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Abstract—In this paper, we propose a parallel QoS scheduler
for a WDM optical interconnection system (WOPIS), using a new
ranked Hopfield neural-network (RHNN). The WOPIS contains a
set of Clos-like optical switches and a handful of output FDL-based
optical buffers. The RHNN scheduler determines an optimal set
of neurons (I/O paths) to be enabled, achieving maximal system
throughput and priority differentiation subject to the switch-
and buffer-contention-free constraints. Structured with ranked
neurons, the RHNN allows higher-rank neurons (higher-priority
and/or lower-delay paths) to disable lower-rank neurons that have
been enabled during previous iterations. Ranking the neurons
unfortunately gives rise to a convergence problem. We present
two theorems that give the sufficient conditions for the RHNN
scheduler to converge to the optimal solution. We demonstrate
via simulation results that, with the computation time within
one system slot time, the RHNN scheduler achieves near 100%
throughput and multi-level prioritized scheduling.

Index Terms—Hopfield neural networks, optical interconnect,
parallel scheduling, quality of service (QoS).

I. INTRODUCTION

W DM optical interconnect [1], [2], which provides ex-
ceedingly high bandwidth and low power dissipation,

has recently been considered as a prominent candidate for in-
terconnecting mass parallel computing processors particularly
in datacenters. In our earlier work [3], we have experimented
a 10-Gb/s WDM optical interconnect switching system, which
contains a set of optical space switches, downsized feed-forward
FDL-based optical buffers [4], and tunable optical wavelength
converters (TOWC’s) [5]. In particular, each optical space
switch is of broadcast-and-select structure implemented by
interconnected 2 2 semiconductor-optical-amplifiers (SOAs)
[6], [7] switching elements. The switches exhibit excellent
properties, such as fast response time, large extinction ratio,
and low crosstalks, however at the expense of higher power
consumption and large fully integrated switching elements.
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Numerous optical switching-element architectures have been
proposed. Of these proposals, the approach of using a single
modulation stage [8] to directly realize or switches
receives much attention. The approach basically has potential
advantages over conventional schemes with respect to low op-
tical power consumption and insertion loss, when scaling to
large switches. Among such single-modulation-stage switches,
the InP-InGaAsP optical phased-array switch (OPAS) [8] has
particularly demonstrated fast configuration speed, hence ad-
vantageous to serve as a basic switching element in constructing
large optical interconnection systems. Pertaining to the number
of switching stages, it has been shown that, by incorporating
an efficient scheduling algorithm [4], a switch with three stages
(e.g., Clos network [9]) can achieve a throughput that is as supe-
rior as its counterparts with more switching stages. In this work,
we aim at designing a high-performance parallel QoS sched-
uling approach for the WDM OPAS-based optical interconnec-
tion system (WOPIS).

Packet scheduling for WOPIS is a complex problem and im-
practical to be solved by existing sequential-based algorithms.
Thanks to the advances in VLSI and parallel computation tech-
nologies, Hopfield neural network (HNN) [10] and its variants
[11]–[16] have been successfully employed in solving hard
optimization problems. Among them, a few HNN approaches
[17], [18] have been proposed to particularly deal with packet
scheduling for electronic switches. The work [17] proposed an
NN architecture for packet routing through a crossbar switch
achieving near-optimum throughput. The work [18] experi-
mentally implemented an optoelectronic neural-network for
crossbar switch controller that achieves maximum scalability
and throughput. However, all these approaches have been
applied to buffer-less switches. Most importantly, due to the
requirement of energy-function convergence, existing HNNs
operate on the basis of having symmetric neuron weights. To
our knowledge, our work is the first HNN that adopts asym-
metric neuron weights to efficiently accomplish prioritized
packet scheduling for optical buffered switches.

In this paper, we propose a new ranked Hopfield neural
network (RHNN) parallel scheduler for WOPIS, achieving
maximal system throughput and priority differentiation. The
RHNN is specially structured with ranked neurons. With each
neuron being associated with an I/O path within WOPIS,
the RHNN scheduler allows higher-rank neurons to disable
previously enabled lower-rank neurons. Ranking the neurons
results in asymmetric neuron weights, which unfortunately
gives rise to a convergence problem. To resolve the problem,
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Fig. 1. WOPIS: system architecture.

we rigorously present two theorems that supply the sufficient
conditions for the RHNN scheduler to converge to the optimal
solution. We demonstrate via simulation results that the RHNN
scheduler achieves near 100% throughput and multi-level
prioritized scheduling.

