
2940 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 9, SEPTEMBER 2011

Joint Routing and Spectrum Allocation for
Multi-Hop Cognitive Radio Networks with

Route Robustness Consideration
Chao-Fang Shih, Wanjiun Liao, and Hsi-Lu Chao

Abstract—In this paper, we introduce the concept of “route
robustness” for path selection in multi-hop cognitive radio
networks. We demonstrate that the aggregate throughput and the
robustness of routes determined by the proposed route selection
strategy are superior to existing rate-based selection strategies.
The rationale behind our approach is to guarantee a basic level
of robustness for a set of routes (referred to as skeletons in this
paper). Then, we select some routes from this robust route set
and determine the spectrum to be allocated on each link along
these routes such that the system throughput is maximized. We
also design a polynomial time algorithm for this problem, and
evaluate our proposed mechanism via simulations. The results
show that our proposed algorithm indeed achieves a near optimal
solution of this problem for multi-hop overlay CR networks.

Index Terms—Cognitive radio, routing, robustness, spectrum
allocation.

I. INTRODUCTION

W IRELESS spectrum is a scarce resource. However,
under the fixed spectrum assignment policy widely

used today, most of the spectrum may be underutilized [1].
To solve this problem, Cognitive Radio (CR) [2], [3] was
introduced. CR is a technique which allows secondary users
(SUs) to access the licensed spectrum when no primary users
(PUs) appear on the frequency band (e.g., TV broadcast bands
and some cellular bands) or under the condition that the
normal operation of PUs will not be interrupted ( [4], [5]).
With the support of software defined radio (SDR) technology,
CR devices can observe and sense the environment, identify
spectrum holes, and dynamically adjust its transmission pa-
rameters to better utilize the resource, while not interrupting
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the normal operation of PUs. Accordingly, the channel avail-
ability in CR networks is determined by the presence behavior
of PUs, and may vary with locations, time and frequency
bands. This makes protocol design for CR ad hoc networks
much more challenging, as compared with multi-channel ad
hoc networks which typically operate under a relatively stable
set of available channels.

In this paper, we study the joint routing and spectrum
allocation problem in overlay CR ad hoc networks. Each
SU can access the network using a channel not currently
in used by a PU [4]. Since SUs “temporarily borrow” the
spectrum holes from PUs, in order not to affect the normal
operations of PUs, SUs must return the spectrum once any
of the PUs appears on the channels. As a consequence, the
on-going transmissions of SUs on the current path may be
disrupted due to link disconnections. To tackle this problem,
a typical solution is to perform rerouting and switching to
other channels or links currently available. However, rerouting
usually introduces extra delay and wastes system resources.
Therefore, it is desired to select a “more robust” route that
experiences less frequent interruptions.

Finding a robust route in CR ad hoc networks, while
important, has not attracted much attention in existing work.
Robust routing in traditional networks needs not to consider
the impact of PUs, thus they only concentrate on the problem
of node mobility and strong sudden interference from neigh-
boring nodes (e.g., [6], [7]). Existing work on routing and
channel allocation in CR networks either ignores this issue
(e.g., [8]–[14]), or tackles this problem in single flow scenarios
(e.g., [15]–[17]). The work in [18] is among the very few
which consider this robustness issue in multi-hop multi-flow
environments. The solution is rate-biased, i.e., constructing
routing metrics based on a combination of many factors in-
cluding stability. However, in that work, the proper coefficients
of each factor are hard to determine, and robustness may
not be properly accounted for due to being weighted with
other factors. Without ensuring a basic level of robustness, the
routing path will become disconnected frequently regardless
of how good the other factors are. [19] is another work
which exploits the importance of robustness in routing. The
mechanism designed in that work is mainly for an underlay
CR environment, which is not our focus in this paper.

In this paper, we introduce the concept of “route robustness”
for path selection in multi-hop cognitive radio networks. We
demonstrate that the aggregate throughput and the robustness
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of routes determined by the proposed route selection strategy
are superior to existing rate-based selection strategies. The
rationale behind our approach is to guarantee a basic level of
robustness for a set of routes. Then, we select some routes
from this robust route set and determine the spectrum to be
allocated on each link along these routes such that the system
throughput is maximized. We also design a polynomial time
algorithm for this problem, and evaluate our proposed mech-
anism via simulations. The results show that our proposed
algorithm indeed achieves a near optimal solution of this
problem for multi-hop overlay CR networks.

The rest of the paper is organized as follows. In Sec. II, the
network model and the problem are described. In Sec. III,
the problem is formulated via integer linear programming
and a two-stage mechanism is proposed. In Sec. IV, the
performance of the proposed mechanism is evaluated via
simulations and some design insights are observed. Finally,
the paper is concluded in Sec. V.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

A. Network Model and Assumptions

In this paper, we consider an overlay CR model. Nodes ex-
change information either through a common control channel,
as in [13], or in a distributed manner, as in [20]. In our model,
the network consists of 𝑁 CR nodes, 𝐿 links and 𝐶 orthogonal
frequency bands (channels). 𝐹 S-D pairs of flows are injected
into the network from secondary users (SUs). Each flow is
always backlogged, which means that each link, once assigned
to a flow, is always busy. We assume that all SU nodes have a
common transmission range and a common interference range,
as assumed in [13]. Each node is associated with a channel
pool which contains the set of channels available for this node.
This channel pool may be obtained by sensing the activities
of PUs via such methods as feature detection, ambient power
sensing, and beacon-based methods [4], and here we assume
a perfect sensing result. The condition of each channel may
vary with time, location, and radio spectrum, depending on
the presence behavior of PUs. As a result, the channel pool
associated with adjacent nodes may not be identical. Formally,
let 𝑋(𝑖) denote the list of available channels for node 𝑖. Since
the presence behavior of PUs may vary with frequency bands
and locations, for nodes 𝑖 and 𝑗, 𝑖 ∕= 𝑗, 𝑋(𝑖) and 𝑋(𝑗)
may be different. For each link (𝑖, 𝑗), 𝑋(𝑖) ∩𝑋(𝑗) is called
the available channels on link (𝑖, 𝑗). Each link together with
its associated available channels forms a set of link-channel
pairs. For each link, the capacity on different channels may
be different.

