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We study scattering of higher spin closed string states at arbitrary mass levels from
D-particle in the Regge regime. We extract the complete infinite ratios among high-energy
amplitudes of different string states in the fixed angle regime from these Regge string scat-
tering amplitudes. In this calculation, we have used an identity proved recently based on
a signless Stirling number identity in combinatorial theory. The complete ratios calculated
by this indirect method include a subset of ratios calculated previously by direct fixed angle
calculation [C. T. Chan, J. C. Lee and Y. Yang, Nucl. Phys. B 764 (2007), 1]. Moreover,
we discover that in spite of the non-factorizability of the closed string D-particle scattering
amplitudes, the complete ratios derived for the fixed angle regime are found to be factorized.
These ratios are consistent with the decoupling of high-energy zero norm states calculated
previously.

Subject Index: 129

§1. Introduction

Recently high-energy, fixed angle behavior of string scattering amplitudes?) )
was intensively investigated for massive higher-spin string states at arbitrary mass
levels. Y12 The motivation was to uncover the fundamental hidden stringy space-
time symmetry. An important new ingredient of this calculation was the zero-norm
states (ZNS)13)’15) in the old covariant first quantized string spectrum, in particular,
the identification of inter-particle symmetries induced by the inter-particle ZNS'3)
in the spectrum. An infinite number of linear relations among high-energy fixed an-
gle scattering amplitudes of different string states at each fixed but arbitrary mass
levels can be derived. Moreover, these linear relations can be used to fix the ra-
tios among high-energy scattering amplitudes of different string states at each fixed
mass level. On the other hand, 2D discrete zero-norm states were also shown'? to
carry the spacetime wq, symmetry charges of toy 2D string theory. Furthermore,
in the high-energy limit, these discrete zero-norm states approach®-? the discrete
Polyakov positive-norm states which generate the well-known w., symmetry of the
2D string.'9)18) This strongly suggests that the linear relations obtained from zero-
norm states are indeed related to the hidden symmetry of the 26 dimensional string.

The calculation above was extended to scatterings of bosonic massive closed
string states at arbitrary mass levels from D-brane in 19) and 20). The scattering
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of massless string states from D-brane was well studied in the literature and can be
found in 21). Since the mass of D-brane scales as the inverse of the string coupling
constant 1/g, it was assumed that it is infinitely heavy to leading order in g and
does not recoil. It was discovered'? that all the scattering amplitudes at arbitrary
energy can be expressed in terms of the generalized hypergeometric function 5F5
with special arguments, which terminates to a finite sum and, as a result, the whole
scattering amplitudes consistently reduce to the usual beta function. For the simple
case of D-particle, the authors of 19) explicitly calculated high-energy limit of a
series of the above scattering amplitudes for arbitrary mass levels, and derive infinite
linear relations among them for each fixed mass level. The ratios of these high-energy
scattering amplitudes were found to be consistent with the decoupling of high-energy
zero-norm states of the previous works. 1% However, these ratios form only a subset
of the complete ratios for general high-energy vertex in the fixed angle.

In this paper, we calculate the general high-energy scattering amplitudes of
arbitrary higher spin massive closed string states scattered from D-particle in the
small angle or Regge regime (RR). We will assume as before that the mass of the D-
particle is infinitely heavy and so does not recoil. For Regge string-string scatterings,
see 22)-27). See also 28)-30). Regge string-string scatterings for arbitrary higher
spin massive states were intensively studied recently in 31)-35). In contrast to the
case of scatterings in the fixed angle regime, we will see that there is no linear
relation among string D-particle scatterings in the RR. However, as in the case
of Regge string-string scattering amplitude calculation 31)-33), we can extract the
infinite fixed angle ratios of string D-particle scatterings from these Regge string
D-particle scattering amplitudes. In this calculation, we have used a set of identities
proved recently in 34) to extract the fixed angle ratios from the Regge scattering
amplitudes.

We stress that the fixed angle ratios calculated in the present paper by this
indirect method from the Regge calculation are for the most general high-energy
vertex rather than only a subset of ratios' obtained directly from the fixed angle
calculation previously. More importantly, we discover that the amplitudes calcu-
lated in this paper for closed string D-particle scatterings cannot be factorized and
thus are different from amplitudes for the high-energy closed string-string scatter-
ing calculated previously.?? Amplitudes for the high-energy closed string-string
scattering can be factorized into two open string scattering amplitudes by using a
calculation32) based on the KLT formula.?®) Presumably, this non-factorization
is due to the non-existence of a KLT-like formula for the string D-brane scattering
amplitudes. There is no physical picture for open string D-particle tree scattering
amplitudes and thus no factorization for closed string D-particle scatterings into two
channels of open string D-particle scatterings. However, we discover that in spite
of the non-factorizability of the closed string D-particle scattering amplitudes, the
complete ratios derived for the fixed angle regime are found to be factorized. These
ratios are consistent with the decoupling of high-energy zero norm states calculated
previously.‘l)*n)

This paper is organized as follows. In §2, we first set up the kinematics. In §3,
we calculate the general string D-particle scatterings in the RR. In §4, we extract the
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ratios of string D-particle fixed angle scattering amplitudes from RR amplitudes. We
also discuss and compare the ratios of string D-particle and string-string scatterings.
Finally, we give a brief conclusion in §5.