The remainder of this paper is organized as follows. In
Section II, we present the architecture of WOPIS. In Section III,
we formally define the QoS scheduling problem. We then detail
the RHNN scheduler in Section IV and demonstrate simulation
results in Section V. Finally, conclusion remarks are given in
Section VI.

II. WOPIS SYSTEM ARCHITECTURE

WOPIS consists of two subsystems (see Fig. 1): the optical
interconnect subsystem, and the RHNN packet scheduler. While
each packet header that carries the label and QoS (priority) in-
formation is electronically processed by the RHNN scheduler,
the payload is transported within the optical interconnect sub-
system in the optical domain. The optical subsystem consists
of four sections: input, three-stage OPAS-based optical space
switch (TSOPS), output optical buffer, and output. In the input
section, there are input fibers each carrying a number of input
wavelengths. After DEMUX, a tunable optical wavelength con-
verter (TOWC) converts each packet’s input wavelength to an
internal wavelength that corresponds to a free space in the output
optical buffer.

In the TSOPS section, each TSOPS is responsible for
switching packets carried by a specific cluster of wavelengths.
For example, as shown in Fig. 1, space switches and

are for – and – , respectively. The structure
of a TSOPS can easily be explained via the example in Fig. 1.
In the example, a 12 12 TSOPS is comprised of a total of ten
OPAS-based switching elements, in which there are three 4 4

switching elements in each of the first and last stages, and four
3 3 elements in the middle stage. Each OPAS-based
switching element consists of OPASs of size 1 that are
fully connected to the other OPASs of size . Being
wavelength selective, each OPAS (of size or )
operates like an arrayed waveguide gratings (AWG) [19]. For
instance, a 1 4 OPAS with four wavelengths – arriving
at the input port, will have wavelength departed from the

output, where to 4.
In the output buffer section, there is an FDL optical buffer

(FOB) for each input wavelength. Each FOB is shared by all
output ports. An FOB is composed of a pair of AWG’s and op-
tical FDL’s connecting the AWG’s, resulting in a total of
buffer positions (including those with no delay), where is the
number of internal wavelengths. It is worth noting that, a packet
entering the FOB at the input port will exit the buffer from
the output port after receiving a certain delay time deter-
mined by the internal wavelength. Thus, for any FOB, an in-
ternal wavelength of a packet uniquely determines the delay
received by the packet. In the output section, there are

FWM-based TOWC’s, and output fibers each carrying
wavelengths. At each output port of the second AWG of

an FOB, buffer contention occurs when multiple packets at-
tempt to depart from the output port simultaneously. Finally,
the RHNN packet schedule is responsible for scheduling newly
arriving packets of different priorities such that the switch- and
buffer-contention-free constraints are satisfied, in an effort to
achieve maximal system throughput and priority differentiation.

III. QOS SCHEDULING PROBLEM DEFINITION

Because packet scheduling for different TSOPS is com-
pletely identical and independent, we thereinafter describe the
scheduling problem under an assumption that there is only one
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Fig. 2. Switch and buffer contention—an illustration.

TSOPS in the entire system, as shown in Fig. 2. Let denote
the total number of input/output fibers, the number of internal
wavelengths, the number of switching elements in the
first/last stage of TSOPS, and the number of switching ele-
ments in the second stage. Notice that the number of switching
elements in the first and last stage is the same as the number
of input/output wavelengths. Let denote the index of the
input (output) port of a switching element in the first (third)
stage, where to . Let denote the index of a
first-stage (third-stage) switching element, where
to ; and the index of a second-stage switching element,
where to . Let denote the internal wavelength,
where to ; and the number of FDLs in each FOB.
For the example in Fig. 2, and .

We define three functions in the following. First,
denotes the priority of a packet taking the path from input port

of switching element in the first stage of TSOPS. Func-
tion denotes the delay of a buffer that is associated
with output port (of any switching element in the last stage)
and internal wavelength . Function denotes the
status of the buffer location in FOB that is uniquely identified
by switching element in the third stage, output port , and
internal wavelength . if the corresponding
buffer is occupied; and 0 otherwise.