Suppose that the presence probability of PUs on a channel
is accessible from the PHY layer via environment learning.
Therefore, it is reasonable to assume that the probability of
no PUs on a channel for a period of time is available. To
simplify the analysis, we further assume that this probability is
independent among all nodes and over all channels. Note that
this assumption will affect the way we calculate probability
𝑃𝑟𝑟 (which will be introduced in Sec. II-B), which will in turn
affect the calculation of the “skeleton formation” (which will
be introduced in Sec. III-A) when deciding whether the current
route satisfies the robustness constraint or not; it will not affect

Fig. 1. Example multi-hop CR network topology.

the complexity of the algorithm. If the presence probability
of PUs is somehow dependent, the way we calculate the
probability 𝑃𝑟𝑟 (i.e., under this independent assumption) will
under-estimate the robustness of this route (i.e., we may skip
some eligible routes when selecting routes). Therefore, the
route selected by our algorithm will still satisfy the robustness
constraint (but the system aggregate throughput will degrade
somehow).

B. The Importance of Route Robustness

The impact of PU disruption on end-to-end connectivity
for multi-hop communications is more significant than that
in the single hop case. For single hop communications, the
source and destination nodes need only consider local channel
availability. But for multi-hop communications, each pair of
nodes needs to explore the channel availability of the entire
route. For example, consider the simple topology shown in
Fig. 1, in which link (1, 2) is included in the route for the flow
from node 𝑆 to node 𝐷. Suppose that the channel currently
in use on link (1, 2) becomes unavailable, and there are no
available channels on the consecutive links of link (1, 2) (e.g.,
link (𝑆, 1)). Then, even if there are other channels available
on link (1, 2), we may still be unable to reconnect the route by
simply switching to other available channels on link (1, 2). As
a result, we may still need to find a new route (e.g., the route
should go through link (𝑆, 2) because (𝑆, 1) has no available
channels) for this flow. In other words, any broken link on a
route may incur rerouting and information exchange in order
to guarantee the end-to-end connectivity of the entire route.
Since rerouting usually introduces extra delay and resource
wastage, it is very costly to maintain a route which is prone
to link disconnection. Thus, “route robustness” is indeed an
important factor for selecting routes in multi-hop cognitive
radio networks.

Let 𝑃𝑠(𝑖, 𝑗, 𝑐) denote the probability that no PU appears
on channel 𝑐 of link (𝑖, 𝑗) which is currently in use for
transmission. By definition, 𝑃𝑠(𝑖, 𝑗, 𝑐) can be regarded as the
fraction of packets transmitted successfully on channel 𝑐 of
link (𝑖, 𝑗) without being interrupted by spectrum mobility (i.e.,
the presence of PU). For each link (𝑖, 𝑗), the larger the value
of 𝑃𝑠(𝑖, 𝑗, 𝑐), the more the number of packets successfully
transmitted and the more robust the link-channel pair (𝑖, 𝑗, 𝑐).
Let 𝑃𝑟𝑟 denote the robustness degree of route 𝑟, which is
expressed as the product of the values of 𝑃𝑠 of the most robust
channel on each link along route 𝑟, i.e.,

𝑃𝑟𝑟 =
∏

∀(𝑖,𝑗)∈𝑟

max(𝑃𝑠(𝑖, 𝑗, 𝑐)∣𝑐 ∈ {𝑋(𝑖) ∩𝑋(𝑗)}). (1)

Again, we use Fig. 1 to illustrate the concept of 𝑃𝑟𝑟 by the
route going through link (𝑆, 2) and link (2, 𝐷). Along this
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Fig. 2. Example topology with ten CR nodes.

route, there are multiple channels available on each link. The
number associated with each channel indicates the value of
𝑃𝑠 for the link-channel pair. With this setting, the robustness
degree 𝑃𝑟𝑟 of the route for this 𝑆-𝐷 pair is expressed by

max{0.1, 0.9} ×max{0.5, 0.9} = 0.81.

The physical meaning of 𝑃𝑟𝑟 is explained as follows. Con-
sider the scenario in which there are multiple channels on
a link currently in use for an 𝑆-𝐷 pair. By definition, the
likelihood that a PU appears on the most robust channel of
the link is the smallest, and a link is connected only if there
is at least one channel available. Therefore, it is reasonable to
estimate the robustness of a link with the most robust channel
of the link. We refer to the set of the most robust channel on
each link along a route as the “skeleton” of this route. For
example, in Fig. 1, the links with {𝑃𝑠} = {0.9, 0.9} form the
skeleton of the route going through links (𝑆, 2) and (2, 𝐷).
Recall that 𝑃𝑟𝑟 for a route equals the product of the values of
𝑃𝑠 of the skeleton for the route. The higher the value of 𝑃𝑟𝑟,
the more stable (and more robust) this route is. In our problem
setting, the value of 𝑃𝑟𝑟 for each route 𝑟 should be at least
𝑃𝑚, such that the robustness of each route can be maintained
at a certain level. The actual value of 𝑃𝑚 is determined by the
demands of different flows (and different applications). Since
the routes with 𝑃𝑟𝑟 lower than 𝑃𝑚 are too fragile to maintain
the connectivity, they will be excluded as candidate routes for
packet transmissions in our algorithm. We refer to 𝑃𝑟𝑟 ≥ 𝑃𝑚

as the robustness constraint for each 𝑆-𝐷 pair (flow) in the
rest of the paper.

Fig. 2 shows a simple example with 10 CR nodes to demon-
strate the impact of the robustness constraint on the system
performance. The first number on each channel-link pair indi-
cates the rate of the channel-link pair, and the second number
indicates the probability 𝑃𝑠(𝑖, 𝑗, 𝑐). We consider four routes
as follows: (𝑃1) : 𝑆 → 𝑎 → 𝐷, (𝑃2) : 𝑆 → 𝑏 → 𝑐 → 𝐷,
(𝑃3) : 𝑆 → 𝑑 → 𝑒 → 𝐷, and (𝑃4) : 𝑆 → 𝑓 → 𝑔 → ℎ → 𝐷.
The value of 𝑃𝑟𝑟 and the throughput for the flow on each
route are also indicated in Fig. 2 (i.e., the rightmost column
in the figure).

We compare four path selection strategies:

∙ Strategy 1 (robustness-rate rule, with 𝑃𝑚 = 0.8): we
select the route which has the maximum rate, under the
robustness constraint with 𝑃𝑚 = 0.8, i.e., 𝑃𝑟𝑟 ≥ 0.8.