§2. Kinematics set-up

In this paper, we consider an incoming string state with momentum k9 scattered
from an infinitely heavy D-particle and end up with string state with momentum
k1in the RR. The high-energy scattering plane will be assumed to be the X — Y
plane, and the momenta are arranged to be

kl = (E7 kl COs (ba _kl sin ¢) ) (21)
k? - (_E7 _k270) )

where

E=\/Ig+ M} =i + M2, (2:3)

and ¢ is the scattering angle. For simplicity, we will calculate the disk amplitude
in this paper. The relevant propagators for the left-moving string coordinate X* (2)
and the right-moving one X" (w) are

(XH(2), X (w)) = =" (X (2), X (w)) = =" In(z —w), (2-4)
(X1(2), X" (@) = =0 (X (2), X (@) = =0 In (5~ @), (2:5)
<X“ (2), X" (w)> — —Dm <X (2), X (w)> = DM 1In(1 - zw), (for Disk) (2:6)

where matrix D has the standard form for the fields satisfying Neumann boundary
condition, while D reverses the sign for the fields satisfying Dirichlet boundary con-

dition. Instead of the Mandelstam variables used in the string-string scatterings, we
define

ay=ky-D -k =—-FE* -k~ —2FE?%
apy=ky D -ky=—FE* k3 ~ —2E?
by = 2k1 - ko + 1 =2 (E* —kikocos @) + 1 = fized,
coEle-D-k2+1:2(E2+k1kgcos¢>)+1, (2-

N~ —~
© 00
= = " —

so that
2a0 + by + co = 2M? + 2. (2-11)

Since we are going to calculate Regge scattering amplitudes, by = fized. We can
use Egs. (2-3) and (2-9) to calculate

bo — M — M3 —1
2k? ’
Vho—MZ—MZ—1 _ /by

i ~ = . 2-13
sin ¢ o o ( )

cos ¢ ~1 — (2-12)
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The normalized polarization vectors on the high-energy scattering plane of the ks
string state are defined to be):5)

1 ko

E —ko,0) = — 2-14
ep = MQ( 25 ) M27 ( )
L (ko —E,0) (2-15)
€L = M2 2, s V)
er = (0,0,1). (2-16)
One can then easily calculate the following kinematics
GT-kQ :07
eT-k1 = —kysing ~ —\/I?,
T _ . 7
e ~D-k1—k1s1n¢~\/;,
el "D ky=0,
eP'kZ = _M27
1 by —1
P 0
(& kl:m[ *kleCOng)]: 2M2,
1 0o— 1
P 2
-D -k E° +kk
e 1= M2 [ + K1 2COS¢} 2M2
1 al a
P 2 2 0 0
D ko=—|-FE"-kj| =—F ~ —
¢ 2= | =35~
el Dl = —1,
el "D.-ef =el.D.el =0,
1 ay a
P P _ 2 21 _ %o 0

which will be useful in the amplitude calculation in the next section.

§3. Regge string D-particle scatterings

We now begin to calculate the scattering amplitudes. For simplicity, we will
take k1 to be the tachyon and ko to be the tensor states. One can easily argue that
a class of high-energy string states for ko in the RR are3!)33)

Prs P s @) = | [ (@)™ T1 (afm)qm] 11 (a%,)P" 11 @)% | [0,k)

n>0 m>0 n>0 m>0
(3:1)

> n(pn -1, +Zm m =) =0, (32)

n

with
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Z n (pn +pil) + Z m (qm + q;n) = N = const, (3-3)
n m

where M2 = (N — 2).

3.1. An example

Before calculating the string D-particle scattering amplitudes for general cases,
we take an example and illustrate the method of calculation. We consider the case

p=pi=qa=q¢ =q@=qg=1, others=0. (3-4)

As we will see in the next subsection, the string D-particle scattering amplitudes with
the general states (3-1) are reduced to simple forms in the Regge limit, in which
most of the ways of contracting the operators are discarded as subleading. For a
fixed number of the contractions between dX¥ and dX7T, the ways of contracting
the other factors are determined by the following rules.

ol 1 term (contraction of ik1 X with anXT),

&l 1 term (contraction of ik1 X with 5n)~(T),

p (n > 1) 1 term (contraction of ik; X with 9,XT), (37)
o .
" (n=1) 2 terms (contraction of ik1 X and ik X with X7,
p (n>1) 1 term (contraction of ik X with 9, X% ), (3-8)
o - - . .
" (n=1) 2 terms (contraction of ik X and ik X with 0X7* ).

Therefore we take the state Eq. (3-4) as the simplest example for the purpose of this
subsection.

We start with the procedure in 36) to treat the vertex operator corresponding
to the state (3-4).

V =%, OXMOXH202 X3RN (1) 1 HX 119X 1552 X6 thaX (%) :
8 aXTOXPORX P X (2) : : AXTIXPPRKP X ()
=i [+ exp { ik X (2) + £V 0XT (2) + D OX T (2) + £ PX T (2) }

X : exp {ikgf((i) +eWaxT(z) + e WVaxP(z) + 5'19)825(13(2)} :} ) .
inear terms
(39)

In the last equation, we have introduced the dummy variables s(Tl ), 69, 653), 6/7(}),

(1) , € ]S ) associated with the non-vanishing component erpprpp of the polarization

tensor and written the operator in the exponential form. “linear terms” indicate

that we take the sum of the terms linear in all of 5%),8%), g), ,(1), D and 5/(2)

This sum can be rephrased as the coefficient of the product Eg} ) g)ag)egl)egl)eg)
because we set the dummy variables to be 1 at the end of calculation.

