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Abstract—The synergy between exploration and exploitation
has been a prominent issue in optimization. The rise of memetic
algorithms, a category of optimization techniques which fea-
ture the explicit exploration-exploitation coordination, much
accentuates this issue. While memetic algorithms have achieved
remarkable success in a wide range of real-world applications,
the key to successful exploration-exploitation synergies still re-
mains obscure as conclusions drawn from empirical results or
theoretical derivations are usually quite algorithm specific and/or
problem dependent. This paper aims to provide a theoretical
model that can depict the collaboration between global search and
local search in memetic computation on a broad class of objective
functions. In the proposed model, the interaction between global
search and local search creates a set of local search zones, in
which the global optimal points reside, within the search space.
Based on such a concept, the quasi-basin class (QBC) which
categorizes problems according to the distribution of their local
search zones is adopted. The subthreshold seeker, taken as a
representative archetype of memetic algorithms, is analyzed on
various QBCs to develop a general model for memetic algorithms.
As the proposed model not only well describes the expected time
for a simple memetic algorithm to find the optimal point on
different QBCs but also consists with the observations made
in previous studies in the literature, the proposed model may
reveal important insights to the design of memetic algorithms in
general.

Index Terms—Global search, local search, memetic algorithms,
quasi-basin class, subthreshold seeker.

I. Introduction

OPTIMIZATION, finding the optimal element among a
set of feasible ones, is a type of problem commonly

encountered in many fields. Many real-world and theoret-
ical problems can be formulated as optimization problems
and solved by applying or developing various optimization
techniques. Early optimization techniques, such as Newton’s
method, simplex method, conjugate gradient algorithm, and
the like, have been well developed on problems with certain
mathematical characteristics. However, as many real-world
optimization problems are black-box problems of which a
priori problem knowledge is not available, the use of meta-
heuristics started to prevail. Meta-heuristics are generally
population-based algorithms which explore the search space
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stochastically according to some heuristics. As they are not
problem-specific, they have a good chance to perform well
on black-box optimization problems. Evolutionary algorithms,
particle swarm optimizations, ant colony algorithms, and the
like, are some of the renowned meta-heuristics which have
been widely adopted.

The generality of meta-heuristics which provides the wide
applicability also limits the efficiency of meta-heuristics.
When complicated problems are encountered, without taking
advantages of problem-specific information given a priori
or retrieved during optimization, meta-heuristics can merely
deliver mediocre performance. As problem-specific heuristics
can generally take advantages of problem-specific information,
techniques that hybrid general meta-heuristics and problem-
specific heuristics have been developed to provide more effi-
cient optimization techniques for more complicated problems.
These techniques which employ general meta-heuristics as
global search and problem-specific heuristic as local search
are commonly referred to as memetic algorithms (MAs).
With an appropriate coordination, memetic algorithms cannot
only exhibit a good explorative ability as a population-based
global search algorithm does but also deliver a good exploitive
performance as a local search algorithm does. As a result,
memetic algorithms perform better than pure population-
based global search algorithms or stand-alone local search
algorithms. As the research interests and activities of memetic
algorithms thrive, memetic computing has been evolved from
hybridization of global search and local search to hybridization
with adaptation and has the potential to be applied to com-
putational intelligence [1]. Manifold of successful memetic
algorithms in various application domains, ranging from NP-
hard combinatorial problems to non-linear programming prob-
lems, have been reported [2]. Besides the various application
domains mentioned in [2], recent memetic algorithm applica-
tions in Cartesian robot control [3], e-learning systems [4],
image segmentation [5], feature selection [6], mission man-
agement [7], and portfolio selection [8] also demonstrate
the efficacy of memetic algorithms in different application
domains.

Among these memetic algorithms, in addition to the se-
lection of the global search component and the local search
operator, the synergy between global search and local search
has always been one of the key design issues. The design
of most memetic algorithms follows the seminal studies on
memetic algorithms proposed in [9] and [10]. In these studies,
the authors observed that memetic algorithms favor infrequent
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starts and long running time of local search. They also
proposed several renowned strategies for selecting solution
candidates on which the local search operator is applied: the
fitness based selection and the diversity based selection. How-
ever, with the aids of these guidelines, designing a memetic
algorithm for a specific problem still requires considerable
time as the optimal design is not only algorithm specific but
also problem dependent. To cope with this issue, the concept
of systematically adjusting the parameters of local search is
proposed [11]. Although this technique is robust, it does not
guarantee the best performance. Another line of research is
regarding the concept of memes [12]–[14]. In these studies,
the local search algorithms, encoded as memes, can adapt to
the underlying problem and thus improve the efficiency as
the memetic algorithm progresses. This framework is robust
as well as efficient with the expense of the learning cost of
memes.

In spite of the light shed on the design issue of memetic
algorithms by the aforementioned studies, the question of how
one can achieve the optimal design of memetic algorithms on
a specific problem remains. The key to achieve this ultimate
goal apparently include a full awareness of the physics behind
the algorithm and the problem. As theoretical studies can help
to understand the internal mechanism of algorithms, they can
provide important insights to the design issue. Compared to the
progress of theoretical studies on evolutionary computation,
which is still in its infancy [15]–[23], theoretical studies of
memetic algorithms are even scarce. Recent studies [24], [25]
investigated the behavior of simple memetic algorithms on sev-
eral classes of functions. The proposed theoretical models on
the demonstrative classes of functions reaffirmed that param-
eterizing memetic evolutionary algorithms can be extremely
difficult. As these theoretical models are developed according
to different classes of functions, they are capable of depicting
the algorithmic behavior from their respective perspectives on
the adopted classes of functions instead of providing a unified
principle for the design of memetic algorithms.

The concept of basins of attraction [26] provides another
perspective and gives an opportunity to conduct general anal-
ysis on memetic algorithms. In [27] and [28], the search space
is viewed as a union of basins of attraction, and the optimal
allowable local search length of simple memetic algorithms
is theoretically estimated. A similar concept, quasi-basins
defined by the subthreshold seeker, was adopted to prove the
searchability of general functions [29] and to investigate the
subthreshold seeking behavior [30].

In this paper, we aim to establish a theoretical model that
can depict the collaboration between global search and local
search in memetic computation on a wide range of problems.
To achieve this, we propose the concept of local search zones
which are the regions that local search exploits. In this per-
spective, these local search zones are defined by the landscape
of the problem as well as the collaboration between global
search and local search. As local search zones are generally
not easy to assess, we adopt quasi-basins to estimate local
search zones and define the quasi-basin class (QBC) which
categorizes problems by their quasi-basin distributions as the
basis on which memetic algorithms are investigated. Then, we

analyze the performance of the subthreshold seeker, which is
regarded as a representative archetype of memetic algorithms,
to develop a theoretical model for the global-local search
collaboration in memetic computation. The derived theoretical
model can describe how the distribution of local search zones
and the efficiency of the global search algorithm and the local
search algorithm are related to the expected time for a memetic
algorithm to find the optimal solution. Because this model,
empirically verified, is consistent with the observations made
in many previous studies in the literature, it may be considered
valid for representing various memetic algorithms on a wide
range of problems and may give important insights to the
future design of advanced memetic algorithms.

