) 3 ( ) 2.6 1.2 4.6 ( )

3 3.4 1.8 2.4

          [4 4 4] ( ),

( ) ( ) 0.2 ( ),

( ) [0.8944 0.4472 0.8944] ( ) 0.8944 ( ),

T

t z t t

d t

y t z t d t

y t t d t

− −   
   = − + − − −   
   − − −   

+ − −

= −

= − +

z z

z

�

 

where the unknown inputs are set as 
1
( ) 2cos( )d t t=  

and 
2
( ) 0.2sin(5 ) 0.1cos(20 ).d t t tπ= +  Design 

12
3K =  

which places the desired eigenvalues of the observer at 

{ 4, 3, 2 }.i− − − ±  The proposed observer is given by 

1

2

1 33.25 58.5 61.5

2 17.75 24.5 24.5
( ) ( )

2 14.25 29.5 27.5

3 21.0417 37.5833 35.25

         [ 5 3 1 2.5] ( )

        [ 1.1180 5.1430 0.2236 3.1678] ( ),

T

T

t t

y t

y t

 
 − − − − =
 − − − −
 
  

+ − −

+ − −

�η η

 

2

2

2

ˆ ( )
( ) [0 0 0 1.118] ( ),

ˆ ( )

T
t

t y t
d t

 
= + 

  

z

η  

and the estimation state can be attained by 

1 2

2

1 0 0.6 0.2

ˆ1 1 0.4 0.2 ( ) 0.2 ( )
ˆ( ) .

1 0 0.4 0.2 ˆ ( )

1 1 0.4 1.2

y t d t
t

t

 
   − − + =  
 −   
 

− −  

x

z

 

The noise attenuation observer [20] is simultaneously 

simulated. For the same system, the observer [20] can be 

designed as 

316.0110 238.9735 74.0375

223.7300 500.9847 279.2548

31.1998 278.7039 251.5041
( )

339.2302 889.4069 547.1768

265.1693 38.9530 305.1223

143.8446 639.4346 494.5901

239.9735 315.0110 240.

           

tξ

− − −
 −
 −

= 
− −
 −


−

− − −

�

1

2

9735

502.9847 224.7300 502.9847

275.7039 30.7998 278.7039
( )

889.4069 340.2302 887.4069

34.9530 264.8360 36.9530

634.4346 142.8446 635.1013

( )0 0 0 0 0.3333 0
        

( )0 0 0 0 0 0.3333

    

T

t

y t

y t

ξ







− − − 
− −



−   
+   −   

1 1 1 1 2 1
ˆ    ( ),

3 1 1 1 2 1

T

t
− − 

+  − − − − 
d

 

398.1891 983.7861 585.5971
ˆ ( )

103.1360 32.3694 135.5054

983.7861 398.1891 983.7861
( ),

32.3694 103.1360 32.3694

t

tξ

− −
= − −

− − − 
− 

d
�

 

ˆ ( ) 0 0 0 0 1 0
( ) ( ),

ˆ ( ) 0 0 0 0 0 1

T
t

t t

t

ξ
ω

   
= +   

   

x
y  

where ˆ ( )tω  is the estimation of the noise in output 

signals. The eigenvalues of observer are placed at 

{ 15, 12, 10, 8, 4, 3, 2 },i− − − − − − − ±  and the gain suppress-
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ing the disturbances is also three as K12=3 in the 

proposed method above. Using the initial state 

(0) [ 0.2 2 1 1]T= − − −x  and (0) (0)ξ= = 0η in both 

observers, Figs. 1-4 illustrate the responses of the real 

and estimated states in two methods. From these figures, 

the proposed method can obtain better estimation 

responses in the steady state and the disturbance 

attenuation property is evident. Hence, the proposed 

observer is capable of estimating the state when the 

underlying system has the unstable zero and does not 

suffer from the peaking phenomenon. 

 

6. CONCLUSIONS 

 

With respect to an MIMO linear system with the 

unknown input in the state and output equations, this 

paper have developed an observer design method using 

the descriptor system approach. It is shown that the 

proposed proportional derivative observer is able to 

reconstruct the system state under the system with 

respect to the relation between the output and the 

unknown input is nonminimum phase. The robust 

stability of the estimation dynamics can be guaranteed 

and the estimation error is bounded in a small region. 

Simulation results demonstrate that the present observer 

scheme exhibits reasonably good estimation performance 

and avoids the peaking phenomenon. 
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