Definition 1: An in-out path for a packet carried by internal
wavelength , denoted as , is a route that
starts from input port of the first-stage switch , through
the second-stage switch , to output port of the third-stage
switch . The status of an in-out path
is defined by an index function, ; namely

, if the in-out path is taken by a packet;
and 0, otherwise.

Definition 2: A valid path set is a set of in-out paths that
follow the FOB rule: any packet entering the FOB from the
input port (of the first AWG) always departs from the output
port (of the second AWG). Mathematically, the set can be given
as

Basically, switch contention occurs when two or more
packets carried by the same internal wavelength attempt to pass
through the same internal link within TSOPS. Accordingly,
together with the wavelength selective property of OPAS,
switch-contention-free scheduling has to meet two following
guidelines. The first guideline stipulates that packets from
different inlets of a switching element but carried by the same
internal wavelength cannot be simultaneously switched to the
same outlet of the element. This is illustrated in the example in
Fig. 2. In the figure, switch contention occurs at three different
stages of TSOPS due to using the same internal wavelength
(same color in the figure).

The second guideline states that, within any switching ele-
ment, multiple packets from the same inlets that are carried by
different internal wavelengths always depart from different out-
lets (due to being wavelength selective of OPAS). A violation
of this guideline is depicted in the first switching element at the
third stage in Fig. 2. According to these two guide-
lines, the switch-contention-free constraint is comprised of six
rules: to based on the first guideline, and to based
on the second guideline.

for to

where

Generally, buffer contention occurs when two or more
packets attempt to depart from the same output of the second
AWG of the FOB. This contention takes place under two
situations- between two newly arriving packets; and between
a newly arriving packet and a packet currently in the buffer.
In the following, we give rules and for avoiding buffer
contention under these two situations, respectively:

where
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A violation of rule is exemplified in the second FDL of the
FOB in Fig. 2. In this example, two packets carried by different
wavelengths will depart from the FOB at the same time. Notice
that this only occurs when the number of FDLs is less than the
number of inlets/outlets of the FOB. A violation of rule is
shown in the third and forth FDLs of the FOB in Fig. 2. With the
above eight rules, to , letting

, we now define the contention-free constraint.
Contention-Free (CF) Constraint:

(1)

Notice that, to satisfy the CF constraint in (1), one can just select
no or few in-out paths, resulting in poor throughput. To mitigate
the problem, we introduce the second constraint, called Single
Assignment (SA), which sets a target of assigning a path for each
newly-arriving packet, thereby achieving maximal throughput.

Single Assignment (SA) Constraint:

(2)

where , and is a binary
function that is equal to 1 if there is an incoming packet from
input port of the first-stage switch, , which is destined to
output port of a third-stage switch; and 0, otherwise.

So far, we have described two general constraints, i.e., CF
and SA. With QoS taken into account, we now introduce two
priority-oriented constraints. First, all packets have different pri-
orities. The first priority constraint, referred to as Priority-First
(PF), stipulates that newly-arriving higher priority packets take
precedence over newly-arriving lower priority packets. Notice
that, by satisfying constraint SA, system throughput can be max-
imized if we only consider a single batch of packet arrivals. If
we consider the real situation with consecutive batches of packet
arrivals, unsurprisingly, system throughput increases with lower
buffering delay. Hence, the second priority constraint, called
Minimum Delay (MD), stipulates that smaller delay buffer space
take precedence over larger delay buffer space. Having defined
the four above constraints, we are now at the stage of defining
the QoS scheduling problem.

QoS Scheduling Problem Definition: For WOPIS, consider
consecutive batches of packet arrivals, the QoS scheduling
problem is to find a set of in-out paths for each batch, achieving
two general constraints, CF and SA, and two priority con-
straints, PF and MD. (In other words, QoS scheduling aims
to satisfy contention-free prioritized scheduling, specified by
constraints CF and PF, while achieving maximum throughput,
specified by constraints SA and MD.