The string D-particle scattering amplitudes can be calculated to be
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A= /d2z1d2z2 ib

: <: X (1) = e X (21) = 0XTOXT 2 X P eth2X () = OXTHXP P2 X P eikaX (%2) :>

(3-10)
=1 /d2z1d222

: {exp {<ik1X (21) ik X (21)>
+ <(5§})6XT +eWoxP 4 Po2xP 4 ik2X> (22)

| (#Uaﬂ FENART 4 PPRT koK) (22)

( /(1)8XT +€ VoxP +e'(2)82XP +Zk2X) ( 2)>
(ik1 X (1) (fVOKT + DX + PP + ks X) (22))
D (= (

WoxT | o 1>aXP +eDOXP 4 ik X)) (2) H1
inear terms

X(22)>+ie Dk282< (Z2)X(22)>]
@ [zepk182< (21) X (22)) + ie” Dk <5<( 21) X (22) )+ ie” Dkad (X (22) X (22) }
e’ [ze Dhndz (X (21) X () +ie"lndz (X (21) X (22)) + ie” Dkl (X (zQ)X(zg)>]
el [ze DInd3 (X (21) X (22)) + i€ ka0 (X (21) X (22) ) + ie” Dhad3 (X (zQ)X(zg)ﬂ

(
(
o
{

RORIS [eTDeTa X (22) X (22)>}

75959[ P DeP 98 X(zQ)X(zg)ﬂf m [PD6P882< ( )X(52)>]

@ [ePDeP325 <X (22) X (52)>] - s§3>s’,§2) [ePDePa262 <X (22) X (zg)ﬂ
— MDD [ TDeP85<X(zz)X(22) ]—a;“g’;?) [eTDeP852 <X(22)X(22) }

linear terms

= /d221d222 (1 — 2151)(10 (1 — 2222)(16 |Zl — 22|b0_1 |1 — 2122|CO_1

[ow
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(1) |: ieTkl ieTDk121 ieTDk222:| /(1) |:7;€TD]€121 ieTkl ieTDkQZQ:|

(Z1 — 22) (1 — 21Z2) (1 — ZQZQ) T (1 — 2122) (21 — 52) (1 — 2252)
e { ie"ky e’ Dk1 2, iePl)kQZQ] (2)[ e’k ie” Dk, 2} iePl)kzég}
Pl(zn—22) (1—ziz2)  (1— Z222) P lzr—2)?  (1—ziz)% (1 - Z222)°
e {iePDklzq ie"ky iePDk222:| (2) [ ie” Dk 23 + ie"ky ie” Dko23 }
P (1 — z122) (z1 — 22) (1 — 22%2) P 1- 2122)2 (z1 — 22)2 (1- 2222)2
T, T
D
R
(1 — 2222)
n 531)6/1(31) e’ De? + 20 (1) /(2) eP De” 2 42602 (2) ,(1) eP De’ 7, 42602 (2) /(2)6 PDeP (1—1:2,2222)
(1 — 2222) (1 — 222’2) (1 — 222’2) (1 — 2222)
T, P T, P P, T P Ts
(1) sy _e De (1) _r(2) ¢ De” zo (1) sy _e De 2) sy € De” 2
tepEp ————= t2p€p  —————= tepEp ————= +2pep ——=
TEP 1 am)? TEP 1 m) PET 0 s P Lm)
Hieor cme 311)
linear terms

To fix the SL(2, R) modulus group on the disk, we set z; = 0 and z2 = r, then
A’z d%z =d (1"2) . By using Eq. (2:17), the amplitude can then be reduced to

1 !
A= / d(r2) (1= r2)" ot
0

[

1) | Vb y | 1 bo
Ep = +ep l =
- bo— . ag bo—1 )
) | 215 "M @ | 1350, ‘M
+e + +e
Polo—r Q=) /| 77 L (=r)? (=) i)
/(1) i i3 @ | 155 By
+e 4+ 2 +¢€ 2 2
Pol—r (=) )r r [(r)2 [1— TZ/T]Q]
w1
WL -
T <T (1 _ T2)2
Go gy 20 =0 (14 2r
(1) /(1) M?2 +2€(1) (2) M n 25}2)5'19) M + ng)s}@ M ( . )
(1—r) (1—7’) (1—7") (1-12)
. 3-12
}j|linear terms ( )

Although in Eq. (3-12) we have dropped several subleading terms by using the
kinematic relations Eq. (2-17), Eq. (3-12) still has subleading terms. We can see
that by performing the integration of a generic term in Eq. (3-12) and looking at its
behavior in the Regge limit explicitly.

1 ’ —
/ d(r?) (1- rz)ao+na Jho—1-N+m, _ g <a6 14, by éV+ 1 N %>
0
%—N+U (ag +1),, (
(

/ bo=N+1
2 a0+ 1+ 2 )n,,,+n—25

71)079[“)%

B<a6+1,
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bp— N +1 bp— N +1 _n
NB(CLQ"‘I, 0 + )(0 + ) (ao) Zb.
np
2

2 2
(3-13)

Here the Pochhammer symbol is defined by ($)y = Fl(f(:)y) , which, if y is a posi-
tive integer, is reduced to (z), = z(z + 1)(z +2)---(z + y — 1). From the Regge
behavior Eq. (3-13), we see that increasing one power of 1/r in the integrand results
in increasing one-half power of ag. Thus we obtain the following rules to determine
which terms in the exponent of Eq. (3-12) contribute to the leading behavior of the
amplitude:

1/r - E, ag— E* (3-14)