∙ Strategy 2 (robustness-rate rule, with 𝑃𝑚 = 0.5): we
select the route which has the maximum rate, under the

robustness constraint with 𝑃𝑚 = 0.5, i.e., 𝑃𝑟𝑟 ≥ 0.5.
∙ Strategy 3 (effective-rate rule): we select the route

with the maximum effective rate of the bottleneck
link. The effective rate of a link (𝑖, 𝑗) is defined as
the summation of the product of the transmission rate
of a channel 𝑐 and its 𝑃𝑠(𝑖, 𝑗, 𝑐) over all channels
on link (𝑖, 𝑗), i.e., effective rate of link (𝑖, 𝑗) =∑

𝑐∈(𝑋(𝑖)∩𝑋(𝑗)) 𝑟(𝑖, 𝑗, 𝑐) × 𝑃𝑠(𝑖, 𝑗, 𝑐), where 𝑟(𝑖, 𝑗, 𝑐)
is the Shannon capacity of channel 𝑐 on link (𝑖, 𝑗). The
bottleneck link of a route is the link whose effective
rate over all links on the route is the minimum. For
example, the bottleneck link for 𝑃2 in Fig. 2 is (𝑏, 𝑐)
and the effective rate of which is

min{50× 0.8, 50× 0.7, 30× 0.8 + 20× 0.9} = 35.

∙ Strategy 4 (rate-only rule): we select the route with the
maximum rate.

With Strategy 1, 𝑃1 is the only route to be selected since
the constraint is that 𝑃𝑟𝑟 must exceed 0.8. With Strategy 2,
both 𝑃1 and 𝑃2 satisfy the robustness constraint, and 𝑃2 is
selected as it has a higher rate. With Strategy 3, the effective
rate of the bottleneck link for each route is listed as follows
{𝑃1 : 20×0.9 = 18, 𝑃2 : 50×0.7 = 35, 𝑃3 : 90×0.4 = 36,
and 𝑃4 : 100 × 0.3 = 30}. Thus, 𝑃3 is selected due to its
having the largest bottleneck effective rate among all paths.
With Strategy 4, “data rate” is the only factor to consider;
thus 𝑃4 is selected. Note that Strategy 3 and Strategy 4 are
rate-based strategies, as in [18].

We then measure the throughput for the 𝑆-𝐷 pair on each
selected route via simulations, based on the four selection
strategies described above without performing rerouting and/or
rescheduling. In our simulation, the presence behavior of PUs
on each channel-link pair follows a Poisson distribution with
arrival rate 𝜆. The probability 𝑃𝑠(𝑖, 𝑗, 𝑐) is then expressed by
𝑃𝑠(𝑖, 𝑗, 𝑐) = 𝑒−𝜆⋅𝑘⋅𝑡𝑝 , where 𝑡𝑝 is the packet transmission time
for each link-channel pair (𝑖, 𝑗, 𝑐), and 𝑘 is the total number
of packets successfully transmitted over the link-channel pair.
Here we use 𝑘 = 10 in our simulation for demonstration
purpose. Therefore, 𝑃𝑠 is the probability that ten packets will
be transmitted successfully on each link-channel pair. The
simulation results for the four routes in the network shown
in Fig. 2 are summarized in Table I (and the results for a
random topology can be found in our previous work [21]1).
The “average route lifetime” refers to the average of the
maximum time duration that the route remains connected,
and the “effective rate” for each route indicates the routing
metric used by Strategy 3 (i.e., effective-rate rule). As can
be seen, 𝑃𝑟𝑟 properly reflects the robustness degree for each
path. Under this setting, 𝑃1 (with 𝑃𝑟𝑟 = 0.8) is the most
stable path, followed by 𝑃2 (with 𝑃𝑟𝑟 = 0.5). Both 𝑃3 and
𝑃4 are very unstable, due to small values of 𝑃𝑟𝑟, i.e., 0.18
and 0.02, respectively. Fig. 3 plots the average throughput for
the flow traversing each of the four paths shown in Fig. 2.
It depicts that the average throughput for each path decreases
with the presence of PUs as time goes by. Although 𝑃3 and

1The results for the random topology are consistent with those shown in
Table I. Due to space limitations, we will not include those results in this
paper.
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TABLE I
AVERAGE ROUTE LIFETIME OF THE PATHS IN FIGURE 2

𝑃1 𝑃2 𝑃3 𝑃4

𝑃𝑟𝑟 0.81 0.5 0.18 0.02

Effective Rate(Strategy 3) 18 35 36 30

Average Route Lifetime 1.57 0.26 0.08 0.02
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Fig. 3. The throughputs of the paths for the four selection strategies.

𝑃4 have higher initial throughputs, their average throughput
drops very rapidly due to poor robustness. As far as the
aggregate throughput is concerned, 𝑃2 is superior to 𝑃1. Both
𝑃3 and 𝑃4 are very poor in throughput performance. This is
because the “data rate” factor considered in Strategies 3 and 4
has greatly impacted path selection. Ironically, while factoring
in “rate” for path selection in both strategies, the resulting
aggregate throughputs of both paths are very poor due to
choosing unstable paths and resulting in frequent disruption of
flow transmissions on the paths. Note that the effective rates
of 𝑃2 and 𝑃3 are very close (i.e., 35 and 36, respectively).
However, their throughput performance is rather different. This
is due to the fact that 𝑃𝑟𝑟 can directly reflect the difference
(i.e., 0.50 and 0.18, respectively) in performance while the
effective rate of a path cannot. Thus, we learn that ensuring
a basic level of robustness degree in path selection is more
influential on the path performance.

Based on the observation above, we conclude that the trade-
off between robustness and throughput for path selection can
be better demonstrated with a proper setting of 𝑃𝑚 (i.e., 𝑃1
(selected by Strategy 1) vs. 𝑃2 (selected by Strategy 2)), rather
than by using a combined factor of data rate and robustness
in path selection (i.e., Strategy 3) or even not considering
robustness at all (i.e., Strategy 4).

C. Problem Specification

In Sec. II-B, we have demonstrated the importance of route
robustness based on an example multi-hop CR networks. The
challenge now is how to determine the path to route and the
set of channels on each link along the route to use, considering
the channel heterogeneity and network dynamics due to the
presence of PUs in the networks. In what follows, we attempt

to jointly determine routing and spectrum allocation in an
overlay CR network such that the selected route is robust (i.e.,
exceeding a pre-specified value) and the aggregate throughput
is maximized.