Definition 3: (i) Under the CF constraint, a contention con-
flicting group is defined to be a set of in-out paths that are mutu-
ally contending with each other. Hence, the RHNN scheduler is

to select at most one in-out path in each contention conflicting
group; and (ii) Under the SA constraint, a packet conflicting
group for a packet is defined to be a set of in-out paths, each
of which is a legitimate path candidate for the packet. Hence,
the RHNN scheduler is to select exactly one in-out path in the
group for the packet.

IV. THE RHNN SCHEDULER

In this section, we first briefly describe the HNN approach
and address its limitation of dealing with the priority-based
scheduling problem. We then propose the RHNN, i.e., an
HNN with ranked neurons, and formally describe its general
structure and detailed design via two theorems for resolving a
generic priority-based optimization problem. Through applying
the theorems to our QoS scheduling problem, we present the
RHNN scheduler design including the sufficient conditions for
the RHNN scheduler to converge to the optimal solution.

A. RHNN- General Structure and Design

An HNN is a single-layer feedback network that has widely
been used to solve optimization problems specified by con-
straints. It consists of a set of neurons that are interconnected
with purpose-designed neuron weights. During the iterative
operation, the update rule for each neuron is defined as [10]:

, where is the output of neuron
( if enabled) at update iteration is a unit step
function that is equal to 1 if , and 0, otherwise;
is the net weighted input of neuron at iteration , namely

, where is the neuron
weight from neuron to neuron , and is a system param-
eter, called threshold, for neuron . That is, the output of each
neuron at iteration merely depends on the pre-assigned
weights and other neurons’ outputs at iteration . For neuron

, a positive weight from neuron is viewed as excitatory, and
a negative weight is regarded as inhibitor. Significantly, the
behavior of an HNN is characterized by the energy function,

(3)

Ultimately, solving an optimization problem by an HNN is to
determine the neuron weights by equating the problem con-
straints with the energy function in (3).

It has been proved [10] that, via iteration the energy func-
tion will monotonically decrease and eventually converge
to an equilibrium state (absolute minimum value) if three re-
quirements are met. They are: 1) no self-feedback connection
(i.e., ); 2) symmetric weights (i.e., );
and 3) asynchronous neuron update (i.e., one neuron update at a
time). These requirements, however, pose a severe challenge to
solving priority-based problems. Due to the symmetric-weight
requirement, lower-priority neurons have the same probability
to be enabled as higher-priority neurons. Assume a low-priority
neuron is first enabled; then a higher-priority neuron can no
longer be enabled, if the problem constraint unfortunately de-
mands no more than one neuron in the same group (e.g., con-
tention or packet conflicting group).
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Fig. 3. RHNN operation (iteration �).

To meet the challenge, we propose the RHNN with ranked
neurons that facilitates prioritized enabling of neurons. Let
be the rank function of neuron . The neuron weights between
higher-rank and lower-rank neurons are asymmetrically struc-
tured such that higher-rank neurons are assured of receiving
extra positive stimulations, called rank stimulation that is of
specific form , from the lower-rank neu-
rons. Fig. 3 shows an example of RHNN operation at iteration

. Focusing on neuron , any enabled neuron with rank lower
than will send extra

to neuron . In Fig. 3, for example, enabled neuron
has the lower rank than that of ; it will then send

to neuron while sends to (not shown in
the figure), manifesting the asymmetric-weight characteristic of
RHNN. Provided that is a large enough positive constant, such
a rank-stimulation design allows a higher-rank neuron in a con-
flicting group to be enabled even though a lower-rank neuron in
the same group has already been enabled.

Nevertheless, due to asymmetric weights, RHNN violates the
second requirement of HNN for guaranteeing that the energy
function asymptotically converges to the equilibrium state. To
resolve this convergence problem, in the following we rigor-
ously present two theorems that supply the sufficient condi-
tions for the RHNN scheduler to converge to the optimal so-
lution. Specifically, the two sufficient conditions of the theo-
rems set forth the designation of the neuron weights. To our
QoS scheduling problem, Theorem 1 is to be applied for the
CF-constraint given in (1); and Theorem 2 is for the SA-con-
straint given in (2). For the ease of explanation, we denote
as the highest-rank neuron in the set of enabled neurons at
iteration ; and as the highest-rank neuron in the set of

all neurons. In addition, if the number of enabled
neurons at iteration is less than ; and , if .