We can now drop the subleading terms in energy to get

1 !’
A= / 4 (r?) (1= ) o1
0

W | Vb W | Vb (2) i (2) it
/ 2Mo, / 2Mo
. [exp {ET [— — +eér [——T 1 +éep [—(—T)Q] +eép [(_r)2] }1
€ETPTP
bo—1 i

(1) ( J(VZTOZZ
+ Ep'€ (1 ~ 7"2)2 }‘| )
(3-15)

jho—1 j90
/(1 20, M.
+ E}g ) 2 2

—r (1=r2)/r

where [- - - ]¢; ppp in the second line and |- - - |¢,, in the third line indicate that we take
the coefficients of 5%)61}1) g)all(f) and 853)5 19) respectively. Because of the difference
in the powers of 1/r and ap in the exponent of Eq. (3-12), Eq. (3:15) has much
more structure for 6531) and 5/1(31) than for E(Tl ), séﬁl), sg), and 6,122), and fits into the
aforementioned rules (3-5)—(3-8). It is also worth noting that the appearance of
the last term in the second exponent of Eq. (3-15) originates from the contraction
between dX (z2) and X (%) in Eq. (3-10), which is a characteristic of string D-brane
scattering.

The explicit form of the amplitude for the current example is

1 al po_ i\/% Z'\/a Zb20M1 2.1)20]\7[1
_ ’1”2 —’I“Q O’I”bo 1| _ 2 2
A= [ a6 0-r) ( —)( —r><<—r>2> <<—r>2>

el i\ (i i i

2 2 2 2 2

. -1
[( —r +(1r2)/r> ( —r +(1r2)/r> +(1_T2)2] (3-16)

2 2 —7”2 2&0 ! ’1"2 4@0
| [(lz; <l> <(1_7“2)bo—1> ) - (1—r2)? (b0—1)2] (3-17)
4
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| [(é () (&%) <b02_7>1> T (b02_7>] o
R () o)

N

where we have used Eq. (3-13).

3.2. General cases

Now we move on to general cases. The vertex operator corresponding to a
general massive state with d left-modes and d’ right-modes is of the following form:

V= id+d/5 SgMX ML 6nqudeik2X (Z) . 5"d+1Xﬂd+l . 5"d+d’)z'ltd+d/ eing (2> .

M1 Hgiar *

The vertex operators corresponding to the states Eq. (3:1) are expressed in this
covariant form by

dzzpn+Qna d/:Zp/n+Q;L

n>0 n>0

!/ !/ !/ /
(n17n2,"'77’ld+d’): ...,m,... Moo T M MM e .M . N ...’n’...

b ) bl b bl ) bl b b ) b b
N—— N—_—— N——— N——
Pm qn P’ a,

E.T...T.P...P.T...T..P...p.. = L
—— Y Y~ Y——

Pm an ', q’,
m

For the calculation of the correlator involving the operator Eq. (3-20), we introduce
parameters associated with the polarization tensor and exponentiate the kinematic
factors.

Pn Gn Prn  dp (n)
/TL
ETTT--PPP--TTT--PPP-- HHHHH HéTT Ep T, €py

n>01i=1j=14¢=1j'=1

V= (i)zm PrnAD)+an+a),

m
cexp ] tha X (2) + ZZET O"XT(2) + Z ng?)ﬁmXP(z)

n>0 i=1 m>0 j=1
x sexp  ika X (2) + Y Z o XT(z) + Y Z momXP(z) ,
n>0 i=1 m>0 j=1

linear terms

(3-21)
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where “linear terms” means the terms linear in all of 5% ), 5%), 5%@, and 5’},?1). Below
we use symbols like

Pn
1 2 1 1 2 n
ET3p2rp3 = e’fg«)651)8%2)6231)6531)87(«1)e’fllgl) ,( )8,( ), ET an = Z 26%)

n>0 i=1

(the meanings of these symbols are not unique) and do not write the normal ordering
symbol : : to avoid messy expressions.

The string D-particle scattering amplitudes of these string states can be calcu-
lated to be

A= /d2z1d22’2 CEPY pn PY an TS P PT dh (3-22)
eile (Zl) eile <21) . H (lanXT)pn H (iamXP)Qm eikQX (2’2)
n>0/ m>0
. H (ZénXT>p" H <,LamXP> zk’gX (22) >
n>0 m>0
> Prtpntantay
— (i) A (3-23)

> Patpntantq), 2
= (i)n>0 d°z1d” z9

<(ik1X) (21) (mlx) (21)>
er Y pn0"XT +ep Y gno™mXP +z’k2X> (22) >

+< ( n>0 m>0
<£’T S P XT + el 3 ¢, X P —l—zng) (z2)
n>0 m>0
- exp + <(Zk1X) (21) <€T Z pnanXT +ep Z qmamXP + Zng) >
n>0 m>0 ’
+<<ik1)~(> (z1) <€ S P XT el 3 ¢, 0 X ks > >
n>0 m>0
+ <(ik1X) (21) <5'T S Pt XT + el 3 gl 0 X ks ) >
n>0 m>0
+ <<Zk1)?> (51) <€T E pn(‘?”XT +ep Z qmamXP +ik2X> 29 >
\ n>0 m>0
(3 24)

where only linear terms are taken in the expansion of the exponential (in the sense
of Eq. (3-21)). In Eq. (3-24), we have used the simplified notation E(T) =ep, j=
1,2, ...pn, n € Z, for the spin polarizations, and similarly for the other polarlzatlons
The exact meanings of the summations in the exponent are the ones like Eq. (3-21).
Note that there will be terms corresponding to quadratic in the spin polarization.
The amplitude A’ can be reduced to