III. ROUTE ROBUSTNESS SELECTION ALGORITHM

In this section, we propose a joint route selection and
spectrum allocation algorithm for multi-hop CR networks. We
consider the multi-path scenario for each flow. In our algo-
rithm, routes are determined in two stages. First, the possible
skeleton set for each 𝑆-𝐷 pair in the network is selected
so that the robustness constraint can be satisfied (Skeleton
Formation). Then, the skeleton to use (which is chosen from
the possible skeleton set determined in the first stage) and
the channel to allocate on each link along the route skeleton
are determined such that the system throughput is maximized
(Joint Routing and Spectrum Allocation). Together, the route
to go through and the set of channels to use on the links along
the route for each flow in the network are determined.

A. Skeleton Formation

We first find all possible route skeletons for each 𝑆-𝐷
pair, under the constraints that they are loop-free, and that
they satisfy the robustness constraint. Since the robustness
constraint (i.e., 𝑃𝑟𝑟 ≥ 𝑃𝑚) is related to each skeleton, if
we want to find an optimal solution, we have to examine all
possible skeletons which guarantee the minimum robustness
level of each route. However, enumerating all possible skele-
tons (exponential in number) is computationally expensive.
In other words, if we just formulate one optimal problem
without pre-selection of routes, the optimal problem will
be computationally intractable. Fortunately, the number of
skeletons which satisfies the robustness constraint is relatively
small. Furthermore, we only need to consider the skeletons
which satisfy the robustness constraint, since the route we
look for must have a skeleton which falls within the set of
skeletons which satisfy the route robustness in order to satisfy
the basic robustness level.

We propose a Skeleton Formation scheme, similar to
Breadth-First-Search, to find the skeleton set for each flow
in a hop-by-hop manner. For each flow, the skeleton selection
starts from the source node of the flow, which is the only
end node in the initial skeleton set. For each end node in
the set, all its neighboring nodes which satisfy the robustness
constraints, together with at least one link-channel pair, are
included to the skeleton set. Those skeletons which 1) cannot
be extended any further and 2) form a loop will be purged
from the skeleton set. This process is repeated until either the
destination is reached by all skeletons in the set, or the set is
empty. The pseudo code of the detailed algorithm is shown
in Table II, and the time complexity of skeleton formation is
𝑂(𝐹 ⋅ 𝐶(𝑉 −1) ⋅ 𝑉 𝑉 ), where 𝑉 is the number of nodes, 𝐹 is
the number of flows, and 𝐶 is the number of channels in the
network.

For example, suppose we want to find the skeleton set
(denoted by Ψ) with 𝑃𝑚 = 0.5 for the 𝑆-𝐷 pair in Fig.
1. Initially, Ψ = {𝑆}. Then, since both neighboring nodes
of node 𝑆 (i.e., nodes 1 and 2), together with at least one
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TABLE II
PSEUDO CODE OF SKELETON FORMATION

Skeleton Formation algorithm

Input:Graph 𝐺 with 𝑉 nodes and 𝐸 edges
Sets:𝑠𝑘 𝑙𝑖𝑠𝑡, 𝑛𝑒𝑥𝑡 𝑠𝑘 𝑙𝑖𝑠𝑡.
1: for each flow 𝑓 do
2: put source node 𝑠 into 𝑠𝑘 𝑙𝑖𝑠𝑡
3: repeat
4: for each route 𝑟 in 𝑠𝑘 𝑙𝑖𝑠𝑡 do
5: 𝑣 ← the end node of 𝑟
6: if 𝑣 == destination node 𝑑 then
7: 𝑛𝑒𝑥𝑡 𝑠𝑘 𝑙𝑖𝑠𝑡← 𝑟
8: else
9: remove 𝑟 from 𝑠𝑘 𝑙𝑖𝑠𝑡

10: for each neighbor 𝑢 of 𝑣, each available channel 𝑐 do
11: make a new route 𝑟′ = 𝑚𝑒𝑟𝑔𝑒(𝑟, 𝑣 − 𝑢− 𝑐)
12: if 𝑟′ has no loop and 𝑃𝑟𝑟(𝑟′) ≥ 𝑃𝑚 then
13: 𝑛𝑒𝑥𝑡 𝑠𝑘 𝑙𝑖𝑠𝑡← 𝑟′
14: else
15: delete 𝑟′
16: end if
17: end for
18: end if
19: end for
20: swap 𝑛𝑒𝑥𝑡 𝑠𝑘 𝑙𝑖𝑠𝑡 and 𝑠𝑘 𝑙𝑖𝑠𝑡 /*𝑠𝑘 𝑙𝑖𝑠𝑡 is empty now*/
21: until (𝑠𝑘 𝑙𝑖𝑠𝑡 is empty) or (the destination 𝑑 is reached by all routes

in 𝑠𝑘 𝑙𝑖𝑠𝑡)
22: store 𝑠𝑘 𝑙𝑖𝑠𝑡 for flow 𝑓
23: end for

channel-link pair, satisfy the robustness constraint, the set Ψ
is then updated as follows: Ψ = {𝑆 → 2(0.9), 𝑆 → 1(0.7)}.
Note that skeleton is not included due to its violating the
robustness constraint. We next consider the two end nodes
in Ψ, i.e., nodes 1 and 2. Since 𝑆 → 2(0.9) → 1(0.8),
𝑆 → 2(0.9) → 𝐷(0.9), and 𝑆 → 1(0.7) → 2(0.8), all satisfy
the robustness constraint, and among them, 𝑆 → 2(0.9) →
𝐷(0.9) has reached the destination, the set is then updated as
Ψ = {𝑆 → 2(0.9) → 𝐷(0.9), 𝑆 → 2(0.9) → 1(0.8), 𝑆 →
1(0.7) → 2(0.8)}. Next, we extend the two end nodes in the
set Ψ. This time, 𝑆 → 1(0.7) → 2(0.8) → 𝐷(0.9) has reached
the destination. The other two skeletons, i.e., 𝑆 → 1(0.7) →
2(0.8) → 1(0.8) and 𝑆 → 2(0.9) → 1(0.8) → 2(0.8), while
satisfying the robustness constraint, result in loops. Therefore,
they are purged from the set. Since all skeletons in the set
have reached the destination, the process stops and the final
skeleton set is given by:

Ψ = {𝑆→ 2(0.9) → 𝐷(0.9),

𝑆→ 1(0.7) → 2(0.8) → 𝐷(0.9)}.