Theorem 1 (in words): Under HNN, a given constraint which
assures at most one neuron will be enabled when the HNN
converges to the equilibrium state, then the specially designed
RHNN (see below) subject to the same constraint assures at
most one neuron with the highest rank will be enabled when
it converges to the equilibrium state.

Theorem 1: Given a constraint,
, where is the

output of neuron , and , the neuron weight
of HNN, , is attained from equating energy function

with . For RHNN, if the neuron weight is given as
, where is a

pre-assigned coefficient of rank stimulation, and is a unit
step function, then the RHNN will converge to the equilibrium
state under which at most one neuron with the highest rank
would be enabled.

Proof: By equating to energy function in (3),
we obtain and . By assigning

, we get
for RHNN. Thus,

at iteration . We now con-
sider the state change of any neuron, say , from iteration to

, under two cases: , and .
First, under , since and

has a negative value.
That is to say, neuron will be disabled at iteration
(regardless of its rank). This is true for all if .
Thus, all neurons would stay disabled, with the result that the
RHNN will converge to the equilibrium state under which
is satisfied.

Second, we consider all neurons , where . We
are to prove that is monotonically in-
creasing and converges to (i.e.,
the neuron with the highest rank would be enabled), and other
neurons will be disabled. To prove this, the four following cases
are considered.

Case I: We assume there is no enabled neuron at iteration
(i.e., ). Since for all , we have

, which indicates that will be enabled at iteration
(regardless of its rank). This implies .

Case II: We assume there is at least one enabled neuron at
iteration (i.e., ) and . Since the
rank of any enabled neuron is smaller than , we immediately
get , implying

. Therefore, will be enabled at iteration , resulting in
.

Case III: We assume there is at least one enabled neuron
at iteration (i.e., ) and .
Note that can be either already enabled or disabled at
iteration . If is enabled and is the only one neuron
with the highest rank, then and

. Thus, will stay enabled at iteration
and hence . However, if there is
more than one enabled neurons with the highest rank (including

), then we have . Since ,

we get , which implies will be
disabled at iteration . Since those other neurons with the
highest rank remained enabled, is unchanged, i.e.,

. On the other hand, if is disabled at
iteration , we have . By the same

token, , with the result that will
stay disabled and .

Case IV: We assume there is at least one enabled neuron at
iteration (i.e., ) and . We have
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, regardless of the state of at itera-

tion . Namely, , yielding that will
be disabled at iteration . However, since ,
the state change of is irrelevant to , which implies

.
From the four above cases, we have proved that is

monotonically increasing . Since
is bounded by will thus converge to
after finite iterations. In other words, the neuron with the highest
rank would be enabled. Because all other neurons have the ranks
that are less than or equal to , according to cases III and
IV, they will be disabled. The theorem is thus proved.

Theorem 2 (in words): Under HNN, a given constraint which
assures exactly neurons will be enabled when the HNN
converges to the equilibrium state, then the specially designed
RHNN (see below) subject to the same constraint assures
neurons associated with the -highest ranks will be enabled
when it converges to the equilibrium state.

Theorem 2: Assume constraint requires exactly neurons
to be enabled, i.e., , where is the output
of neuron . For the RHNN, if the neuron weight is given as

, where is a pre-as-
signed coefficient of rank stimulation and is a unit step
function, then exactly neurons associated with the -highest
ranks will be enabled when the RHNN converges to the equilib-
rium state.

Proof: We first rewrite constraint to
. By equating to the energy function in (3), we

obtain and . For RHNN, assigning
, rendering , we

arrive at

at iteration . To prove that neurons with the -highest ranks
will be enabled and other neurons will be disabled, we need
to show that is monotonically increasing

and converges to . To this end, we consider four
following cases.

Case I: We assume there are less than enabled neurons
at iteration , i.e., . Since

, we have , namely
neuron will be enabled at iteration (regardless of its
rank). Focusing on the rank, if there exists enabled neurons
and is disabled at iteration , then the enabling of yields

. Otherwise, we have .
Case II: We assume there are at least enabled neurons at it-

eration (i.e., ) and . Since the max-
imum number of enabled neurons with ranks being equal to or
higher than is , we thus have

, and , indicating

that will be enabled at iteration . Now, if has already
been enabled at iteration , the neuron with the highest rank
remains the same, i.e., . Otherwise, the en-
abling of neuron results in the increase of the highest rank
in the enabled-neuron set, namely .