A = /d2z1d2 pik1X (1) e ik X (21) pik2 X (22) eikg)_( (22)>
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ieT k0% D)X (22)) +iel - D k105 { X (z1) X (22
En [
el - D- k182 21) X (22 et k182
—er n'2>:o P -SieT(' ; . k(28;><+ <> > ]
ieP - kO (X (zl)X( 2)) +ief - D- k182 < X (Zl)X(ZQ)>
P e +ie” - D kadg" (X () X (22)) ]
Cox PoD k05 (X (21) X (2 ief k107 (X (21) X (%2
o m%oq;w +<ieP(~ D) ~ kiaé’))Z_X (22) X (52)<> o )> ] |
—_ ) nz/w puplys (7 D - eT) 9m5" <X (22) X (52)>
—epep m §>quq;n, (e -D-e") oo <X (22) X (22)>
—eTep i ;§>Opnq;n, (e - D-eP) oo™ <X (22) X (22)>
—epel nlgn:>0 gmply (€7D -e") om <X (z2) X (22)>
(3-25)

where only linear terms are taken in the expansion of the exponential. We can now
put in the propagators in Eq. (2-4) to Eq. (2-6) to get

A = /d221d222 (1 — Zlél)ao (1 — 2222)116 |21 — 22|b071 |1 — 2122‘6071

in—De k  i(n—11e Dk _, i(n—1le’ Dk _n}
3 n — = zZ1 + — =
Tngop { (21— 22)" (1—2122) ' (1—2222) :
e S i(n — 1)!ei«5-k1 s i(n’_f 1)_!eTn; ki, i(n — 1)!6?5.1@25,
n’>0 (1 — z122) (z1 — 22) (1= 2222)
i(m—1)e" k1 i(m—1)e"-D ki _, i(m—l)!eP‘D-kgfm]

+e m m = m z1 + — m z

sz>oq { (21 — 22) (1—Z122) ! (1 — Z222) ?

i(m' —1)ef D ki .0 i(m —Dle’ Kk
— \m/ 1 _ — \m/
(1*2}122) (Zl *22)

exp +E;3 E q':n’
m’>0 +

i(m' —1)e” D ks . )
m/ 22
(1 —222)
—erep 3 puply (€7 D -€") 0" In(1— z22)

n,n’>0

—epep Y. qmGy (eP -D- eP) O™O™ In (1 — 2222)
m,m’>0

—ere Y. PnGhy (eT -D- ep) 0"0™ In (1 — 2222)
n,m’>0

—eper >, GmDl (eP -D . eT) amen In (1 — 2222)
n’,m>0

(3-26)
where only linear terms are taken in the expansion of the exponential. To fix the

SL(2, R) modulus group on the disk, we set z; = 0 and z3 = r, then d?z1d%2z =
d (r2) . By using Eq. (2-17), the amplitude can then be reduced to

A= / 4 (r?) (1 — r2)% o1
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i(n—1D)Wh!| i(n' = 1)Vbo
er Yo pn |—————— | +ep P, | —————
n>0 n[ (=r)™ Tn’>0 " (=r)"
i(m— 1)1l (m —1)1%
+ep Z qm m2M2 2 an
M0 (=) [(L—=72)/r]
N T U - @2
+e q,./ 7 7
N N COL (1 —r2) /)"
—erehy Y papl 00 In(1—22) |
n,n’>0 _ .,
—epep X G @I (1 - @) |,
m,m’>0 :

where only linear terms are taken in the expansion of the exponential.

Now we use the energy counting (3-14) and show how we reach the rules (3-5)—
(3-8). We can see immediately that in the exponent of Eq. (3-27), the terms linear
in 852) or 53&?) are dominated by their first terms if m > 2 or m’ > 2. We can see
also that most of the terms in the forth and fifth lines of the exponent are discarded
as subleading. If we start with the terms consisting of only the factors coming from
the first three lines, the other terms are obtained by series of replacements of two
factors in them with one factors coming from the forth and fifth lines, and for each
of the replacements we can see how it changes the power of energy. We do not
need to calculate the infinite number of derivatives. For each differentiation the
increase of the power of 1/r is less than or equal to 1, while the powers of 1/r in
the first three lines increase with n,n’,m or m/, which implies that if one term in
the forth or fifth line is discarded, the terms with higher n,n’, m,m’ in the same line
are also discarded. The sequences of those discarded terms start at (n,n’) = (1,1),
(m,m') = (1,2), and (m,m’) = (2,1). In this way, we can see that only the terms
with m = m’ = 1 in the fifth line contribute to the leading behavior. Thus we obtain
the generalization of Eq. (3-15)

lyz/dQﬂU—ﬂfﬂm*
-exp{

i (n — 1)!1Vb i (n' — 1)1/b
er S P _iln =)W el ol ,M
n>0 (=r)n n'>0 (=r)"
i(m— 1)!1’20]\}1 i(m' — 1)!1720&1
+E m 2 +5/ ;n, - 2
Pz l e P | T

>4
X pn pS! an 7 Ph pX’ ap

bo—1 ;a0
LN, vl
-exp | Epqr — + 2

Qo

M3

2
(1—-12) E /
pd1 p91

(3-28)

: T3 | tepepaa )

-bg—1 - ag

Uy v (vl

2M. M:
+s’qul T
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where the symbols e... are similar to the ones in Eq. (3-15) and indicate that we

take the coefficients of the products of the dummy variables in the exponents. (sg)

and 6( ) are excluded in the “sums” 3".) Note that the last term in the last line
of Eq. (3 28) is quadratic in the polarization. This term is a characteristic of string
D-brane scattering and has no analog in any of the previous works. It will play a
crucial role in the following calculation in this paper.