The rest of this paper is arranged in the following manner.
Section II gives a survey on the current progress of analysis on
memetic algorithms and elaborates the need of a general the-
oretical model which can describe the collaboration between
global search and local search in memetic computation on a
broad range of problems. Section III expounds the fundamental
concepts on the analysis of memetic algorithms and provides
the definitions of our framework to form the basis for further
derivation. As a memetic algorithm comprises global search
and local search, we first analyze the global search component
of the subthreshold seeker and discuss how this analysis is
related to the behavior of common global search algorithms
in Section IV. Based on the analysis of global search and
the concept of QBC, we derive and empirically verify the
formula that describes the behavior of the subthreshold seeker
working with local search operators of different efficiency on
various QBCs in Section V. After the empirically verifying
the proposed model, we expound how our model can repre-
sent the general behavior of memetic algorithms and discuss
possible extensions and future work of the proposed model in
Section VI. Finally, we recap the significance of our model
and conclude this paper in Section VII.

II. Background

Designing a memetic algorithm requires not only selecting
a global search mechanism as well as a local search operators
but also establishing a subtle coordination to exhibit the van-
tage of both ends. Hart [9] in his seminal study for designing
efficient memetic algorithms investigated the following four
questions on continuous optimization problems.

1) How often should local search be applied?
2) On which solutions should local search be used?
3) How long should local search be run?
4) How efficient does local search need to be?

In his framework, he noted that the memetic algorithms that
employ elitism will be most efficient with large population
sizes and infrequent local search. He also proposed two
strategies, fitness based selection and diversity based selection,
for selecting solution candidates to apply local search. He
concluded that these two strategies help much. Land [10]
extended Hart’s study to combinatorial domains. In his study,
he adopted steady state genetic algorithms as global search
and proposed a local search potential based strategy in se-
lecting local search candidates. The local search potential
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strategy turned out to be not very useful. Yet, he observed
that his steady state memetic algorithm favored smaller rates
and longer runtime for local search, consistent with Hart’s
study.

Although limited to specific problems, the studies of Hart
and Land gave some insights to the first three questions and
have inspired the successive memetic algorithms in a wide
variety of applications. The concepts of selecting the best or
some qualified individuals for local search which resemble
the fitness based selection have been adopted in [31]–[33].
The steady state memetic algorithm with adaptive local search
has been applied in [34]–[36], while other studies exhibit
the vantage of utilizing the diversity information in their
design of memetic algorithms [37], [38]. Investigations into
the balance between global search and local search for some
applications available in the literature also accord with Hart’s
and Land’s observations [39], [40]. Despite that the accordance
of these results reveals some essential design principles of
efficient memetic algorithms, designing a memetic algorithm
still requires a considerable amount of effort due to the lack of
detailed knowledge on how the key mechanism of memetic al-
gorithms, the synergy between global search and local search,
working on the underlying problem. An interesting technique
of adapting local search intensity in a simulated annealing way
was proposed to cope with the MA parameterizing issue [11].
More robust than the fixed local search intensity setting, this
method still requires a range setting and does not guarantee
the best performance.

In addition to the parameterizing issue caused by using
memetic algorithms to handle different problems, the effi-
ciency of a local search operator is particularly problem
dependent. [41] provided a landscape analysis for memetic al-
gorithms. Following this, the concept of memes [12]–[14] was
proposed. In these frameworks, the local search component is
designed to adapt to the underlying problem as the optimiza-
tion progresses. These meme evolving or learning memetic
algorithms are robust regardless of the underlying problem and
efficient. Recent studies [42], [43] have also proposed several
metrics to assess the improvement of applying a local search
algorithm on a problem.

Furthermore, theoretical analysis has always been a preva-
lent way to provide clues to the design of algorithms. For
continuous problems, convergence analysis is widely adopted
in performance assessment for evolutionary computation [16],
[19], [22]. For discrete problems, the (1+1) evolutionary
algorithm (EA) has been widely adopted in theoretical anal-
ysis on evolutionary algorithms [15], [17], [18], [20], [21],
[23]. The (1+1)-EA is a rather simple algorithm with one
individual and an evolutionary operator flipping each bit of the
individual with a uniform probability. Following these studies,
the theoretical analysis of memetic algorithms starts from the
(1+1)-MA and goes to the (μ+λ)-MA [24], [25]. On three
discrete functions, Sudholt investigated the behavior of the
(1+1)-MA and the (μ+λ)-MA, and these studies reaffirmed
the parameterizing of memetic algorithms is extremely hard.

Theoretical models developed in this way are capable of
providing different perspectives, according to the adopted
classes of functions, to analyze a memetic algorithm. Ref-

erence [44] illustrated that different problems favor different
population sizes, while [45] and [46], which investigated
the effect of recombination operators, provided counter per-
spectives. The issue of such an analysis technique is that
the derived theoretical behavior is naturally confined and
largely determined by the adopted objective functions. As
an undesirable result, the different conclusions obtained from
various theoretical models cannot form a unified guideline to
the design of algorithms.

Another line of analysis involves the concept of basins of
attraction. The basin of attraction of a local optimum is the set
of points in the search space such that a local search process
starts from any member within a basin will eventually find
the local optimum in that basin [26]. In this line of research,
the search space is a union of basins of attraction. References
[27] and [28] adopted this concept to estimate the optimal
local search length. In these papers, basins of attraction in the
search space are categorized into two types, in which target
solutions can or cannot be reached. The optimal local search
length is estimated via acquiring the probability of hitting the
former basins.

A closely related concept, quasi-basin defined by subthresh-
old seeker, was introduced by [29] in investigating searchable
functions in which the No Free Lunch theorem does not hold.
The submedian seeker which starts local search when hitting
a point with a submedian value and turns to do random search
when hitting a point with a supermedian value was considered.
By applying the submedian seeker to functions with a certain
degree of self-similarity, that the functions exhibiting self-
similarity are searchable was proved. Whiteley and Rowe
further proposed the subthreshold seeker, a generalized 1-D
submedian seeker, and investigated its seeking behavior [30].
In their work, the subthreshold seeking behavior, the ratio
of the sampled subthreshold points to superthreshold points,
was used as a performance index. Their theoretical analysis
detailed the conditions under which the subthreshold seeker
could outperform random search and showed that a higher
bit-precision could improve the performance.

Finally, in this paper, we aim to provide a general model
for the collaboration between global search and local search
in memetic algorithms on a broad class of problems. The
proposed model will describe how the expected performance
of a memetic algorithm is related to the efficiency of the
local search operator, the landscape of the problem, and the
collaboration between global search and local search. In order
to achieve this goal, we propose the concept of local search
zones. Local search zones are the regions which local search
prefers and the global optimal point resides in. As generally
local search zones are not easy to assess, we adopt the idea
of quasi-basins to estimate local search zones and define
the QBC to categorize problems according to their quasi-
basin distributions. The subthreshold seeker, taken as a rep-
resentative archetype of memetic algorithms, is analyzed over
different QBCs as a general theoretical model for memetic
algorithms. Thus, the proposed model can depict the essence
of the collaboration between global search and local search in
memetic algorithms on various problems and may shed light
on the design of memetic algorithms.
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III. Quasi-Basin Classes and Subthreshold Seeker

In this section, we introduce the concept of local search
zones and give definitions to the fundamental terminologies
of our framework. The concept of the local search zones is
described based on the formal definitions of the search process
of an algorithm on a problem and the search space viewed by
a search process. Then, based on the concept of local search
zones, we introduce the QBC and the generalized subthreshold
seeker on which the theoretical analysis is based.

A. Local Search Zones

The task to handle an optimization problem is to optimize
a given objective function f : X → Y . For convenience, we
specify our optimization goal as to find a point x∗ ∈ X with
the minimum value y∗ ∈ Y . We assume that both X and Y are
finite sets. Such an assumption makes a practical sense because
optimization problems are generally numerically solved on
digital computers. In this paper, for simplifying the derivation,
we also assume that every function maps different x ∈ X
to different y ∈ Y . In order to formally describe a search
process of an algorithm on a function, we adopt part of the
terminologies defined in [47] as the following definitions.