Case III: We assume there are at least enabled neuron at it-
eration (i.e., ) and . Note that can
be either enabled or disabled at iteration . If is enabled and
there are less than enabled neurons (excluding ) with ranks
being equal to or higher than , then

, implying . Thus,
will stay enabled at iteration ; and

. However, if there are at least enabled neurons (ex-
cluding ) with rank being equal to or higher than , then
we have , and

, which implies will be disabled at iteration
. Since those other neurons with the rank equal to

remained enabled, is unchanged, i.e.,
. On the other hand, if is disabled at iteration , we get

. Thus,

, with the result that will stay disabled and
.

Case IV: We assume there are at least enabled neuron at
iteration (i.e., ) and . Clearly,

, regardless of the state of at iter-

ation . Thus, , yielding that
will be disabled at iteration . However, since

, the state change of is irrelevant to , which
implies .

According to the four cases, we have proved that is
monotonically increasing. Since is bounded by

will eventually converge to . It’s worth noting

that as converge to , all neurons with rank higher

than or equal to will also be enabled. Once con-
verges, the highest-rank neurons will stay enabled at all iter-
ations. For any remaining neuron , since , ac-
cording to cases III and IV, they will be disabled. The theorem
is thus proved.

It’s worth noting that enabling high-priority rank neurons
may cause more than one neuron enabled in a contention/packet
conflicting group, resulting in temporary increases in the energy
function value. However, after finite neuron updates, the low-
priority rank neuron will be disabled by the constraint, causing
that the energy again decreases and eventually stabilize to its
equilibrium state. Based on Theorems 1 and 2, in the next sub-
section, we propose the RHNN scheduler for the QoS sched-
uling problem.

We next show how RHNN can be implemented by analog
circuit, namely in parallel. To this end, we show that the
discrete-time form of RHNN can easily be transformed
to a continuous-time form. Let the evolving rule of a
neuron in the continuous RHNN be

, where is an input capac-
itance, is an input voltage, is the output of
neuron is the activation
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function, is a gain parameter, ,
where is an input conductance, and
is a ranked neuron weight. Rank stimulation when

; and otherwise. By making and
, we have and

i.e., the discrete behavior of RHNN with asynchronous update
is logically identical to a continuous behavior of an RHNN.

B. RHNN for QoS Scheduling Problem

For an RHNN, let neuron output, neuron weight, and
neuron threshold, be represented by

, re-
spectively. Then, the energy function can be expressed as

(4)

For constraint CF, by equating in (4) with in (1),
we can obtain the basic neuron weight and threshold

as shown in (5), at the bottom of this page, where
is defined at

the bottom of the page.Equation (5) implies that if two neu-
rons/paths and
belong to the same contention conflicting group, then the basic
weights connecting the two neurons are inhibitor-oriented, i.e.,

By the same token, for constraint SA, we can obtain the basic
neuron weight . However, due to the existing of the square

term in (2), which violates the standard
form of energy function, in (2) is first transformed into

(6)

By letting , the neuron weights and thresholds
can be derived as

(7)
where

if
if

Equation (7) indicates that if two neurons/paths belong to
the same packet conflicting group, then the basic weights
connecting the two neurons are inhibitor-oriented, i.e.,

. Notice that
both and are non-negative functions and their
potentially minimum values are zero. Due to the decreasing
and convergence properties of the energy function, and

will then converge to zero at the end of the iterative
process.

Next, we are to determine the rank stimulations. With two
priority-oriented constraints, we designate packet priority

and buffering delay as two rank functions.
Recall that there is only one rank function in Theorems 1 and
2. To apply Theorems 1 and 2, we give preference to packet
priority over buffering delay, and consider one rank func-
tion at a time. Ultimately, the final neuron weight from

to , and neuron
threshold can be given as shown in (8), at the bottom of
the next page, where are the coefficients (cor-
responding to the constant, , in Theorems 1 and 2). Notice
that the third term at the right-hand side of (8) is the rank
stimulation associated with packet priority. Specifically, if the
two packets are in the same contention conflicting group, i.e.,

(5)
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Fig. 4. Convergence behavior of the energy function. (a) Iteration traces under a smaller buffer. (b) Iteration traces under a larger buffer.