For further calculation, we first note that

i, | AT IS, AT Mz
exXpyepq |~ =+ T | HEpd |~ E T | Fepepaian a7 ;2)2
Equ Pl
min{q1,q} } , jbo—1 a0 ). q1+4; -2 g j
_ , au\(a) [ "2, M, M3 )
= € oy i ]Zo (J)(J)g( - +1_r2> <7(1_r2)2> . (329)

Thus the amplitude can be further reduced to

i(m =D 1™ o i -0
'H[W 7=

m>1 m/>1

EEeT

b — q1+4] —2] l . a 1 ag_ j
K 2oM2 1 Gk M3 (3:30)
—r 1— 7”2 (1 . T2)2 ’
which, in the case of the state (3-4), is reduced to Eq. (3-17). We can now do the
integration to get
by — a1ty —Pn —1Pn
A= < A ) 11 {—i(n—l)!\/g] [—z’(n—l)!\/b»o}
) bo -1 bg — 17
H({z(m 1)! 20 ] [z(m—l)! 2M2} )

n>0
m>1

min{a1,¢} } qu-+{—2j j
CE RO ) )

b 1—- N b 1—-N b 1—-N
B %+4,°+ 0t 0+ +5) . (331)
2 2 ; 2 l
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where we have done the expansion of the beta function in the RR as following:

bo+1—N .
(b0+1fN>
bp+1—N 2 I+
%B(ao—i—l > e J
’ +
2 %]
bo+1—-N bo+1—N .
+J
bo+1—-N ( 2 >< 2 )z
=B 1 J . . 3:32
<ao+, . ) " (3:32)

Note that in the case of the state (3-4), Eq. (3-31) is reduced to Eq. (3-18). Performing
the summation over n, we obtain

bO -1 q1+q1 - Pn‘HD; bO -1 CIm-HI;n
— . —q —1)! 1 — 1)
A (z 20, ) };[0 { i(n—1)! bo] };[1 [z (m—1)! 20, }

min{q1,q} } 2
bo+1—N () (4 bo+1—N 9 J
B 1,2 E —1)741
(“”’ 2 ) 2 | ”(j)(j 2 A\bo—1
=0 J
Cbg+1-—N . 2
-2 Fy <qlqi+2j, 0 3 iy 1>’ (3-33)
o —

which, in the case of the state (3-4), is reduced to Eq. (3-19). Finally we can use the
identity of the Kummer function

s t t
92m {=2myy <—2m, 5+ 2 —2m, —>

2
= (1= 42
oy G
> com, (1-3)

j=0
9\ J
?> (3-34)

> () (+-5),(

to get the final form of the amplitude

A= }:[O ([—z (n—1)! Bornﬂ;) gl ([2 (m — 1)!bg]\—421rm+q4n> <—MLQ>Q1+(A

—| N

min{q1,¢ }
bo+1-N (o (0 (bot+1-N
‘B L= > (-1 S
<a°+’ 2 > . (”<j)<j 2 ),
]:0 J
. —bp+ N+1 . bo—1
U <—q1 —q +2370f - —q +J,—OT>- (3:35)
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Note that the amplitudes in Eq. (3-:35) cannot be factorized into two open string
D-particle scattering amplitudes as in the case of closed string-string scattering am-
plitudes.')32) In Eq. (3-35) U is the Kummer function of the second kind and is
defined to be

T M(a,c,x) ' M(a+1—¢2—cx)
= — 2,3,4...
Ula,e,z) sinwe | (a —¢)l(c—1)! (a—1)I(1—c)! » (e72,3,4.)
| (3-36)
where M(a,c,z) =372, %?—f is the Kummer function of the first kind. Note that

the second argument of Kummer function ¢ = ¢(by), and is not a constant as in
the usual case. As a result, U as a function of by is not a solution of the Kummer
equation.

An interesting application of Eq. (3-35) is the universal power law behavior of the
amplitudes. We first define the Mandelstam variables as s = 2E? and t = —(k; +k2)?.
The second argument of the beta function in Eq. (3:35) can be calculated to be

bo+1—N 2k -ko+1+1-N (ki+k)?—ki—ki+2-N —t—2
2 B 2 B 2 2

(3-37)

where we have used Eq. (2:9) and M3 = (N — 2). The amplitudes thus give the

universal power-law behavior for string states at all mass levels

A~ s (in the RR) (3-38)

where 1
at) = a(0) + ot, a(0) =1and o’ = 3 (3-39)

§4. Ratios on the fixed angle regime

We begin with a brief review of high-energy open string-string scattering in the
fixed angle regime, namely

s, —t — 00,t/s ~ — sin’ g = fixed, (but ¢ #0) (4-1)

where s,t and u are the Mandelstam variables and ¢ is the CM scattering angle. It
was shown that for the 26D open bosonic string the only states that will survive the
high-energy limit at mass level M2 = 2(N — 1) are of the form™-8)

IN,2m, q) = (ol )V 7272 (aly)? " (al,) )0, k), (4-2)

where N, m and ¢ are non-negative integers and N > 2m + 2¢. It can be shown that
the high-energy vertex in Eq. (4-2) are conformal invariants up to a subleading order
term in the high-energy expansion. Note that e’ approaches e’ in the fixed angle
regime.?)%) For simplicity, one chooses ki, k3 and k4 to be tachyons. It turns out
that the high-energy fixed angle scattering amplitudes can be calculated by using
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the saddle-point method. The complete ratios among the amplitudes at each fixed
mass level can be calculated to be™:8)

T(N,2m,q) 1 2m+q 1\ ™t
I _ — 1\ .
A calculation based on the decoupling of high-energy ZNS gave the same result as

in Eq. (4-3).