B. Truncated Skeleton Formation

As shown in the previous section, the time complexity of
the skeleton formation is exponential. To reduce the time
complexity, we next propose a polynomial time algorithm
called Truncated Skeleton Formation for skeleton formation.
Our approach is that we find all possible skeletons of routes for
each 𝑆-𝐷 pair under the constraints that they are loop-free, the
robustness constraint is satisfied, and the hop count is smaller
than a predefined number 𝑀𝐴𝑋 𝐻𝑂𝑃 . Finding all skeletons
whose hop counts are within a pre-determined 𝑀𝐴𝑋 𝐻𝑂𝑃

can be done in polynomial time. Moreover, since longer routes
(i.e., with a larger hop count) have a lower probability to
be chosen (the selection process will be described later), the
performance degradation will be acceptable if we can choose
a reasonable value of 𝑀𝐴𝑋 𝐻𝑂𝑃 .

Obviously, the value of 𝑀𝐴𝑋 𝐻𝑂𝑃 greatly affects the
performance of Truncated Skeleton Formation, which is 𝑂(𝐹 ⋅
𝐶𝑀𝐴𝑋 𝐻𝑂𝑃 ⋅𝑉 𝑀𝐴𝑋 𝐻𝑂𝑃 ). A larger value of 𝑀𝐴𝑋 𝐻𝑂𝑃
results in higher time complexity and less performance
degradation. Thus, we would like to select the value of
𝑀𝐴𝑋 𝐻𝑂𝑃 that is not too high so that the time complexity
is acceptable, and is not too low so that the performance
will only be degraded slightly. Actually, the skeleton that
will be chosen by the proposed Joint Routing and Spectrum
Allocation algorithm (which will be described in Sec. III-
C) usually has a hop count which is just one or two hops
more than the minimum hop count or may even equal the
minimum hop count. This is because the skeleton with a large
hop count can hardly (i.e., with a very small probability)
satisfy the robustness requirement. Moreover, skeletons with
a large hop count also have a higher probability to introduce
more interference to other routes, leading to lower overall
throughput. Therefore, it is desired to choose routes with
smaller hop counts. To speed up the skeleton formulation, we
want to set a limit on the hop count to ensure polynomial time
complexity while imposing minor impact on the performance.
In what follows, we propose a reasonable, but loose, bound for
the hop count. We will shortly show in the simulation that the
performance with such a setting is very close to the optimal.

The value of 𝑀𝐴𝑋 𝐻𝑂𝑃 for a flow can be determined
by considering the maximum complexity a system can handle.
Alternatively, we can set the value of 𝑀𝐴𝑋 𝐻𝑂𝑃 as the
maximum possible hop count for a route that satisfies the
robustness constraint, i.e., 𝑃𝑚 ≤ 𝛼𝑀𝐴𝑋 𝐻𝑂𝑃 . By taking a
logarithm operation on both sides, the value of 𝑀𝐴𝑋 𝐻𝑂𝑃
can be determined as follows.

𝑀𝐴𝑋 𝐻𝑂𝑃 = ⌈log𝛼 𝑃𝑚⌉, (2)

where 𝛼 represents the estimated value of 𝑃𝑠 for each link-
channel pair. 𝛼 is a positive value smaller than one and can be
expressed in (3), accounting for both the long term and short
term effects of 𝑃𝑠:

𝛼 = 𝐸(𝑃𝑠) + 𝛽𝑆𝑡𝑑(𝑃𝑠), (3)

where 𝐸(𝑃𝑠) and 𝑆𝑡𝑑(𝑃𝑠) are the expected value and the
standard deviation of 𝑃𝑠, respectively, and 𝛽 is a tunable
value. A large value of 𝛽 means the result favors the short term
variation, while a small value of 𝛽 gives more focus on the
long term behavior. The long term effect is captured by 𝐸(𝑃𝑠),
and the short term network dynamic can be described by some
deviation of 𝐸(𝑃𝑠), i.e., 𝑆𝑡𝑑(𝑃𝑠). Note that the values of both
𝐸(𝑃𝑠) and 𝑆𝑡𝑑(𝑃𝑠) can be obtained by a weighted moving
average.

C. Joint Routing and Spectrum Allocation Algorithm

Having selected the skeleton set for an 𝑆-𝐷 pair in the first
stage, we next determine which skeletons and which set of
channels to use on each link along the determined skeletons
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TABLE III
THE ILP FORMULATION FOR JOINT ROUTING AND SPECTRUM

ALLOCATION

Integer Linear Programming Formulation

Variables: 𝑏𝑐(𝑖, 𝑗), 𝑢(𝑓, 𝑘), 𝑎(𝑓, 𝑘).
Constants: 𝑟𝑚𝑎𝑥(𝑖, 𝑗, 𝑐), 𝑅𝑚𝑎𝑥 .
Objective function: max

∑
𝑟(𝑓,𝑘) 𝑎(𝑓, 𝑘).

Constraints:
Integer constraints:

The value of 𝑏𝑐(𝑖, 𝑗) = {0, 1}; The value of 𝑢(𝑓, 𝑘) = {0, 1}
Interference constraints:

∑

𝑖∈𝑇 (𝑗)

𝑏𝑐(𝑖, 𝑗) +
∑

𝑘∈𝑇 (𝑗)

𝑏𝑐(𝑖, 𝑗) ≤ 1,∀𝑗 ∈ 𝑁, 𝑐 ∈ 𝐶

𝑏𝑐(𝑖, 𝑗) +
∑

𝑙∈𝑇 (𝑘)

𝑏𝑐(𝑘, 𝑙) ≤ 1, ∀𝑘 ∈ 𝐼(𝑗), 𝑘 ∕= 𝑖, 𝑘 ∕= 𝑗, and ∀𝑏𝑐(𝑖, 𝑗)

Link capacity constraints:
∑

𝑟(𝑓,𝑘)∈ℜ(𝑖,𝑗)

𝑎(𝑓, 𝑘) ≤
∑

𝑐∈(𝑋(𝑖)∩𝑋(𝑗))

𝑟𝑚𝑎𝑥(𝑖, 𝑗, 𝑐)× 𝑏𝑐𝑖, 𝑗, ∀(𝑖, 𝑗)

Skeleton constraints: (Robustness consideration)

𝑎(𝑓, 𝑘) ≤ 𝑢(𝑓, 𝑘)× 𝑅𝑚𝑎𝑥,∀𝑟(𝑓, 𝑘)
𝑏𝑐(𝑖, 𝑗) ≥ 𝑢(𝑓, 𝑘),∀(𝑖, 𝑗, 𝑐) ∈ 𝑟(𝑓, 𝑘)’s skeleton

for routing. The joint routing and channel assignment problem
for multi-hop wireless network is NP-complete, as shown in
[13]. To solve this problem, we formulate it via an Integer
Linear Programming (ILP) model, the objective of which is to
maximize the system throughput (i.e., aggregate throughput)
in the network. Let 𝑟(𝑓, 𝑘) denote route 𝑘 for flow 𝑓 , and
𝑎(𝑓, 𝑘) denote the data rate of route 𝑟(𝑓, 𝑘). Mathematically,
the objective function is to maximize the summation of 𝑎(𝑓, 𝑘)
for all flows 𝑓 , i.e.,

maximize
∑

𝑟(𝑓,𝑘)

𝑎(𝑓, 𝑘).