, from
Theorem 1, the rank stimulation is

; otherwise the priority effect is nullified.
The fourth term is the rank stimulation associated with
buffering delay if the two packets have the same priority, i.e.,

, and are in the same contention
conflicting group. Furthermore, under the SA constraint, since
all paths in the same packet conflicting group are for one
packet, we only need to regard the buffering delay
as the rank function when applying Theorem 2. This directly
yields the last term of (8). Finally, the convergence of the
RHNN scheduler is largely dependent on the determination
of five coefficients, . Through extensive deriva-
tion (see Appendix), we arrive at one coefficient correlation,

, with which the RHNN
scheduler converges to the optimal solution. This correlation of
coefficients is also used for our simulation.

V. SIMULATION RESULTS

We first demonstrate the convergence of the RHNN scheduler
under different coefficients settings via simulation results. In
the simulation, we assume that there are a total of input
packet flows entering into WOPIS at each system time slot,
where is the total number of input ports in each first-stage
switch; and is the total number of switching elements in
the first stage. Define Load as the ratio of the mean number
of newly-arriving packets to the total number of input ports in
TSOPS ; and traffic burstiness as the ratio of peak
arrival rate to the mean arrival rate. Each packet flow arrival is
generated by a two-state (ON and OFF) Interrupted Bernoulli
Process (IBP) distribution. Specifically, the state transition

probability from ON to OFF is 0.1, and from OFF to ON is
, resulting in a burstiness of . Finally,

system throughput is defined as the ratio of the mean number of
successfully scheduled packets to .

In Fig. 4, we show the simulation result of the convergence
behaviors of the energy function. In the figure, we display the
random iteration traces from HNN and our RHNN schedulers
under different settings of coefficients, over a number of parallel
iterations. It is worth noting that, since we carry out the simula-
tion using a sequential computer, only one neuron is updated per
each iteration. We recorded the total number of sequential iter-
ations. The number of parallel iterations is obtained by dividing
the total number of sequential iterations by the total number of
neurons. The iteration-trace set for a buffer size of
and are plotted in Fig. 4(a) and (b), respectively.

In Fig. 4(a), we display three sets of curves: 1) non-QoS
HNN scheduler with two traces; 2) QoS RHNN scheduler
under the specially designed coefficients with three traces; and
3) QoS and schedulers under randomly
selected coefficients. Note that, with the coefficients assigned
as and , the HNN scheduler
is a special form of RHNN scheduler. Its energy function is
monotonically decreasing and quickly converges, achieving a
system throughput of 0.829. Compare to HNN scheduler, due
to the use of rank stimulation, our RHNN scheduler achieves
higher system throughput (0.998) for higher-priority flows at an
expense of slower convergence time. Specifically, the RHNN
scheduler exhibits the energy function that temporally increases
but eventually converges, which is conformed to Theorems 1
and 2. Moreover, using randomly selected coefficients, both

and schedulers fail to converge, justifying

(8)



2444 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 16, AUGUST 15, 2011

Fig. 5. System throughput comparision. (a) Throughput under a smaller-size TSOPS. (b) Throughput under a larger-size TSOPS.

Fig. 6. QoS (five priority) differentiation of the RHNN parallel scheduler. (a) QoS differentiation under a smaller-size buffer. (b) QoS differentiation under a
larger-size buffer.

our design in the previous section. Under a larger buffer size
as shown in Fig. 4(b), we observe that the energy function also
converges but taking slightly more parallel iterations.

We next draw comparisons of complexity and system
throughput between the RHNN scheduler and two other packet
scheduling algorithms—exhaustive (optimal), and sequential
methods. The exhaustive method returns an optimal solution
by testing all possible path combinations for newly-arriving
packets, while the sequential method performs scheduling one
packet at a time by searching the contention-free and min-
imum-delay paths sequentially. With internal wavelengths
and second-stage switches, the exhaustive method requires a
computational complexity of . The sequential
method performs sequential check, requiring a complexity of

. Through experiments, our RHNN scheduler re-
quires no more than ten parallel iterations (before it converges)
that is nearly irrelevant to switch size, the numbers of internal
wavelengths and FDLs. Consider a WOPIS with 10-Gb/s per
wavelength and a packet size of 1000 bytes, each system slot
time is 0.8 sec long. To accommodate 20 parallel iterations

within 0.8 sec, the clock speed of a VLSI implementation of
RHNN is 25 MHz, which is attainable by the current VLSI
technology.