To compare the RR amplitudes Eq. (3-:35) with the fixed angle amplitudes cor-
responding to states in Eq. (4-2), we consider the RR amplitudes of the following
closed string states:

N3 2m, 2m’; q, ')
_ (azl)N/Q—Qm—Qq (apl)Qm( P )q 2 (dT )N/Q—Zm’—2q’ (&pl)Qm’ (~P )q’ ‘07 k>,

= - a_y —1 - Qa_o
(4-4)
where m, m’, g and ¢’ are non-negative integers. We can take the following values:
p1 = N/2 —2m — 2q,p) = N/2 —2m' — 2¢/, (4-5)
q = 2m,q; =2m’, (4-6)
2=q490=4q (47)

in Eq. (3-35), and include the phase factor in Eq. (3:23) to get

N—-2(m+4+m’)—2(q+q’ q+q . 2m+2m’’
AN;2m,2m5q,q") (i)qufq' <z §0> ( )= ) <‘b° — 1> (z)

"o, M,
bo+1—N min{gm} o\ f2m)\ [(bo+1—N
a(wen =) s e () () ()
2 i=0 J J 2 j
b+ N +1 by — 1
-U(—Qm—Qm’—f—Q‘j,%—2m—2m’+j,—02 ) (3-8)

It is now easy to calculate the RR ratios for each fixed mass level

N;2m.,2m’;q,q’ q+q mem’
AN;2m,2m/5q,4") _ (i)_q_q/ L b9 -1 ) 1
A(IV,0,0,0,0) 200 Mo b0M22

min{2m,2m’} - om om/ bO +1—-N
. Z (=175 7 ' Lor-
J J 2 ;

=0

—bp+N+1
2

2
(4-9)

by — 1
-U(—Qm—2m’+2j, —2m —2m’ + j, —— )

which is a bg-dependent function.
Before studying the fixed angle ratios for string D-particle scatterings, we first
make a pause to review previous results on string-string scatterings.
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4.1. String-string scatterings

4.1.1. Open string

For open string-string scatterings, either the saddle-point method (¢ —u channel
only) or the decoupling of high-energy zero-norm states (ZNS) can be used to calcu-
late the fixed angle ratios.Y)™® It was discovered that there was an interesting link
between high-energy fixed angle amplitudes T" and RR amplitudes A. To the leading
order in energy, the ratios among fixed angle amplitudes are ¢-independent numbers,
whereas the ratios among RR amplitudes are t-dependent functions. However, it was
discovered®) that the coefficients of the high-energy RR ratios in the leading power
of t can be identified with the fixed angle ratios, namely>!)

AWNV,2m,q) 1\ 2mta s\ mta T(N,2m,q)
: — (- z = :
A N0 ( M2> (2> (@m =Dl = w50 (4-10)

To ensure this identification, one needs the following identity:31) 34

%Z%(_Qm)j <—L _ g) w

J!

m)! t!

m+1
—0(=7)0 + 0(—F) " ..+ 07y E yem g { <l> + } :
(411)

where L =1 — N and is an integer. Note that L effects only the subleading terms in

m+1
0 {(El') } . Mathematically, the complete proof of Eq. (4-11) for arbitrary real
values L was recently worked out in 34) by using an identity of signless Stirling
number of the first kind in combinatorial theory.

4.1.2. Open superstring

For all four classes!?) of high-energy fixed angle open superstring scattering
amplitudes, both the corresponding RR amplitudes and the complete ratios of the
leading (in t) RR amplitudes can be calculated.® For the fixed angle regime,'?)
the complete ratios can be calculated by the decoupling of high-energy zero norm
states. It turns out that the identification in Eq. (4-10) continues to work, and L is
an integer again for this case.’?)

4.1.3. Compactified open string

For compactified open string scatterings, both the amplitudes and the complete
ratios of leading (in ¢) RR can be calculated.?® For the fixed angle regime, the
complete ratios can be calculated by the decoupling of high-energy zero norm states.
The identification in Eq. (4-10) continues to work. However, only scattering ampli-
tudes corresponding to the cases m = 0 were calculated. The difficulties has been as
following. First, it seems that the saddle-point method is not applicable here. On the
other hand, it was shown that*) 6 the leading order amplitudes containing (a” )2
component will drop from energy order E4™ to E?™, and one needs to calculate the
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complicated naive subleading order terms in order to get the real leading order am-
plitude. One encounters this difficulty even for some cases in the non-compactified
string calculation. In these cases, the method of decoupling of high-energy ZNS was
adapted.

It was important to discover®) that the identity in Eq. (4-11) for arbitrary real
values L can only be realized in high-energy compactified string scatterings. This is
due to the dependence of the value L on winding momenta Ki25 35)

L=1-N—(K®)?+ KK, (4-12)

All other high-energy string scatterings calculated previously®))33) correspond to
integer value of L only.

4.1.4. Closed string

For closed string scatterings,®? one can use the KLT formula,*®) which expresses
the relation between tree amplitudes of closed and two channels of open string
(U 1osed = 40open = 2), to simplify the calculations. Both ratios of leading (in )
RR and fixed angle amplitudes were found to be the tensor product of two ratios in

Eq. (4-10), namely??)

