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Abstract—According to large-page-size and random-
bit-error characteristics, long-block-length Bose–Chaudhuri–
Hochquenghem (BCH) decoders are applied to realize error
correction in NAND Flash memory devices. To accelerate the de-
coding process in an area-efficient architecture, a parallel architec-
ture with minimal polynomial combinational network (MPCN) for
long BCH decoders is presented in this brief. The proposed design
utilizes MPCNs to replace constant finite-field multipliers, which
dominate the hardware complexity of the high-parallel Chien
search architecture. Furthermore, both the syndrome calculator
and the Chien search can be merged by exploiting our MPCN-
based architecture, leading to significant hardware complexity
reduction. From the synthesis results in the 90-nm CMOS tech-
nology, the MPCN-based joint syndrome calculation and Chien
search has 46.7% gate count saving for parallel-32 BCH (4603,
4096; 39) decoder in contrast with the straightforward design.

Index Terms—Bose–Chaudhuri–Hochquenghem (BCH) code,
Chien search, error correction code, NAND Flash memory.

I. INTRODUCTION

NAND Flash memory is one of the fast growing storage
systems because of its nonvolatility, shock resistance,

power efficiency, and random-access capability. For the low-
cost and high-storage-density requirements, the multilevel-cell
technology has been developed for NAND Flash memory de-
vices recently [1], [2]. However, the reliability of NAND Flash
memory devices is significantly degraded by the higher uncer-
tainty of charging and detecting the multiple voltage range in a
single cell. As a result, Bose–Chaudhuri–Hocquenghen (BCH)
[3] codes are applied to provide error correction due to the
random-bit-error characteristic [4], [5].

The conventional BCH decoder contains three major blocks,
i.e., syndrome calculator, key equation solver, and Chien search
[3]. In NAND Flash memory devices, the decoding latency is
dominated by the syndrome calculator and the Chien search
since the large page size demands BCH codes of long block
length. To enhance the decoding throughput, parallel architec-
tures are exploited, but the hardware complexity is significantly
increased, particularly for the Chien search block. The hard-
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ware complexity of the high-parallel Chien search is domi-
nated by the large number of constant finite-field multipliers
(CFFMs). There have been several research for reducing the
complexity of parallel Chien search. In 2004, Chen and Parhi
developed a group matching algorithm (GMA) to share the
common subexpressions among groups of CFFMs with the
same multiplicand in the parallel Chien search block [6]. In
2008, a strength-reduced method was proposed for sharing the
modulo operation with the primitive polynomial f(x) among
CFFMs that contribute to the same error location calculation
[7]. These previous researches focus on the methods for reduc-
ing the complexity of groups of CFFMs. In this brief, however,
we decrease the number of CFFMs to improve hardware effi-
ciency by reformulating the Chien search equation with mini-
mal polynomials. Instead of reducing the complexity of groups
of CFFMs, the proposed design utilizes the minimal polynomial
combinational networks (MPCNs) to replace the CFFMs. The
hardware complexity is significantly reduced since the XOR

gate count requirement of one MPCN is at most m − 1, whereas
that of one CFFM is usually proportional to m2 in GF (2m).

Moreover, a BCH decoder with one-staged pipeline architec-
ture will make the Flash memory controller more convenient to
access the memory cells. The operations of both the syndrome
calculator and the Chien search can be scheduled in different
time slots for NAND Flash memory devices, implying that the
hardware can be shared. Neither GMA nor strength-reduced
methods can be applied for the syndrome calculator and the
Chien search with the same architecture, although they can
be applied for these two blocks individually. Nevertheless,
based on the proposed MPCN-based architecture, the syndrome
calculator and the Chien search can be merged with small over-
head. The overall hardware complexity is significantly reduced.

This brief is organized as follows. Section II gives the
background of conventional parallel Chien search architectures.
The proposed MPCN-based algorithms and architectures for
high-parallelism BCH decoders are presented in Section III.
Based on the proposed methods, Section IV demonstrates the
implementation and comparison results. Finally, Section V
gives a conclusion of this brief.

II. CONVENTIONAL PARALLEL CHIEN

SEARCH ARCHITECTURES

An (N,K; t) BCH code has a block length of N bits and an
information length of K bits. While operating under GF (2m),
it has error correcting capability t with N − K ≤ m × t. Once
error location polynomial Λ(x) is obtained in the decoding
process, a Chien search block shown in Fig. 1 can be used to
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Fig. 1. Conventional Chien search architecture.

exhaustively examine whether Λ(αi) = 0 for i = 0 ∼ N − 1,
where

Λ(αi) =
t∑

j=0

Λjα
(i)j

=
t∑

j=1

Λjα
ij + 1. (1)