Definition 1 (Search Process): Given two finite sets X and
Y:

1) A trace of length m is a sequence Tm := ((xi, yi))m1 =
((x1, y1), (x2, y2), . . . , (xm, ym)) ∈ (X × Y)m with dis-
tinct xi. “x ∈ Tm” denotes that x = xi for some
i ∈ {1, 2, . . . , m}. Let T0 be the empty sequence and T �

be the set containing all the traces of a length smaller
than or equal to �.

2) Let AT , where T ∈ T |X |−1, be a random variable over
X satisfying that Prob{AT = x} = 0 for all x ∈ T . An
algorithm A is a collection of such random variables,
i.e., A = {AT | T ∈ T |X |−1}.

3) The search process of A on f , S(A, f ), is a stochastic
process (Xi, Yi := f (Xi)) over X × Y defined by X1 ∼
AT0 and Xk+1 ∼ A(Xi,Yi)k1

.

For generality, we interpret the search space viewed by a
memetic algorithm as a graph. Since a local search algorithm
usually starts from a candidate solution and iteratively moves
to a neighbor solution, the local search algorithm defines the
neighborhood of a candidate solution in the search space
viewed by the memetic algorithm which utilizes it. Thus,
we define the search space viewed by a memetic algorithm
as a graph of which the vertices are the set of points of
X and the edges are the set of pairs of points connected
by the local search algorithm of the memetic algorithm as
follows.

Definition 2 (Search Space): Given a memetic algorithm
MA, a function f , and LS, the local search algorithm adopted
by MA. Let NLS(v) denote the neighborhood of a vertex v

defined by LS. The search space viewed by MA on f can
be represented by a graph G = (V, E), where V (G) := X and
E(G) := {〈vi, vj〉 | vj ∈ NLS(vi), ∀i, j}.

In the rest of this paper, the terms X and V (G) are used
exchangeably. Now, with all these fundamental terminologies,
we can formally define the local search zone as follows.

Definition 3 (Local Search Zone): Given a search process
of a memetic algorithm MA on function f , S(MA, f ), and
LS, the local search algorithm adopted by MA:

1) The local search points of a search space G viewed
by S(MA, f ) are defined as the set of points SLSZ =
{v | E[Pr(Xk+1 = u, u ∈ NLS(v)|v ∈ Tk, u /∈ Tk)] >

0.5, ∀v ∈ V (G)}.1
2) A local search zone LSZ is defined as a maximal subset

in SLSZ such that there exists a path2 between all the
pairs of vertices.

3) The size of local search zones is denoted by |SLSZ|.
By this definition, a local search point is a vertex which if is
visited by MA, MA would tend to visit one of its unvisited
adjacent vertices in the future, and the local search zones are
where the local search points reside. In other words, the local
search zones are where local search prefers when a memetic
algorithm is applied. In our perspective, the distribution of the
local search zones has a great influence on the performance
of a memetic algorithm. As the local search of practical
memetic algorithms favors the points that have high potential
to lead to the optimal point, fitness-relevant and diversity-
relevant criteria are adopted. These criteria are somehow
dynamic, complicated, and difficult to analyze. Abstracting
the exploration behavior of global search and the exploitation
behavior of local search, we consider fitness as the prime
index of the potential to find the optimal point regardless
of the diversity-relevant metrics which are often auxiliary for
diversity maintenance. Thus, the local search zones can be
estimated by zones consisting of qualified high-fitness points.
Based on this way of thinking, we define the QBC to represent
different problem classes which possess different local search
zone distribution. Then, we take the subthreshold seeker as a
representative archetype of memetic algorithms and analyze
its behavior on various QBCs to develop a general theoretical
model for the core mechanism of memetic algorithms.

B. Quasi-Basin Classes

The QBC conceptually defines problem classes according
to the number of local search zones and the size of local
search zones. To define QBC, we first define the quasi-basin
(QB) as follows.

Definition 4 (QB):

1) For any function f , function value βm(f ), defined as
βm(f ) := min

{
argy {| {x ∈ X | f (x) ≤ y} | = m}}, deno-

tes a threshold, and there are m − 1 points with an
objective value less than βm(f ).

2) For any function f , the set that contains all the points
with an objective value less than βm(f ) is defined as
Sm(f ) := {x ∈ X |f (x) ≤ βm(f )}.

3) Given a graph G, for any function f : V (G) → Y , a
quasi-basin QB is defined as a maximal subset in Sm(f )
such that there is a path between all the pairs of vertices.

1The E[] notation indicates the expected value of Pr(Xk+1 = u, u ∈
NLS (v)|v ∈ Tk, u /∈ Tk) over all k ∈ |X | and all possible Tk which containing
v and not containing u.

2A path in a graph is a sequence of vertices such that from each vertex
there exists an edge to the next vertex in the sequence except for the last one.
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As generally the points residing in quasi-basins are better
than the other points in the search space and are favored
by fitness-relevant local search criterion, Sm(f ) conceptually
estimates the set of points residing in the local search zones
with a size m while a quasi-basin QB can be regarded
as a local search zone in the search space. Based on the
fundamental definitions, we define the QBC and the uniform
quasi-basin class (uQBC) in Definitions 5 and 6.

Definition 5 (QBC): Given a graph G and a co-domain Y ,
the corresponding discrete QBC with b distinct quasi-basins
and m subthreshold vertices is defined as

Q(G,Y, m, b) :=

{f : V (G) → Y | Sm(f ) =
b⋃

i=1

QBi,

b⋂
i=1

QBi = ∅,

|QBi| ≥ 1, 1 ≤ i ≤ b} .

Definition 6 (uQBC): Given a graph G and a co-domain
Y , the corresponding uniform discrete QBC with b distinct
quasi-basins and m subthreshold vertices is defined as

Qu(G,Y, m, b) :=

{f : V (G) → Y | Sm(f ) =
b⋃

i=1

QBi,

b⋂
i=1

QBi = ∅,

⌊m

b

⌋
≤ |QBi| ≤

⌈m

b

⌉
, 1 ≤ i ≤ b} .

The QBC defines a class of problems with the points
of m smallest function values distributed among b distinct
quasi-basins. Thus, we can categorize problems according to
their distribution of quasi-basins conceptually mapping to the
distribution of local search zones. The uniform QBC further
restricts the sizes of quasi-basins to be uniform. Note that m is
naturally restricted to be less than or equal to |X | and greater
than or equal to b. b is a positive integer which is less than
the minimum of m and |X | − m.

C. Subthreshold Seeker

Global search and local search of the subthreshold seeker
are coordinated by the threshold θ. A subthreshold seeker
globally searches by sampling the space uniformly at random
(u.a.r.) until it encounters a subthreshold point, a point with
a function value lower than the threshold. When this event
occurs, the subthreshold seeker starts local search to exploit the
quasi-basin, a maximal set of connected subthreshold points,
in which the subthreshold point resides. The local search part
keeps visiting the neighbors of the current vertex until it
could no longer walk on a subthreshold vertex. After local
search in the quasi-basin is done, the subthreshold seeker
continues global search until another subthreshold pointer is
encountered. The subthreshold seeker will continue switching
between global search and local search until the stopping
criterion is met. Fig. 1 illustrates how the subthreshold seeker
proceeds. In Whitley and Rowe’s work, their subthreshold
seeker was applicable only to 1-D functions. In our present
work, we generalize their subthreshold seeker to more dimen-
sions by utilizing the graph representation in the definition of
search space for more general applications.