Our formulation takes into account the channel heterogene-
ity and network dynamics of CR networks (due to the presence
behavior of PUs). The detailed formulation is summarized in
Table III. The set of constraints for this problem is explained
as follows.

1) Interference Constraint: Let 𝑏𝑐(𝑖, 𝑗) denote the binary
indicator for the assignment of channel 𝑐 on link (𝑖, 𝑗). If
channel 𝑐 is assigned to link (𝑖, 𝑗), 𝑏𝑐(𝑖, 𝑗) = 1; otherwise,
𝑏𝑐(𝑖, 𝑗) = 0. There are two types of interference constraints
that 𝑏𝑐(𝑖, 𝑗) must meet.

∙ Each node cannot receive data from more than one
node on the same channel, and each node cannot
transmit and receive data simultaneously on the same
channel. Mathematically,

∑

𝑖∈𝑇 (𝑗)

𝑏𝑐(𝑖, 𝑗) +
∑

𝑘∈𝑇 (𝑗)

𝑏𝑐(𝑗, 𝑘)≤1,

∀𝑗 ∈ 𝑁, 𝑐 ∈ 𝐶, (4)

where 𝑇 (𝑗) denotes the set of nodes within the
transmission range of node 𝑗.

∙ When a node receives data from another node on
a channel, the other nodes which are located within
the interference range of this receiving node cannot
transmit on the same channel, i.e.,

𝑏𝑐(𝑖, 𝑗)+
∑

𝑙∈𝑇 (𝑘)

𝑏𝑐(𝑘, 𝑙) ≤ 1,

∀𝑘 ∈ 𝐼(𝑗), 𝑘 ∕= 𝑖, 𝑘 ∕= 𝑗, and ∀𝑏𝑐(𝑖, 𝑗), (5)

where 𝐼(𝑗) denotes the set of nodes within the
interference range of node 𝑗.

Note that we consider only one node 𝑘 in 𝐼(𝑗) each time
in (5). Therefore, for any two (or more) nodes, say, 𝑘1 and
𝑘2, which are both located within 𝐼(𝑗), they are allowed to
transmit simultaneously if the following two conditions hold:
i) 𝑏𝑐(𝑖, 𝑗) is equal to 0, and ii) 𝑘1 and 𝑘2 will not interfere
with each other. In addition, since we restrict the value of
𝑏𝑐(𝑖, 𝑗) to be an integer, if there are three (or more) links which
interfere with one another, resulting in a clique in a conflict
graph, there is only one node that is able to transmit. Thus,
the solution space defined by these interference constraints is
always feasible.

2) Skeleton Constraint (i.e., Robustness Consideration):
Based on the skeleton set selected by the skeleton formation
process, we can find many routes for each flow. Now, we
want to determine the route to be used. Let 𝑢(𝑓, 𝑘) denote the
binary indicator for route 𝑟(𝑓, 𝑘). If we choose route 𝑟(𝑓, 𝑘)
to transmit data, 𝑢(𝑓, 𝑘) = 1; 𝑢(𝑓, 𝑘) = 0, otherwise. Recall
that 𝑎(𝑓, 𝑘) denotes the data rate of route 𝑟(𝑓, 𝑘). If we do not
use the skeleton of 𝑟(𝑓, 𝑘), 𝑎(𝑓, 𝑘) equals zero, and if any of
the link-channel pair (𝑖, 𝑗, 𝑐) on route 𝑟(𝑓, 𝑘) is not assigned,
we cannot use the skeleton of this route. Therefore, this leads
to the following two flow constraints:

𝑎(𝑓, 𝑘)≤𝑢(𝑓, 𝑘)×𝑅𝑚𝑎𝑥, ∀𝑟(𝑓, 𝑘), (6)

𝑏𝑐(𝑖, 𝑗) ≥ 𝑢(𝑓 , 𝑘), ∀(𝑖, 𝑗, 𝑐) ∈ 𝑟(𝑓, 𝑘)’s skeleton, (7)

where 𝑅𝑚𝑎𝑥 is a large number used to set up the constraint
(i.e., to ensure 𝑎(𝑓, 𝑘) becomes zero if 𝑢(𝑓, 𝑘) is zero), and it
can be set as the maximum possible throughput that a route
can achieve.

3) Link Capacity Constraint: The total data rates over a
link must not exceed the maximum data rate of all assigned
channels on that link, i.e.,

∑

(𝑓,𝑘)∈ℜ(𝑖,𝑗)

𝑎(𝑓, 𝑘) ≤
∑

𝑐∈𝑋(𝑖)∩𝑋(𝑗)

𝑟𝑚𝑎𝑥(𝑖, 𝑗, 𝑐)×𝑏𝑐(𝑖, 𝑗),

∀(𝑖, 𝑗), (8)

where ℜ(𝑖, 𝑗) is the set of routes which pass through link
(𝑖, 𝑗), and 𝑟𝑚𝑎𝑥(𝑖, 𝑗, 𝑐) is the maximum throughput of channel
𝑐 on link (𝑖, 𝑗).