Notice that an arbitrary element over GF (2m) is pre-
sented as

∑m−1
i=0 aiα

i with binary coordinate ai due to basis
{α0, α1, . . . , αm−1}. Therefore, Λjα

ij can be expressed as

Pij = Λjα
ij

= (λj,0α
0 + λj,1α

1 + · · · + λj,m−1α
m−1)αij

= pij,0α
0 + pij,1α

1 + · · · + pij,m−1α
m−1 (2)

where {λj,0, λj,1, . . . , λj,m−1} and {pij,0, pij,1, . . . , pij,m−1}
are the coordinates of Λj and Pij , respectively, and

⎡
⎢⎢⎣

pij,0

pij,1

...
pij,m−1

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

αij
0 αij+1

0 · · · αij+m−1
0

αij
1 αij+1

1 · · · αij+m−1
1

...
...

. . .
...

αij
m−1 αij+1

m−1 · · · αij+m−1
m−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

λj,0

λj,1

...
λj,m−1

⎤
⎥⎥⎦. (3)

Notice that binary element αk
l stands for the lth coordinate of

αk. We define ρij as the density of the matrix constructed with
coordinates of αij ∼ αij+m−1, as shown in (3) (i.e., the ratio
between the number of 1s and the number of all entries) [7].
Then, the complexity of an αij-CFFM, i.e., a multiplier with
αij as the multiplicator, is around m × (m − 1) × ρij XOR

gates according to (3).
To improve the decoding efficiency for the long BCH codes,

multiple successive locations can be examined with parallel
Chien search architectures. Fig. 2 depicts two conventional
p-parallel Chien search architectures to shorten the operating
cycles from N to �(N/p)�, where p is the parallel factor.
Fig. 2(a) is the straightforward version from Fig. 1, whereas
Fig. 2(b) is the direct-unfolded version with unfolded factor p
[8], [9]. Both designs have p×t CFFMs and p (t+1)-input m-bit
finite-field adders (FFAs), resulting in a linear dependence of
p for the hardware complexity. The directed-unfolded architec-
ture, which utilizes αi-CFFM to replace αij-CFFM for j = 2 ∼
p, provides lower hardware complexity because density ρi is
much smaller than ρij for i < m. Nevertheless, the critical path
in Fig. 2(b) is (Tmux + p × Tm + Ta), whereas that in Fig. 2(a)
is only (Tmux + Tm + Ta), where Tmux, Tm, and Ta represent
the critical path of the multiplexer, the CFFM, and the FFA,
respectively. The direct-unfolded architecture will lead to p
times longer critical path if the CFFM dominates the delay path.

However, NAND Flash memory devices for next-generation
applications require high-parallelism BCH decoders with large

Fig. 2. Conventional p-parallel Chien search architectures. (a) Straight-
forward. (b) Direct unfolded.

error correcting capacity due to their degraded reliability and
large page size. Either the high hardware complexity in Fig. 2(a)
or the long critical path in Fig. 2(b) damages the area and the
throughput performance of NAND Flash memory devices. In
addition, the hardware complexity of Fig. 2(b) drastically in-
creases in accordance with larger t. To enhance the performance
under the requirements of NAND Flash memory devices, the
MPCN-based architectures are provided in the next section.

III. PROPOSED ALGORITHMS AND ARCHITECTURES

FOR HIGH-PARALLELISM BCH DECODERS

The hardware complexity of the high-parallel Chien search
architecture is dominated by numerous CFFMs. This section
will reformulate the Chien search equation with minimal poly-
nomials and utilize MPCNs for replacing the CFFMs in the
Chien search architecture. In addition, the proposed MPCN-
based Chien search architecture can merge the syndrome cal-
culator with small overhead, leading to significant hardware
complexity reduction.

A. Proposed Parallel Chien Search Scheme

To calculate Λjα
ij with minimal polynomials, the proposed

new Chien search scheme defines an m − 1 degree polynomial
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Tj(x) = tj,0 + tj,1x
1 + · · · + tj,m−1x

m−1, and the relation
between Λj and Tj(x) is defined as

Λj =Tj(x)|x=αj

= tj,0α
0 + tj,1α

j + · · · + tj,m−1α
(m−1)j

=λj,0α
0 + λj,1α

1 + · · · + λj,m−1α
m−1. (4)

From (4), {λj,0, λj,1, . . . , λj,m−1} and {tj,0, tj,1, . . . , tj,m−1}
are viewed as coordinates with bases {α0, α1, . . . , αm−1} and
{α0, αj , . . . , α(m−1)j}, respectively, where

⎡
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After the binary matrix operation in (5),Λj is represented with the
basis from {α0, αj , . . . , α(m−1)j} to {α0, α1, . . . , αm−1}; there-
fore, this operation is called as the jth basis transformer (BT)
BTj . As a result, the coefficients of Tj(x) can be determined as
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⎤
⎥⎥⎦ (6)

where the operation of the inverse matrix in (6) is called as the
jth inverse BT IBTj .