Fig. 1. Generalized subthreshold seeker.

The notation Ns(x) denotes the set of virtual neighbors of
vertex x defined by the local search parameter s. When s = 1,
all the neighbors of vertex x in G defined by the local search
operator will be visited. In other words, for N1(x), all the
points in the quasi-basin under local search will be eventually
visited. In the rest of this paper, we refer to the exhaustive local
search as the local search with the local search parameter s = 1.
When s > 1, only 1/s of the points in the quasi-basin will be
visited in one local search run. To simulate the effect of this
parameter, we manipulate the local search to have a step size
s. Thus, the virtual neighbors of vertex x are those vertices
who are s distance away from x. Here, s distance refers to the
length of a path consisting s edges on the graph. Note that this
subthreshold seeker does not sample visited points to avoid the
performance declination caused by repeated sampling.

IV. Stochastic Global Search Time

Before we start to analyze the collaboration between global
search and local search in the subthreshold seeker, we first
investigate the behavior of the global search part employed
by the subthreshold seeker. In this section, we theoretically
and empirically analyze the behavior of the global search
part with respect to the number of subthreshold points m and
the number of quasi-basins b. We will derive the expected
number of visited points required by the random search, the
global search part, to find the first subthreshold point. The
expected number of visited points is referred to as the expected
first global search time E(Tθ), where θ is βm(f ). Then, we
will further approximate the expected kth global search time.
The theoretical results will be empirically verified, and the
discussion on the implication of the model will be presented.

A. First Global Search Time

In this section, we estimate the expected number of visited
points for global search to find the first point x with f (x) ≤ θ,
referred to as the first global search time Tθ . The first global
search time can be interpreted in the following manner. Since
θ = βm(f ), the number of points with their function values
less than or equal to θ is m. Let N be the size of X . As
global search is uniform random sampling without repetition,
the search space is of size N and contains m desired points,
the probability for q visited points to contain exactly one
subthreshold point follows the hypergeometric distribution
with parameters N, m, and q

P(X = 1; N, m, q) =

(
m

1

)(
N−m

q−1

)
(
N

q

) .
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Fig. 2. Expected Tθ with respect to m when N = 100. Exp represents the
actual average Tθ over 1000 independent simulation runs. Theo1 represents
the theoretical expected Tθ of non-repeated uniform random sampling, and
Theo2 represents the theoretical expected Tθ of uniform random sampling
that allows us to sample visited points.

The probability to hit a subthreshold point at the qth visited
points is therefore

1

q
P(X = 1; N, m, q) .

Let E(Tθ) be the expected first global search time. We have

E(Tθ) =
N−m+1∑

i=1

i
1

i
P(X = 1; N, m, i)

=
N−m+1∑

i=1

(
m

1

)(
N−m

i−1

)
(
N

i

)

= m

N−m+1∑
i=1

i

N

i−2∏
j=0

N − m − j

N − 1 − j
. (1)

Fig. 2 illustrates the expected value of Tθ with respect to
m when N = 100. In this figure, we compare (1) (the solid
line, Theo1) with N/m (the crosses, Theo2) and the average
first global search time in 1000 independent simulation runs
(the circles, Exp). The N/m is the expected Tθ for allowing
sampling visited points which is obviously an upper bound of
(1). In the figure, we can find that (1) consists of the empirical
result perfectly, while the trend of N/m gradually converges
toward the other two. For non-repeated random sampling, half
of points in the search space are expected to be visited before
finding the minimum point. As m increases, indicating that
Sm(f ) contains more points, time to meet a point in Sm(f )
decreases rapidly regardless of whether or not sampling visited
points is allowed. It indicates that although finding several
specific points in a search space via random search takes a con-
siderable amount of time, finding a point in a small but large
enough set can be attained within a relatively shorter time.

Fig. 3 illustrates the differences among the actual Tθ av-
eraged over 1000 runs, and the two theoretical expected Tθ

in ratio. The circle represents the difference between the
empirical result and N/m in ratio with respect to the empirical
result, and the cross represents that between (1) and N/m.
From this figure we can find that (1) can be approximated
by N/m as it only deviates significantly from (1) when m is

Fig. 3. Difference ratio of the expected Tθ with respect to m when N = 100.
The Exp diff represents the difference ratio between the actual average Tθ

and N/m. The Org diff represents the difference ratio between the theoretical
expected Tθ and N/m.

rather small. As (1) is a complicated formula and difficult to
analyze, we approximate the expected Tθ with N/m.

B. kth Global Search Time

In this section, we further measure the expected time for
global search to find a subthreshold point after k − 1 runs
of local search have been executed. In other words, we
estimate the time for the kth global search. As the local
search frequency and the global search frequency are related
to the landscape of the problem, for simplicity, we derive
the model on the uniform quasi-basin class Qu(G,Y, m, b).
All the problems in this class have their quasi-basin sizes
fixed to �m/b
 or �m/b�. Because each local search run in
a quasi-basin will eventually visit about 1/s of the points
in the quasi-basin, each local search run will visit �m/bs

or �m/bs� points. For convenience of derivation, we adopt
m/bs instead of �m/bs
 or �m/bs� for the number of points
visited by a local search run. For non-revisit search, since the
first global search time is approximated as N/m, when in the
second global search run, there will be N − N/m − m/bs

unvisited points and m − m/bs unvisited subthreshold points,
the time required for the second global search run is

N − N

m
− m

bs

m − m

bs

.

The ith global search time is denoted as Fi, where i is
referred to as the number of global search runs. We have

F1 =
N

m

F2 =
N − F1 − m

bs

m − m

bs

F3 =
N − (F1 + F2) − 2m

bs

m − 2m

bs
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Fk =
N − ∑k−1

i=1 Fi − (k − 1)m

bs

m − (k − 1)m

bs

. (2)

Fig. 4 illustrates the global search time, estimated by (2),
with respect to the number of global search runs for different
distributions of quasi-basins. Fig. 4, with N = 1000, m = 10,
b = 10, and s = 1, represents a case of a scarce small quasi-
basin distribution. In this case, the global search time is large
and does not change much as the number of global search runs
increases. The second case illustrated in Fig. 4 represents a
case of a scarce large quasi-basin distribution with N = 1000,
m = 900, b = 10, and s = 1. The global search time is small
and slightly increases as the number of runs increases. The last
case illustrated in Fig. 4 represents a case of fully uniform
distributed quasi-basins with N = 1000, m = 500, b = 500,
and s = 1. In this case, the global search time is also small
and slightly decreases as the number of runs increases.

As the QBC only defines the number of subthreshold points
and the number of quasi-basins, local search of the sub-
threshold seeker can be considered as stochastic non-repeated
sampling in the set of subthreshold points. Since the minimum
resides in Sm(f ) with m points, for the stochastic non-repeated
sampling, it is expected to sample (m + 1)/2 points before the
minimum point can be found. In the uniform QBC, each quasi-
basin is about the same size, �m/b
 or �m/b�, and a local
search run visits �m/bs
 or �m/bs� of the points in a quasi-

basin. It is expected to require k =

⌈
(m + 1)/2

m/bs

⌉
≈ �bs/2�3 lo-

cal search runs to find the minimum, which implies k = �bs/2�
global search runs are required. Thus, the final global search
time is

Ff =

N −
�bs/2�−1∑

i=1

Fi − (�bs/2� − 1)m

bs

m − (�bs/2� − 1)m

bs

. (3)

We are now ready to calculate the upper bound for the last
global search run. When bs is even, the last global search run
requires

Ff <
bsN − (�bs/2� − 1)m

bsm − (�bs/2� − 1)m

=

(
2bs

bs + 2

)
N

m
−

(
bs − 2

bs + 2

)
. (4)

When bs is odd, the last global search run requires

Ff <
bsN − (�bs/2� − 1)m

bsm − (�bs/2� − 1)m

=

(
2bs

bs + 1

)
N

m
−

(
bs − 1

bs + 1

)
. (5)

The lower bound for the last global search run can be

3For simplicity, we approximate (m + 1)/2 with m/2.