Note that since we consider an overlay CR network for spec-
trum sharing, SUs and PUs will not co-exist in the network
(otherwise, SUs will interfere with PUs in transmissions).
In addition, our interference constraints guarantee that the
transmissions among SUs will not interfere with one another.
Thus, each flow can use the full capacity of the channels
assigned to it.
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D. Joint Routing and Spectrum Allocation with Polynomial
Time Complexity

The joint routing and spectrum allocation is an NP-complete
problem [13]. To reduce the time complexity, here we propose
a polynomial time algorithm for joint routing and spectrum
allocation. Like the optimal joint routing and spectrum alloca-
tion in Sec. III-C, we determine which skeletons and which set
of channels to use on each link along the determined skeletons
for routing in our heuristic. Here, instead of solving the Integer
Linear Programming problem described in Sec. III-C, we relax
the integer constraints of 𝑏𝑐(𝑖, 𝑗) and 𝑢(𝑓, 𝑘), and solve the
relaxed Linear Programming problem iteratively. Since the
iterative Linear Programming is shown to be near optimal in
[13], it follows that our algorithm is a near-optimal solution
with polynomial time complexity.

1) Iterative Linear Programming: The iterative Linear
Programming algorithm works as follows. Initially, for all
channels 𝑐 on link (𝑖, 𝑗) and all skeletons (i.e., the re-
sulting skeleton sets from skeleton formation), 𝑏𝑐(𝑖, 𝑗) and
𝑢(𝑓, 𝑘) are marked as undetermined. In each iteration, Linear
Programming is first applied; then, in the result of Linear
Programming, among all the undetermined 𝑢(𝑓, 𝑘), the 𝑢(𝑓, 𝑘)
whose value is one is marked as determined; among all
the undetermined 𝑢(𝑓, 𝑘) whose value is less than 1, the
𝑢(𝑓1, 𝑘1) with the largest corresponding throughput 𝑎(𝑓1, 𝑘1)
is selected. If the value of the selected 𝑢(𝑓1, 𝑘1) is 0, that
means all the values of 𝑢(𝑓, 𝑘) are either 1 or 0; otherwise,
we set the value of 𝑢(𝑓1, 𝑘1) to 1 and mark 𝑢(𝑓1, 𝑘1) as
determined. By setting the value of 𝑢(𝑓1, 𝑘1) to 1, according
to all the constraints in Sec. III-B, we will have to set the
values of other 𝑏𝑐(𝑖, 𝑗) and 𝑢(𝑓, 𝑘) to 1 or 0. We assign all
these values, mark them as determined, and then apply Linear
Programming again with the new values of 𝑏𝑐(𝑖, 𝑗) and 𝑢(𝑓, 𝑘)
serving as inputs. After all 𝑢(𝑓, 𝑘) have been set to 1 or 0, we
repeat the same procedure to 𝑏𝑐(𝑖, 𝑗). When all 𝑏𝑐(𝑖, 𝑗) and
𝑢(𝑓, 𝑘) become 1 or 0, the algorithm stops. The pseudo code
of the iterative Linear Programming is summarized in Table
IV.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algo-
rithm via simulations based on an optimization tool called
LINGO together with a C++ simulator. In each simulation,
the location of the nodes, the source and destination pairs,
and the availability channel pool of each node are randomly
determined. Each setting is run on 100 randomly generated
topologies.

A. Comparison of Optimal Result and Polynomial Time Com-
plexity Result

We compare our polynomial time complexity result with
the optimal result based on a 50 × 50, 20-node topology
as shown in Fig. 4. The optimal result is obtained with the
“skeleton formulation” and the “joint routing and spectrum
allocation algorithm,” while the polynomial time complexity
result is obtained with the “truncated skeleton formation” and
the “joint routing and spectrum allocation with polynomial
time complexity.” The value of 𝑃𝑠 is randomly selected over

TABLE IV
PSEUDO CODE OF POLYNOMIAL TIME JOINT ROUTING AND SPECTRUM

ALLOCATION

Iterative Linear Programming

Variables:𝑏𝑐(𝑖, 𝑗), 𝑢(𝑓, 𝑘)
1: while there is 𝑢(𝑓, 𝑘) whose value is not determined do
2: Apply the Linear Programming
3: 𝑚𝑎𝑥 = 0,𝑚𝑎𝑥 𝑖𝑑 = (0, 0)
4: for all the undetermined 𝑢(𝑓, 𝑘) do
5: if 𝑢(𝑓, 𝑘) == 1 then
6: set 𝑢(𝑓, 𝑘) to 1, mark 𝑢(𝑓, 𝑘) as determined
7: else if 𝑎(𝑓, 𝑘) > 𝑚𝑎𝑥 then
8: 𝑚𝑎𝑥 = 𝑎(𝑓, 𝑘), 𝑚𝑎𝑥 𝑖𝑑 = (𝑓, 𝑘)
9: end if

10: end for
11: if 𝑚𝑎𝑥 == 0 then break
12: else
13: set 𝑢(𝑚𝑎𝑥 𝑖𝑑) to 1, mark 𝑢(𝑚𝑎𝑥 𝑖𝑑) as determined
14: determine other 𝑏𝑐(𝑖, 𝑗) and 𝑢(𝑓, 𝑘) according all the constraints
15: end if
16: end while
17: repeat
18: line 1 to 16 for 𝑏𝑐(𝑖, 𝑗) and select the largest 𝑏𝑐(𝑖, 𝑗) each time
19: until all 𝑏𝑐(𝑖, 𝑗) are determined

Fig. 4. Comparison of optimal and heuristic results.

[0.50, 0.99]. Fig. 4 shows the average system throughput. As
can be seen, the higher the 𝑃𝑚, the lower the average system
throughput. This is because when 𝑃𝑚 increases, the number
of skeletons (routes) that can satisfy 𝑃𝑚 is reduced, demon-
strating the trade-off between throughput and robustness.

We next observe the impact of the value of 𝑀𝐴𝑋 𝐻𝑂𝑃
on the performance. In Fig. 4, the larger the value of
𝑀𝐴𝑋 𝐻𝑂𝑃 selected, the better the throughput performance.
However, no matter how large the 𝑀𝐴𝑋 𝐻𝑂𝑃 we choose,
there is always a “performance gap” between the heuristic
results and the optimization results. This “performance gap”
is introduced by the iterative Linear Program, and there is
no way to overcome this problem even if we select a larger
𝑀𝐴𝑋 𝐻𝑂𝑃 . Fig. 4 also shows the normalized results (i.e.,
the curves denoted “(N)”) with respect to the optimal ones.
With an appropriate value of 𝑀𝐴𝑋 𝐻𝑂𝑃 (𝐻 ≥ 4), the
normalized ratio can exceed 0.8. It can also be seen that the
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TABLE V
RELATIONSHIP BETWEEN THROUGHPUT AND TIME COMPLEXITY