(N;2m,2m/;q7q/>

A dosed 1 2(m+m)+g+q 1 m4m’ +q+q )
lim —&°%¢ = (——) (—) (2m — 1)!!(2m — 1)!!
7 N;0,0;0,0)
oo Aglosed M2 2
T<1N;zm,2m/;q,q/)
__ “close .
o T(N;O,O;O,O) ) (4 13)
closed

We now begin to discuss the RR closed string, D-particle scatterings considered
in this paper.

4.2. Closed string D-particle scatterings

421. m=m =0 case

In 19), the high-energy scattering amplitudes and ratios of fixed angle closed
string D-particle scatterings were calculated only for the case m = m = 0. For
nonzero m or m_ cases, one encounters similar difficulties stated in the paragraph
before Eq. (4-12) to calculate the complete fixed angle amplitudes. A subset of ratios

was found to bel?)
Téng’oyo’CLq/) 1 q+ql
7T§g’0’0’0’0) = <—2M2> . (4-14)

In view of the non-factorizability of Regge string D-particle scattering amplitudes
calculated in Eq. (3-35), one is tempted to conjecture that the complete ratios of
fixed angle closed string D-particle scatterings may not be factorized. On the other
hand, the decoupling of high-energy ZNS implies the factorizability of the fixed angle
ratios.
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4.2.2. General case

We can show explicitly that the leading behaviors of the inner products in
Eq. (3-26) involving k1, ks, €T, e’ and D are not affected by the replacement of e”
with el if we take the limit by — oo after taking the Regge limit. Therefore we pro-
ceed as in the previous works on Regge scattering. The calculation for the complete
ratios of leading (in by) RR closed string, D-particle scatterings from Eq. (4-9) gives
Ag]VD;Qm,Qm’;q,q’)

oo AN0.0.00)

/ b a+d 1o\
= (@) ~ig e
2bo M bo M2

min{2m,2m’}

Z (—1)]j' 2m 2m/’ b_O J (Qm +2m’ — 2j)!2—2m—2m’+2jbm+m’—j
J J 2 (m+m/ — j)! 0

J=0

1 q+q’ 1 2m—+2m’
= ()" (i ST
2Mo 2M>

min{2m,2m’}

>oa() () e B (115)

J=0

In deriving Eq. (4-15), we have made use of Eqgs. (3-34) and (4-11). Note that each
term in the summation of Eq. (4-15) is not factorized. Surprisingly, the summation
in Eq. (4-15) can be performed, and the ratios can be calculated to be

A(N;2m,2m’;q,Q’)

lim —SL
b (,0,0,0,0)
0w Agp
/1 q+q'+2m-+-2m’ 1 2m+2m’+q+q’
_(_yatd [ 2
=) <2> <M2>

22m+2m e [ 2 (2m + 2m/)]

r() ()

1\ 2ty 1\ o\
— (—— - 2m — D) [ —— - 2m’ — DI, (41
(o) () erom(g) () et e

which are factorized. They are exactly the same with the ratios of the high-energy,
fixed angle closed string-string scattering amplitudes calculated in Eq. (4-13) and
again consistent with the decoupling of high-energy zero norm states.Y) 1) We thus
conclude that the identification in Eq. (4-10) continues to work for string D-particle
scatterings. So the complete ratios of fixed angle closed string D-particle scatterings
are

(N;Qm,2m/ ;q,q/)

Tg) 1 2(m+m’)+q+q’ 1 m4m’ +q+q
!
(V0000 = <—> <§> (2m — DN2m' — 1)

SD
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A(N;2m,2M’;q,q’)

by 00 Agjy),o,o,m (4-17)

where the first equality can be deduced from the decoupling of high-energy ZNS.
Note that, for m = m = 0, Eq. (4-17) reduces to Eq. (4-14) calculated previously.lg)

It is well known that the closed string-string scattering amplitudes can be fac-
torized into two open string-string scattering amplitudes due to the existence of
the KLT formula.?®) On the contrary, there is no physical picture for open string
D-particle tree scattering amplitudes and thus no factorizaion for closed string D-
particle scatterings into two channels of open string D-particle scatterings, and hence
no KLT-like formula there. Here what we really mean is: two string, two D-particle
scattering in the limit of infinite D-particle mass. This can also be seen from the
nontrivial string D-particle propagator in Eq. (2:6), which vanishes for the case of
closed string-string scattering. Thus the factorized ratios in high-energy fixed angle
regime calculated in the RR in Egs. (4-16) and (4-17) came as a surprise. However,
these ratios are consistent with the decoupling of high-energy zero norm states cal-
culated previously. YD) It will be interesting if one can calculate the complete fixed
angle amplitudes directly and see how the non-factorized amplitudes can give the
result of factorized ratios. We hope to pursue this issue in the future.

§5. Conclusion

In this paper, we have studied scatterings of higher spin massive closed string
states from D-particle in the Regge regime. We have extracted the complete infinite
ratios among high-energy scattering amplitudes of different string states in the fixed
angle regime from these Regge string scattering amplitudes. The ratios calculated
by this indirect method include a subset of ratios calculated previously by direct
fixed angle calculation.'® Moreover, we have discovered that in spite of the non-
factorizability of the closed string D-particle scattering amplitudes, the complete
ratios derived for the fixed angle regime are found to be factorized. The ratios for
string D-particle scattering amplitudes are consistent with the decoupling of high-
energy zero norm states calculated previously.H 11
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