Fig. 4. Global search time with respect to the number of global search runs
when the exhaustive local search is applied. (a) Case of a scarce small quasi-
basin distribution. (b) Case of a scarce large quasi-basin distribution. (c) Case
of fully uniform distributed quasi-basins.

derived as follows:

Ff >
N − ∑k−1

i=1 Fi

m

>
N − N/2

m
=

1

2

N

m
. (6)

Both (4) and (5) indicate that the final global search time
would be no more than twice of the amount of the first global
search. On the other hand, (6) shows that the final global
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Fig. 5. Last global search time divided by the first global search time, Tθ ,
with respect to m when the exhaustive local search is applied.

search time would be greater than half of the amount of the
first global search. Fig. 5 illustrates the last global search time,
Ff , divided by the first global search time, Tθ , with respect to
m when the exhaustive local search is applied. The last global
search times of b = 10 and b = 100, initially increase as m

increases and reach a peak, followed by gradually degradation.
The smaller b is, the smaller m the peak appears at with
a greater peak value. Generally, when the number of quasi-
basins is considerably large, the smaller the last global search
time is. Overall, for N = 1000 the last global search time
is within 0.6 to 1.6 times of Tθ . As indicated in Fig. 4, the
variation of the global search time with respect to the number
of global search runs is approximately linear. Thus, we can
approximate the average global search time as the average of
the first global search time and the last global search time. The
resultant upper bound and lower bound of the approximated
average global search time are then 0.75 and 1.5 times of Tθ .

C. Discussion

Overall, in this section, we can see that the expected global
search time to hit a subthreshold point in local search zones is
inversely proportional to the size of local search zones in the
search space. Because the uniform random search is employed
as the global search component, such results illustrate a
baseline behavior of global search in common definitions. It
can be observed that when the size ratio between local search
zones and the whole search space is very small, the expected
global search time will be immensely long because finding
a local search zone is very difficult. If the ratio is not very
small and permits an acceptable probability to be hit by global
search, the expected global search time will drop dramatically.
In this case, since the size of local search zones is still small,
the local search operator requires a relatively short time to find
the optimum solution.

V. Subthreshold Seeker on QBC

In this section, we formulate the expected evaluation time
for a subthreshold seeker on a Q(G,Y, m, b) as the sum
of expected total global search time and the expected total
local search time. The expected total global search time is the

product of the expected time for global search to enter a local
search zone and the expected number of global search runs.
The expected total local search time is merely the expected
time for local search to find the global optimal points among
the local search zones which is proportional to the size of
the local search zones in the search space. In this manner,
the derived formula can depict how the collaboration between
global search and local search influences the performance of
memetic algorithms. Then, we propose a sampling test scheme
to empirically verify the behavior of the subthreshold seeker
on various QBCs. Finally, the empirical results are illustrated
to validate the proposed theoretical model.

A. Evaluation Time of Subthreshold Seeker

With the global search time ready, we can now estimate the
time to find the minimum point, i.e., the evaluation time T of
subthreshold seeker, with the equation

T =
cN

m

⌈
bs

2

⌉
+

m + 1

2
. (7)

The expected total time over a QBC is considered as the sum
of the expected total global search time, the first term, and the
expected total local search time, the second term. As discussed
in the previous section, it is expected to apply �bs/2� local
search runs in order to find the global optima, and thus, �bs/2�
global search runs.

cN

m
represents the average global time

with c varies between 0.75 and 1.5, and
m + 1

2
corresponds

to the expected time for the local search to find the minimum
among subthreshold points. To derive the m that achieves the
minimum evaluation time, we solve the following equation
with the first derivative of (7)4 to be zero:

T ′ = −bscN

2m2
+

1

2
= 0 . (8)

The solution of this equation is m =
√

bscN. Setting m to
about

√
bscN in (7), the subthreshold seeker can achieve the

minimum evaluation time T around
√

bscN.5 Note that the
total global search time and the total local search time are
near identical when the overall evaluation time is minimum.
The following sections verify (7) with the results obtained by
our experiments.

B. Sampling Test Scheme

For empirical convenience, we implement the simplest case
of QBC, pathwise quasi-basin class (PQBC). PQBC is the
class of functions with a simple path spatial structure and a
distinct integer value in Y = {1, 2, · · · , n}, where n = |X |, on
each vertex. PQBC is formally defined as

Definition 7 (PQBC): Given a finite set Y =
{1, 2, · · · , n} ⊂ N and a simple path G = v1v2 . . . vn,
the pathwise QBC with b distinct quasi-basins and m

subthreshold vertices is defined as Q+(G,Y, m, b).
To investigate the expected subthreshold seeker behavior

over a specific PQBC, we sample functions from a specific

4For convenience, we omit the ceiling.
5The actual value is

√
bscN+0.5, we omit 0.5 as it is a rather small quantity.
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Fig. 6. Pathwise QBC sampler.

PQBC via the PQBC sampler of which the pseudo code
is shown in Fig. 6 to generate functions in the pathwise
QBC with uniform basins and non-uniform basins. Function
UniformPick in Fig. 6 samples the input set uniformly at ran-
dom, returns the sampled value, and removes that value from
the input set. Function Pop outputs the first value of a sequence
and removes the first value from the sequence. The pathwise
QBC sampler separates the input values 1, 2, . . . , n into two
sets: the set with superthreshold points (GT ) and the set with
subthreshold points (ST ) and then uniformly randomly picks
one point from GT and one from ST to construct the basic
sequence of a quasi-basin. After every quasi-basin has its basic
sequence, the next step is to assign all the subthreshold points
to each quasi-basin. When the input boolean parameter Usize

is set to True, the sampler uniformly assigns subthreshold
points to every quasi-basin. Otherwise, each subthreshold point
is assigned to an arbitrary quasi-basin. We then uniformly
randomly pick members in the quasi-basin sequences and GT .
When a quasi-basin sequence is picked, this sequence is as-
signed as the values of next vertices. Fig. 7 illustrates an exam-
ple of functions in the pathwise QBC which consists 20 points
with three quasi-basins containing eight subthreshold points.

In order to empirically verify the time for a subthresh-
old seeker to find the minimum point of a given PQBC
Q+(G, {1, 2, · · · , n}, m, b), we set the subthreshold seeker’s
threshold θ to βm(f ). In the following sections, we verify (7)
with the average time for a subthreshold seeker to find the min-
imum on various PQBCs. For each PQBC, the performance of
the subthreshold seeker is measured by averaging 50 function
instances with 20 independent runs on each function instance.

C. Experimental Results

Fig. 8 compares the average evaluation time for a subthresh-
old seeker with the exhaustive local search (s = 1) and the

Fig. 7. Example of functions belonging to Q+(G, {1, 2, · · · , 20}, 8, 3).

theoretical evaluation time derived by (7) with respect to m

on different pathwise uQBCs with n = 1000 and b = 1, 10, and
250. The solid lines, Ttheo and Ttheo1, indicate the theoretical
evaluation time derived from (7) with c = 1, while the dashed
line Ttheo2 indicates that with c = 1.5. The circle (ls) and the
cross (gs) represent the average total number of sampling used
by local search and global search respectively.