Topology with a larger hop count

Hop count Average throughput Time complexity level

3 0.00 ∼ 103

4 0.30 ∼ 104

5 1.76 ∼ 105

6 1.95 ∼ 106

Topology with a smaller hop count

Hop count Average throughput Time complexity level

1 37.37 ∼ 101

2 73.51 ∼ 102

3 84.70 ∼ 103

4 85.83 ∼ 104

way we estimate 𝑀𝐴𝑋 𝐻𝑂𝑃 leads to a reasonable upper
bound. For example, the value of 𝑀𝐴𝑋 𝐻𝑂𝑃 given by (2)
for 𝑃𝑚 = {0.5, 0.6, 0.7, 0.8, 0.9} is {5, 5, 5, 4, 4}. Note that
with 𝐻 = 5, 𝐻 = 6, and some other larger values, which are
not shown in the paper due to space limitations, the results
are almost the same as that with 𝐻 = 4 because routes
with hop counts larger than 4 are seldom chosen under our
topology setting. Thus, {5, 5, 5, 4, 4} is a reasonable setting
for 𝑀𝐴𝑋 𝐻𝑂𝑃 in this case.

B. Balance Between Performance and Time Complexity

In the previous discussion, we consider the optimal case
in which the activities of all PUs will not change during the
process of finding all possible routes. Thus, a larger value of
𝑀𝐴𝑋 𝐻𝑂𝑃 results in better performance. This may not be
the case if the selection process lasts much longer. While the
optimal algorithm serves as a performance upper bound so we
can understand how much we sacrifice in performance in order
to gain lower time complexity, the proposed polynomial time
algorithm is able to reduce the processing time and therefore
is a more practical solution. Here, we further propose a way to
select a value of 𝑀𝐴𝑋 𝐻𝑂𝑃 which strikes a good balance
between the performance and time complexity.

1) The Selection of 𝑀𝐴𝑋 𝐻𝑂𝑃 : Since no matter how
large the value of 𝑀𝐴𝑋 𝐻𝑂𝑃 is chosen, there is always
a “performance gap” between the polynomial time results
and the optimal results. Moreover, the value of 𝑀𝐴𝑋 𝐻𝑂𝑃
greatly affects the time complexity of our polynomial time
complexity algorithm. The selection of 𝑀𝐴𝑋 𝐻𝑂𝑃 greatly
affects the tradeoff of performance and time complexity.

Selecting routes with a smaller hop count enjoys many
benefits. Since each hop in a route may become the bottleneck
of the throughput, the route with a smaller hop count will
have i) a higher probability to achieve larger throughput, ii) a
higher probability to satisfy 𝑃𝑚, and iii) a lower probability
to generate interference to other routes. However, small-hop-
count routes have a smaller probability to reach the desti-
nation. Thus, here we introduce 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑖𝑛 ℎ𝑜𝑝, which
is the minimal hop count among all routes which are loop-
free, have no self-interference, and satisfy 𝑃𝑚. Although
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑖𝑛 ℎ𝑜𝑝 may be a good choice, we still need
to have an upper bound on the hop count to avoid the

case that the value of 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑖𝑛 ℎ𝑜𝑝 is too large. It
is counter-productive to select a very large hop count since
the throughput improvement that can be achieved is indeed
very minor. For example, Table V shows the relationship
between the throughput performance and time complexity
level of two different topologies: one with a larger hop count,
and the other with a smaller hop count. As shown in Table
V, it will be good to select the hop count with which the
throughput starts to converge (e.g., from hop count=1 to hop
count=2, the throughput can be improved by about 36 units
with low time complexity) in the topology with a smaller hop
count. However, in the topology with a larger hop count, it
will only be a waste of time to select the hop count with
which the throughput starts to converge since the throughput
improvement is very small but the time complexity is very
high (e.g., from hop count=4 to hop count=5, the throughput
can only be improved by about 1.5 units with high time
complexity). Here, we simply use the result described is
Sec. III-B-(1) as our time complexity bound. Based on the
discussion above, the selection rule is given by:

𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑜𝑝 = min(𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑖𝑛 ℎ𝑜𝑝,
log𝑃𝑚

log𝛼
). (9)

By substituting 𝑀𝐴𝑋 𝐻𝑂𝑃 with 𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑜𝑝 in the Trun-
cated Skeleton Formation algorithm, we can obtain the re-
sult. Note that the value of 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑖𝑛 ℎ𝑜𝑝 automatically
reflects the three factors which may affect the selection of
maximum hop count mentioned in Sec. IV-C-(1), and the time
complexity bound we used will be affected by the value of 𝑃𝑚

and the distribution of 𝑃𝑠.
2) Simulation Results: The simulation results in Fig. 5

show that our selection rule works well. The topology used
in Fig. 5(a) is a 50 × 50 network with 20 nodes, and in
Fig. 5(b), a 100 × 100 network with 80 nodes. Fig. 5(c) is
a special topology where we separate the source nodes and
the destination nodes apart as much as possible. The average
throughputs of our selection rule, which is denoted by “S” in
the figures, always approach the best performance among all.
In Figs. 5(a) and 5(b), the selection rule adaptively chooses
the route with a smaller hop count when 𝑃𝑚 grows larger, and
chooses a larger hop count when the topology grows larger.
In Fig. 5(c), the throughput improvement is very small and
becomes negligible when the selected hop is equal to the time
complexity bound (𝑀𝐴𝑋 𝐻𝑂𝑃 ). This also demonstrates
that the time complexity bound is reasonable.

V. CONCLUSION

In this paper, we study the joint routing and spectrum
allocation problem in multi-hop cognitive radio networks.
We take into account the channel heterogeneity property and
the channel dynamics of CR networks. We demonstrate that
route robustness greatly impacts system performance. We then
propose an optimal solution to jointly determining which
routes to use and how to allocate spectrum on each link along
the routes such that the system throughput is maximized. The
rationale behind our solution is to guarantee a basic level of
robustness for a set of routes, based on which routes are
selected and the channel on each link along the routes is
allocated. We also propose an algorithm with polynomial time
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(a) For a network with 50× 50, 20 nodes
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(b) For a network with 100× 100, 80 nodes

(c) For a special topology

Fig. 5. Simulation results for average throughput and selected hop count of
selection rule.

complexity. The performance of the proposed mechanism is
evaluated via simulations. The results show that the solution
obtained by the polynomial time complexity algorithm is near
optimal and can achieve a good balance between performance
and time complexity.
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