Based on our definitions, Λj can be represented in terms of
Tj(x), and (2) becomes

Pij = Λjα
ij

=Tj(x)|x=αj × (αj)i

=xiTj(x)|x=αj

=Mj(x) × Wj(x) + Dj(x)|x=αj (7)

where Mj(x) is the minimal polynomial of αj and Dj(x)
is the remainder polynomial resulting from dividing xiTj(x)
by Mj(x). Since αj is a root of Mj(x), Dj(αj) is the only
nonzero term in (7). Then, the Chien search equation can be
reformulated as

Λ(αi) =
t∑

j=1

Pij + 1 =
t∑

j=1

Dj(αj) + 1. (8)

As shown in (8), the Chien search can be simply realized
by summing up all the evaluation results of first ∼tth BTs.
Instead of executing summation after the basis transformations,
the addition operation can be moved before the transformation,
leading to fewer transformation operations.

Hence, (9) can be reformulated with the group BT (GBT) as

Λ(αi) =
t∑

j=1

m−1∑
k=0

dj,kαjk + 1

=
mt∑
v=0

⎛
⎝ ∑

∀jk=v

dj,k

⎞
⎠ αv + 1 (9)

where dj,k is the kth coefficient of Dj(x).

Fig. 3. Basic components in Chien search architecture. (a) MPCNj . (b) BTj .
(c) GBT.

Fig. 3 shows the architectures of three basis components,
including the jth MPCN, the jth BT, and the GBT. The jth
MPCN MPCNj shown in Fig. 3(a) executes modulo operation
with divisor Mj(x). It is constructed by the combinational
circuit of the linear feedback shift register with the connection
polynomial Mj(x). Each binary element mk

j in Fig. 3(a) is the
kth coefficient of Mj(x), indicating the wire connection. In the
jth BT shown in Fig. 3(b), each αk

l is a binary element as in
(5) and can be represented whether the wire is connected or
not. Fig. 3(c) illustrates the block diagram of the GBT. The
additions are first executed with all the coefficients of Dj(x)
for j = 1 ∼ t (total mt bits), and the similar operations as a BT
are applied with basis α0 ∼ αmt.

In the proposed MPCN-based parallel-p Chien search archi-
tecture shown in Fig. 4, the coefficients of Λ(x) are applied
to the IBTs for transforming the operating basis. According
to (7)–(9), the transformed values are evaluated with minimal
polynomials for obtaining the Chien search results. All the
multiplexers select the outputs of IBTs in the first cycle and
then select the register data afterward. Searching from the
(N − 1)th to zeroth location, the proposed design checks p
locations at each cycle. In each row, mt-bit data are fed into
a GBT to examine the error locations. An error is found at
the (N + r − p(τ + 1) − 1)th location if the output of the
rth-row GBT is equal to zero at the τ th cycle. In contrast
with that in Fig. 2, our proposed Chien search architecture
utilizes p × t MPCNs to replace p × t CFFMs. Notice that the
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Fig. 4. MPCN-based parallel-p Chien search architecture.

XOR gate count requirement of one MPCN is at most m − 1,
which is much smaller than that of one CFFM. Therefore, it
is area efficient to apply the MPCNs, particularly in the large
parallelism conditions.

B. Joint Syndrome Calculator and Chien Search Architecture

The proposed MPCN-based architecture can merge the syn-
drome calculator and the Chien search in the same hardware
with small overhead. In the BCH decoding process, received
polynomial R(x) is fed into the syndrome calculator to generate
syndrome polynomial S(x) = S1 + S2x

1 + · · · + S2tx
2t−1,

which is expressed as

Sj = R(x)|x=αj

= Mj(x) × Qj(x) + Bj(x)|x=αj

= Bj(αj) (10)

where Bj(x) is the remainder polynomial resulting from divid-
ing R(x) by Mj(x). Consequently, the jth syndrome value can
be calculated with Mj(x).

Fig. 5 illustrates our parallel-p joint syndrome calculator and
Chien search with the MPCN-based architecture. The syndrome
calculator and Chien search phases are determined by the SEL
signal. When the SEL signal is high, the jth syndrome value is
formulated as

Sj =
((

(RN−1x
p−1 + · · · + RN−p−1) mod Mj(x)

)
xp

+(RN−p−2x
p−1 + · · · + RN−2p−1)

)
mod Mj(x))xp

+ · · ·)xp + Rp−1x
p−1 + · · · + R0) mod Mj(x)|x=αj

(11)

The partial remainder stored in the register is multiplied by
xp and accumulated with the received symbols. After all the
received symbols are processed, BTj transforms the accumu-
lated result to the jth syndrome value. In contrast with Fig. 4,
t BTs are applied instead of one GBT in the first row to evaluate
individual syndrome value. Note that the FFA in Fig. 5 is only
a 1-bit operation because each coefficient of R(x) is a binary
value. Therefore, except for the difference between the BT and
the GBT, the overhead of the supporting syndrome calculation
is only p NAND and p × t XOR gates.