Because there is only one quasi-basin in Fig. 8(a), one
global search is required. The proposed model matches the
empirical result in this case. In Fig. 8(b), the empirical result
matches the proposed model with c = 1.5. Such a situation
may be caused by the significant global search time growth
we observed in Fig. 5. The global search time grows as high
as 1.5 when both b and m are quite small. Fig. 8(c) illustrates
with large b, the subthreshold seeker performs worse than
random search with its evaluation time exceed half of the
search space size. Such a result, consisting with the proposed
model, indicates that when the number of basins are greater
than a quarter of the search space, the problem is unsearchable.
Note that in these three cases, the average total local search
time and the average total global search time also consist with
our theoretical model. The average local search time is about
m/2 while the average global search time matches (1).

Fig. 9 illustrates the evaluation time of a subthreshold seeker
with the exhaustive local search on a non-uniform pathwise
QBCs with n = 1000 and b = 10. Compare the results to
that shown in Fig. 8(b), we can observe that although the
deviations of the empirical results on non-uniform QBCs is
slightly greater than that on uniform QBCs, the two sets of
results basically resemble each other. Because the non-uniform
pathwise QBCs have every basin’s expected size identical, it
can be expected that a subthreshold seeker behave statistically
similarly on non-uniform and uniform QBCs.

Figs. 10 and 11 compare the theoretical optimal evaluation
time with the empirical results with respect to b and n, respec-
tively. In both cases, the exhaustive local search is applied.
The solid lines in both figures indicate the optimal theoretical
evaluation time predicted by (7) with c = 1, and the dashed
line indicates that with c = 1.5. Both figures demonstrate that
the theoretical prediction and the empirical results are in good
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Fig. 8. Time for a subthreshold seeker to find the minimum with respect to
m when (a) n = 1000 and b = 1, (b) n = 1000 and b = 10, and (c) n = 1000
and b = 250. The lines, Ttheo, Ttheo1, and Ttheo2, represent the theoretical
values derived from (7), and the dot, Texp, represents the average time for a
subthreshold seeker to find the minimum on different PQBCs. The average
total sampling counts used by local search and global search are also recorded
as ls and gs, respectively.

agreement, and therefore, (7) is dimensionally validated for
different factors.

Fig. 12 illustrates the evaluation time with respect to m

when non-exhaustive local search components, i.e., s > 1,
are used. In both cases, the solid lines represent the theo-
retical evaluation time predicted by (7) with c = 1.5. These

Fig. 9. n = 1000, b = 10, non-uniform quasi-basin.

Fig. 10. Optimal evaluation time versus b when n = 100. The solid line
indicates the theoretical value predicted by (7) with c = 1, and the dots
indicate the empirical results.

empirical results also well match the proposed theoretical
model (7).

VI. Discussion

In this section, we first explain how the subthreshold seeker
can be regarded as a representative archetype of MAs and how
the theoretical model can depict the general behavior of MAs.
Then, we connect the proposed model to previous related
studies in the literature. Finally, we discuss the extensions and
future work of the proposed model.

A. Subthreshold Seeker as a Representative Archetype of MA

Since the proposed model of the subthreshold seeker on
different QBCs has been validated by the empirical results in
the previous section, in this section, we revisit our framework
and discuss how our theoretical model is representative of
MAs on a broad range of problems. The origin of our
framework is the concept of local search zones. Based on
this concept, the search space viewed by a search process
can be partitioned into local search zones, which are areas
preferred by exploitation, and parts of no interests. Global
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Fig. 11. Optimal evaluation time versus n when b = 10. The solid line
indicates the theoretical value predicted by (7) with c = 1, the dashed line
indicates that with c = 1.5, and the dots indicate the empirical results.

Fig. 12. Evaluation time for subthreshold seekers with a non-exhaustive
local search component (s > 1). (a) n = 1000, b = 10, s = 2, uniform
quasi-basin. (b) n = 1000, b = 10, s = 4, uniform quasi-basin.

search explores the whole space to find a local search zone
for local search to exploit. The size of the local search zones
in the search space affects the time for global search to find a
point in local search zones and the time for local search to find
the optimal solution in local search zones. The number of local
search zones and the efficiency of local search further influence

the required local search runs and global search runs. The
performance of a memetic algorithm is thus determined by the
efficiency of global search, the efficiency of local search, and
the distribution of the local search zones. As the distribution
of local search zones is dictated by the landscape of the search
space and the local search criterion, by assessing the impact of
the distribution of local search zones on the evaluation time,
we can analyze the physics behind the collaboration between
global search and local search on various problem classes.

Fitness-relevant and diversity-relevant metrics are common
local search criteria in practical memetic algorithms. They
form complicated local search zones which are difficult to
measure. As we aim to model the pure collaboration between
global search and local search, we consider the global search
exhibits fair exploration and the local search exhibits fair
exploitation. Hence, the diversity-relevant metrics which are
commonly used to balance the exploration and the exploitation
can be ignored. To build a more comprehensible model, we
adopt fitness values as a representative fitness-relevant local
search criterion. This criterion forms local search zones that
can be referred to as quasi-basins. The QBC, which is accord-
ingly defined, then categorizes all problems according to their
quasi-basin distributions. In this way, our model is capable of
describing the general behavior of memetic algorithms on a
broad range of problems.

Generally, the QBC categorizes all the problems according
to their search space landscape and the local search threshold.
Besides the number of subthreshold points and the number of
the quasi-basins, the QBC does not put any other constraints
on the problems belonging to the same class. In other words,
except that the subthreshold points may tend to gather ac-
cording to the number of quasi-basins, both the subthreshold
points and the superthreshold points of an instance that belongs
to one QBC can be arbitrarily distributed in local search
zones and the rest of the search space, respectively. As the
expected performance of a local search algorithm on a QBC
is calculated over all the possible instances belonging to the
QBC, the local search processes on an instance of a QBC can
be considered virtually as random sequences of subthreshold
points. Thus, the expected performance of a local search gen-
erally would resembles that of a random sampling algorithm.
On the other hand, as the subthreshold points tend to gather
as quasi-basins, a greedy global search may perform worse
than random sampling because it is not likely to discover a
quasi-basin around a discovered quasi-basin. In fact, a random
sampling algorithm may be the perfect explorer on a QBC due
to its full diversity. From this point of view, the subthreshold
seeker which virtually employs random search as its global
search and local search can be considered a representative
archetype of memetic algorithms on QBCs.

The proposed theoretical model manifests and gives expla-
nations to the following facts.

1) Memetic algorithms which perform local search to few
qualified points perform better.

2) The efficiency of local search greatly influences the
evaluation time of memetic algorithms.

3) The physical landscape of a problem greatly influence
the evaluation time of memetic algorithm.
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We can assume that the average global search time to enter
a local search zone is inversely proportional to the size ratio
between local search zones and the search space, while the
average total local search time is proportional to the size
of the local search zones. Putting these two terms together,
we can obtain the “V-shaped” curve which resembles those
derived from (7). This V-shaped curve implies that a good
collaboration between global search and local search should
guarantee a short average global search time to hit local zones
and sufficiently small sizes of local zones for the local search
to exploit. Regarding the influence of the size of local search
zones on the average global search time to find local search
zones and the average time for local search to find the optimal
point, memetic algorithms which have small sized local search
zones will perform better. As mentioned in Section III-A, local
search zones are generally zones consisting of qualified high-
fitness points. A small size of local search zones implies that
local search only be applied to few qualified individuals. This
observation is consistent with the use of elitism in local search
candidate selection and the infrequent local search principle in
quite a number of research works [9], [10], [31]–[33]. It is also
notable that several studies adopt a local search/global search
ratio which is consistent with our theoretical model [36].