We show in Figs. 5 and 6 the system throughput based
on four methods- RHNN, exhaustive, HNN, and sequen-
tial, under different switch sizes, FOB sizes, and priority
levels. In Fig. 5(a), we adopt the TSOPS of a small size, i.e.,

, and . The use of such a
small-size TSOPS is because the exhaustive method fails to
attain system throughput due to unmanageable complexity for
any size larger than this. For the RHNN method, there are four
priorities of packets. The results in Fig. 5(a) show that, while
the sequential method yields the worst throughput among the
four methods, our RHNN scheduler achieves a nearly 100%
throughput for the highest-priority, which is as superior as that
of the exhaustive method. Without the priority differentiation
feature, HNN results in poorer throughput than RHNN for all
three priorities, and yields slightly improved throughput for the
lowest priority. In Fig. 5(b), we display the throughput based
on the RHNN (two priorities) and sequential methods, for a
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larger TSOPS that is of size 32-by-32 under
heavy load condition. In this simulation, we set and

and 2, yielding buffer sizes of 4 and 8, respectively. The
results show that the RHNN outperforms the sequential method
on the throughput for both priorities of packets.

In Fig. 6, we display the performance of RHNN sched-
uler with respect to QoS differentiation among five different
priorities and two different optical buffer sizes. Results in
Fig. 6(a) indicate that RHNN scheduler can achieve guaranteed
throughput for higher-priority packets even under a handful of
optical buffers . From both Fig. 6(a) and (b),
we show that the RHNN scheduler provides superlatively effec-
tive priority-based QoS differentiation with respect to system
throughput. Crucially, the higher-priority packets invariably
receive almost 100% throughput, regardless of the traffic load.

VI. CONCLUSION

In this paper, we have proposed a new parallel scheduler,
RHNN, for a WDM optical interconnection system, WOPIS.
With ranked neurons, RHNN is capable of resolving the QoS
scheduling problem, specified by four constraints (CF, SA, PF,
and MD). Based on two theorems, we determine the neuron
weights and coefficients subject to the convergence of the
RHNN scheduler to the optimal solution. Simulation results
show that the RHNN achieves as superlatively high throughput
(almost 100%) as that of the optimal method for higher-priority
packets. The computation time is as short as 0.8 sec for a
WOPIS operating at 10-Gb/s per wavelength. Significantly,
the RHNN scheduler achieves effective priority-based QoS
differentiation, with the result that the higher-priority packets
invariably receive almost 100% throughput regardless of any
increase in traffic load.

APPENDIX

We are to determine the coefficients in (8) by considering the
state change of a given path/neuron, ,
from iteration, say , to . From (5), (7), and (8), we have

(9)
At iteration , suppose there are enabled neurons that belong
to the same contention conflicting group of neuron ; there are
enabled neurons that belong to the same contention conflicting
group and have the same packet priority as ; and there are

enabled neurons that belong to the same packet conflicting
group of . Since if and

belong to the same contention con-
flicting group; and if and

belong to the same packet conflicting
group, then from (9) we attain

(10)

Moreover, path should be enabled, i.e., , iff
the following five conditions are simultaneously satisfied: (a)

(the corresponding buffer space is unoccu-
pied); (b) (there exists an in-out request for );
(c) ( has the highest packet
priority); (d)

( has the smallest buffering delay among those
of the same priority); and (e)
( has the smallest buffering delay). Therefore,

(11)

On the other hand, path should be disabled, i.e., ,
if any one of the above five conditions (a)–(e) is not satisfied.
Accordingly, from (10) we get

and (12)

for and (13)

for and (14)

for and (15)

for and (16)

Notice that if condition (c) is unsatisfied, we attain
, leading

to (14). In addition, if conditions (d) and (e) are not satisfied,
we get , and

, yielding
inequalities (15) and (16), respectively. By solving (11) to (16),
we arrive at a sufficient condition,

, for RHNN to converge to the optimal solution.
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