Fig. 5. Parallel-p joint syndrome calculator and Chien search with MPCN-
based architecture.

IV. EXPERIMENTAL RESULTS

This section demonstrates the synthesis results for our joint
syndrome and Chien search with the MPCN-based architec-
ture in a 90-nm CMOS technology. Table I demonstrates
the comparison results among the straightforward, direct-
unfolded, GMA-optimized, strength-reduced, and our MPCN-
based methods for the parallel-32 BCH (4603, 4096; 39)
code, which is the shortened code of BCH (8191, 7683; 39).
Moreover, our proposal can be reconfigured for the syndrome
calculation and the Chien search. Except for the direct-unfolded
design, all other designs can reach a 133-MHz operating fre-
quency for NAND Flash applications. Aside from that, if higher
operating frequency is required in the future applications, the
critical path can be shortened with folding techniques. Notice
that both the GMA-optimized and strength-reduced designs
in Table I have the Chien search and the syndrome calcula-
tor separately because CFFMs with common multiplicands or
with sharable modulo-f(x) computations will not concurrently
exist in these two blocks. For example, the GMA-optimized
approach can be applied in Fig. 2(a) to share the computation
of CFFMs in each column since these CFFMs have common
multiplicands during the Chien search phase. In the syndrome
phase, however, the CFFMs with common multiplicands are in
each row. As a result, an extra syndrome calculator is required
to support syndrome values evaluation.

According to the synthesis optimization of the straight-
forward design and the requirement of an extra syndrome
calculator, the gate count savings of GMA-optimized and
strength-reduced designs are less than that in [6] and [7]. The
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TABLE I
SYNTHESIS RESULTS FOR THE JOINT SYNDROME CALCULATOR AND CHIEN SEARCH IN THE PARALLEL-32 BCH (4603, 4096; 39) CODE

Fig. 6. Complexity analysis of joint syndrome calculator and Chien search
for parallel BCH (N , 4096; t) decoder. (a) BCH (4603, 4096; 39) decoder
with different parallel factors. (b) Parallel-32 BCH (N , 4096, t) decoder with
different error correcting capacity.

straightforward design has a gate count of 158.2 K with 21.4%
overhead for supporting syndrome calculation. However, our
proposed MPCN-based Chien search has a 97.8-K gate count
and only requires 4.9% overhead for the syndrome phase sup-
port. As a result, the joint syndrome calculator and Chien search
with the MPCN-based architecture can save 46.7% gate count,
as compared with the straightforward design.

Fig. 6 illustrates the effect of parallel factor p and error
correcting capacity t to the hardware complexity in the joint
syndrome calculator and Chien search among five designs. The
BCH (4603, 4096; 39) decoder with p that ranged from 8 to
64 is analyzed in Fig. 6(a). The gate count of each design is
proportional to p due to the almost unchanged average density
ρavg of CFFMs (or MPCNs) with different p. However, the
proposed design has the smallest area because more MPCNs
take place of CFFMs with larger p, leading to the smoothest
slope (Δcomplexity/Δp). In Fig. 6(b), the parallel-32 BCH
decoder with a 4096-bit information length is discussed under
t that ranged from 3 to 39. The direct-unfolded design only
utilizes α1 ∼ αt-CFFMs, whose average density ρavg is quite
small (in the vicinity of 1/m) while t ≤ m − 1. Therefore, the
complexity of the direct-unfolded design is the smallest while
t ≤ 15 and drastically increases in accordance with larger t.
The slope of our proposed design is the smoothest, indicating
higher gate count saving in accordance with increasing t. As a
result, after replacing CFFMs with MPCNs, as well as applying
the joint syndrome calculator and Chien search architecture, our
proposed design can provide the lowest hardware complexity
to meet both the high-parallelism and error-correcting-capacity
requirements for NAND Flash memory devices.

V. CONCLUSION

This brief has provided a novel MPCN-based parallel archi-
tecture in long BCH decoders for NAND Flash memory devices.

Unlike previous approaches performing CFFMs calculations,
the proposed design has exploited MPCNs to improve the hard-
ware efficiency since the XOR gate count requirement of one
MPCN is at most m − 1, whereas that of one CFFM is usually
proportional to m2. The proposed MPCN-based architecture
can merge the syndrome calculator and the Chien search with
small hardware overhead. In contrast with the straightforward
design for the parallel-32 BCH (4603, 4096; 39) decoder,
the proposed joint syndrome calculator and Chien search has
46.7% gate count saving according to the synthesis results in
the 90-nm CMOS technology.
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