In our model, the local search component adopted by the
subthreshold seeker exploits a quasi-basin via visiting the
neighbors of current search point. The local search parameter
of the employed local search operator is connected to how
well a quasi-basin is exploited. Recall that when s = 1, the
exhaustive local search will eventually visit all the points in a
quasi-basin. In this case, the local minimum of a quasi-basin,
which may be the global minimum, will be visited, and thus,
only one local search run for each basin is required. For other
local search parameter greater than one, there are chances for
one local search run to miss the global minimum in a quasi-
basin, and thus, more local search runs on this quasi-basin and
more global search runs to hit this quasi-basin are required.
The cost will be the extra global search time to enter the
quasi-basin again when the algorithm guarantees non-repeated
sampling. Fig. 12 and the factor s in (7) demonstrate the effect
of the degree of exploitation of a basin. Such an effect implies
that a good local search operator ought to fully exploit the
given quasi-basin, at least the local minimum resides in the
quasi-basin should be found, to guarantee a good local search
and global search coordination. This inference is consistent
with the empirical results of those studies [10], [39], [40]
concluding that longer but not excessive local search lengths
are favored in memetic algorithms.

Another notable factor is the number of local search zones
in the search space. Our model illustrates that the number of
global search runs is proportional to this factor. Recall that
we represent the search space viewed by a search process as a
graph composed of the neighborhood defined by the employed
local search algorithm. The size of local search zones is
determined by the local search criterion and the connectivity
formed by the local search operator. Given the same local
search criterion, the local search operator which forms fewer
local search zones will perform better. This suggests that a
good local search operator should be able to find local search

points regardless of the physical landscape of a problem. This
is somehow difficult for naive greedy local search algorithms
to achieve and may require landscape knowledge given by the
user or learned from the search process. However, operators
with this kind of ability to cross the physical landscape of a
problem somehow deviate from the traditional definition of
local searchers. Thus, for typical local search, the number
of local search zones are primarily defined by the physical
landscape of a problem and the local search criterion. The
physical landscape of a problem is usually connected to the
number of niches of a problem. Our model also takes into
account this crucial factor and delineates the relationship
between this factor and the evaluation time. The proposed
theoretical model indicates that for a fair memetic algorithm,
the expected evaluation time should scale at most as the square
root of the number of niches of a problem.

Despite the aforementioned consistency between the pro-
posed model and the elitism based strategy in local search
candidate selection, infrequent local search, long local search
length, and local search/global search ratio, some previous
studies also show a strong connection to our model. In an
investigation on the balance between genetic search and local
search in memetic algorithms for multiobjective permutation
flowshop scheduling [39], the authors examined 132 com-
binations of 11 values of k, which is the maximum num-
ber of examined neighbors of the current solution, and 12
values of pLS , which is the local search probability applied
to the tournament selected individuals. The former factor k

connects to the degree of how well a feasible sub-region
can be exploited, and the second factor pLS connects to the
threshold that triggers local search. The authors found that
the combination of the maximum k value and the minimum
nonzero pLS value achieved the best performance, the lowest
cost of flowshop scheduling, in their experiments. The V-
shaped curve of cost along the axis of the maximum k with
respect to pLS in their Fig. 13 resembles our V-shaped curve
of the evaluation time in Fig. 8. Because the stop criterion of
their experiments is the evaluation of a fixed number of points,
the factor combinations that require less evaluation time to
find the global minimum will have better solution quality, i.e.,
lower cost. This agreement implies that the proposed model
may be adopted to give a theoretical explanation to the internal
working of their multiobjective memetic algorithms.

Another set of intriguing empirical results is presented in
the study of parameterizing local search [11]. In that study,
the authors applied a hybrid approach to the memory cost
minimization problem with various local search parameter
settings. The local search parameter refers to the intensity
of the local search method, a tractable algorithm called code
size dynamic programming post optimization, applied to every
individual in the population. The authors depicted in Fig. 13
in their paper that when a fixed runtime is used, the number of
generations completed decreases rapidly as the local parameter
increases. That the global search time is proportional to the
number of generations implies the curve, indicating the global
search time, resembles the expected Tθ in our Fig. 2. As the
expected global search time is illustrated and the expected
local search time will be proportional to the intensity of local
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search, summing up the expected global search time and the
expected local search time, a V-shaped curve of the expected
evaluation time with respect to the intensity of local search
will be obtained. Fig. 12 in their study illustrates the attained
solution quality, lower cost preferred, versus the setting of
local search intensity. As previously discussed, lower attained
cost in a given fixed time leads to shorter expected time to
find the optimal solution. This figure also resembles the V-
shaped curve of our theoretical model which confirms that the
proposed model is quite applicable to their conclusions.

Although in these two studies, practical memetic algo-
rithms, instead of the subthreshold seeker, are employed and
investigated, the trend of their evaluation time resembles the
proposed model developed based on the subthreshold seeker.
It indicates that our theoretical model is indeed representative
of memetic algorithms as we previously inferred. Another
interesting study is the optimal bounds on finding fixed points
of contraction mappings proved by [48]. In this investigation,
the authors presumed that the expected lower bound of a
randomized algorithm to find the fixed point of a contraction
mapping f : M → M on a finite metric space (M, d) is
�(

√|M|) and proved this bound is valid. In this fixed point
problem, given any point x ∈ M with the d(x, f (x)) the
kth largest, one can find the fixed point with k steps via a
valid deterministic algorithm. Consider the set exploited by the
deterministic algorithm as the subthreshold sub-space which
consists only one quasi-basin and the random sampling process
to find a starting point for the deterministic algorithm as global
search, according to (7), the best size of the subthreshold sub-
space should be �(

√|M|) resulting in an expected optimal
evaluation time of �(

√|M|). Thus, our theoretical model can
also provide a reasonable, theoretical interpretation to this
presumed value �(

√|M|).
Although our model is developed based on the subthreshold

seeker, the subthreshold seeker can be taken as a representative
archetype of memetic algorithms as it employs a fair explorer
as its global search and a fair exploiter as its local search. The
proposed model delineates the general behavior of memetic
algorithms: how the global search behaves with respect to local
search criteria, how the local search behaves with respect to
local search criteria, how the local search criteria coordinate
global search and local search, and how the local search
efficiency and the problem landscape influence the evaluation
time. The preceding paragraphs illustrated the consistence
between our model and various memetic algorithm-problem
complexes studied in the literature, either discrete problems
or continuous problems, validate that our theoretical model
is capable of providing a unified explanation to the physics
behind memetic algorithms.

B. Extensions and Future Work

In our model, we propose the concept of local search
zones and link it to the QBCs. Then, the subthreshold seeker,
which employs random search as global search and local
search, clearly illustrates the collaboration of global search and
local search on various QBCs. In this presentation, estimating
local search zones as quasi-basins, the global search can be
considered as a baseline explorer and the local search can be

considered as a standard exploiter. Thus, the model can reveal
the essential relationship among the performance of memetic
algorithms, the problem class categorized by QBCs, and the
collaboration of global search and local search. In practical
memetic algorithms, not only global searchers are population-
based greedy approaches but also local searchers are greedy
approaches on continuous problems. The local search criteria
constantly depend on the status of the search process and
the corresponding local search zones are difficult to measure.
Although quasi-basins can roughly estimate local search zones,
further studies on local search zones are required if more
accurate models are to be developed. Extending our model
to an instance of algorithm-problem complexes requires much
further investigations into the following scopes.

1) The relationship between local search criteria and local
search zones on discrete problems.

2) The behavior of the population-based greedy global
search on discrete problems.

3) The behavior of the greedy local search on discrete
problems.

4) All the three items in infinite and/or continuous domains.
Here, we discuss the first three scopes via adopting a

memetic algorithm in the present framework. The memetic
algorithm illustrated in Fig. 13 is a modified version of (μ+λ)-
MA adopted in [25]. The algorithm first samples an initial
population of size μ from X , and then in each generation,
generates λ children via the parent selection, mutation, and
local search operations. The mutation operation flips each bit
in x independently with probability 1/� where � is

⌈
log2(|X |)⌉.

If the mutated offspring x′ satisfies the local search criterion,
it undergoes the local search operation. The best μ of the μ+λ

individuals are selected as the survivors of that generation. The
algorithm continues till its stopping criterion is satisfied. The
first problem we confront is that for a local search criterion
that other than a fitness value threshold, we must find a
way to transfer the local search criterion to a fitness value
threshold or the size of local search zones in a way that we can
link the algorithm-problem complex to a QBC. Though most
local search criteria are fitness-relevant and favor elitists, they
are dependent on the current population and dynamic along
generations. Further investigations are required to be devoted
to this issue to provide some proper measurement of the size of
local search zones. However, as the dynamics change slightly
between generations, approximating the resultant size of local
search zones with some statistical techniques may provide
good solutions to this issue.

To manifest how population based greedy searchers perform
on QBCs, the local search criterion of the (μ+λ)-MA is set
the same as the subthreshold seeker. In other words, when
the fitness value of the mutated individual is better than
the threshold value, local search is applied to the mutated
individual. Fig. 14 shows how a (20+20)-MA behaves with
different local search operators on QBCs. The greedy local
search keeps on moving to a better neighbor until no further
move can be made. The exhaustive local search acts identically
as the aforementioned subthreshold seeker does. In Fig. 14(a),
the evaluation time of this (20+20)-MA can be approximated
by the dashed line Ttheo which is (7) with c · s = 3.3. In
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Fig. 13. (μ+λ)-memetic algorithm.

Fig. 14(b), although the evaluation time could not be properly
approximated by (7), the V-shape remains. The triangles, lscnt,
in these two figures represent the number of local search runs.
From these figures, we can find that the applied greedy local
search is much less efficient than the exhaustive search with
its limited total local search time denoted by the circles, ls.
The higher lscnt than the total local search time in the case
of MA with greedy local search suggests revisiting of local
searched points. Note also that in both figures, the memetic
algorithm resembles the global search behavior of random
search with an offset and the greedy local search resembles
the exhaustive search with a degraded gradient. In these two
memetic algorithms, our theoretical model is still capable
of capturing the essence of the collaboration between global
search and local search.

To accurately estimate the evaluation time of an instance
of MA search process, one needs to take into account the
influence of the population size and the exploration ability
limited by its greediness to estimate its expected global
search time and assess the efficiency of local search which
corresponds to the parameter s. Another notable characteristic
is that both memetic algorithms in the two cases perform
worse than the subthreshold seeker on QBCs. This is consistent
with our earlier statement that the random sampling is a
better global explorer than any greedy algorithms on QBCs.
This may seem contrary to the practical memetic algorithms.
However, as the QBC categorizes arbitrary problems according
to the quasi-basin distribution, it does not guarantee that all the
problems within a QBC exhibit a regularity which a greedy
algorithm can take advantages of. To manifest the optimization
characteristics of greedy algorithms, fast convergence versus
degrading diversity, the QBC framework must be extended
to define classes of continuous-like discrete problems. In
our opinion, adopting the concept of discrete Lipschitz class
(DLC) [47] may be a good choice. In [47], the Lipschitz func-
tions, functions with bounded slope, are transferred to DLC to
describe continuous problems in discrete domains. Combining

Fig. 14. Evaluation time for (20+20) memetic algorithms. (a) n = 1024,
b = 10, MA with exhaustive local search. (b) n = 1024, b = 10, MA with
greedy local search.

the DLC and QBC may provide a desired model in discrete
domains that exhibits the characteristics of optimization in
continuous domains.

For continuous problems, further efforts are required to
extend all the analysis from discrete problems to continuous
problems. In continuous domains, both X and Y are infinite
sets. The first question may be how to extend the search space
represented by a graph to fit the continuous scenario. If we can
define the local search zones in a similar manner in continuous
domains, we may start to investigate the behavior of memetic
algorithms based on the modified framework. It may be much
harder to estimate in continuous domains the expected global
search time to enter local search zones, the expected total local
search time to find the optimal solution, and the efficiency
of local search of a given memetic algorithm. Once all these
issues are resolved, an instance of algorithm-problem complex
in continuous domains can be successfully delineated as well
as the performance of a global search algorithm and a local
search algorithm can be measured and compared in continuous
domains. Memetic algorithm designers can thus select their
global search algorithms and local search algorithms and
design the local search criterion by following the guideline
provided by the modified framework. As practical problems
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are generally black-box optimization, a designer with the
aforementioned knowledge must dynamically estimate the
number of local search zones and the size ratio of the local
search zones and the search space to accordingly adjust the
local search criterion in order to achieve the best collaboration
between global search and local search.

Overall, although our model in this paper depicts the core,
general behavior of memetic algorithms, it might potentially be
extended to specific instances of memetic algorithm-problem
complexes. Based on the concept of local search zones, the
expected performance of a memetic algorithm can be assessed
by analyzing the following components individually: the ex-
pected time for a global search algorithm to find a local search
point, the expected time for a local search algorithm to find the
optimal point in the local search zones, and the efficiency of a
local search algorithm. With all the information available, al-
gorithm designers can compare and select proper global search
algorithms and local search algorithms and adopt the optimal
local search criterion on the target problem accordingly. As
designing an optimal memetic algorithm on a given problem
has been the primary goal of memetic algorithms, extending
our model to more practical memetic algorithms may provide
a feasible way to achieve the goal. This may be an interesting
and challenging task in the field of memetic algorithms.

VII. Summary and Conclusion

In this paper, we proposed the concept of local search zones.
Based on this concept, we introduced the QBC to estimate
the local search zones and adopted the subthreshold seeker
as a representative archetype of memetic algorithms in order
to analyze the collaboration between global search and local
search on various quasi-basin classes. The derived theoretical
model was capable of depicting the essence of the collab-
oration between a baseline global searcher and a standard
local searcher. The efficiency of local search algorithms and
the niches of problems were also taken into account in the
proposed model.

The proposed theoretical model indicates that the global
search time to find a point to start local search is inversely
proportional to the size ratio between local search zones and
the search space. The total local search time is proportional
to the size of local search zones. Appropriate settings of
local search criteria should guarantee sufficiently small sizes
of local search zones. As the theoretical model cannot only
well describe the behavior of the subthreshold seeker for the
empirical results but can also capture the general behavior
of various memetic algorithms proposed and observed in the
literature, it can provide a unified explanation to the physics
behind memetic algorithms and may reveal important insights
to the design of memetic algorithms.

Furthermore, the proposed model is also capable of being
extended to describe some specific memetic algorithms. The
concept of local search zones provides an alternative way to
assess the performance of a memetic algorithm by analyzing
individually the performance of global search algorithms and
the performance of local search algorithms. In this way,
memetic algorithm designers may compare and select their

global search algorithms and local search algorithms and adopt
appropriate local search criteria for their problem. As the
research direction of this paper may be a feasible way to
achieve a better memetic algorithm design, along this line,
much effort may be worth putting into further investigations.
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