
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011 5485

Extracting Computational Entropy and Learning
Noisy Linear Functions

Chia-Jung Lee, Chi-Jen Lu, and Shi-Chun Tsai, Member, IEEE

Abstract—We study the task of deterministically extracting
randomness from sources containing computational entropy. The
sources we consider have the form of a conditional distribution
� � � �, for some function and some distribution , and we
say that such a source has computational min-entropy if any
circuit of size � can only predict � � correctly with probability
at most � given input sampled from . We first show that it
is impossible to have a seedless extractor to extract from one single
source of this kind. Then we show that it becomes possible if we
are allowed a seed which is weakly random (instead of perfectly
random) but contains some statistical min-entropy, or even a
seed which is not random at all but contains some computational
min-entropy. This can be seen as a step toward extending the study
of multisource extractors from the traditional, statistical setting
to a computational setting. We reduce the task of constructing
such extractors to a problem in computational learning theory:
learning linear functions under arbitrary distribution with adver-
sarial noise, and we provide a learning algorithm for this problem.
In fact, this problem is a well-recognized one in computational
learning theory and variants of this problem have been studied in-
tensively before. Thus, in addition to its application to extractors,
our learning algorithm also has independent interest of its own,
and it can be considered as the main technical contribution of this
paper.

Index Terms—Computational min-entropy, randomness extrac-
tors, learning linear functions, computational complexity.

I. INTRODUCTION

R ANDOMNESS has become a useful tool in computer sci-
ence, as the most efficient algorithms known for many

important problems are randomized. However, when analyzing
the performance of a randomized algorithm, we usually assume
that the algorithm has access to a perfectly random source. In re-
ality, the random sources we have access to are usually not per-
fect but may contain some amount of randomness. The amount

Manuscript received October 05, 2009; revised November 10, 2010; accepted
December 08, 2010. Date of current version July 29, 2011. The work of C.-J. Lu
was supported in part by the National Science Council of Taiwan under Contract
NSC-97-2221-E-001-012-MY3. The work of S.-C. Tsai was supported in part
by the National Science Council of Taiwan under Contracts NSC-97-2221-E-
009-064-MY3 and NSC-98-2221-E-009-078-MY3. The material in this paper
was presented in part at the 15th International Computing and Combinatorics
Conference (COCOON), Niagara Falls, NY, 2009.

C.-J. Lee was with the Department of Computer Science, National Chiao
Tung University, Hsinchu 300, Taiwan. She is now with the Institute of Infor-
mation Science, Academia Sinica, Taipei 115, Taiwan (e-mail: leecj@iis.sinica.
edu.tw).

C.-J. Lu is with the Institute of Information Science, Academia Sinica, Taipei
115, Taiwan (e-mail: cjlu@iis.sinica.edu.tw).

S.-C. Tsai is with the Department of Computer Science, National Chiao Tung
University, Hsinchu 300, Taiwan (e-mail: sctsai@csie.nctu.edu.tw).

Communicated by K. M. Martin, Associate Editor for Complexity and Cryp-
tography.

Digital Object Identifier 10.1109/TIT.2011.2158897

of randomness in a source is usually measured by its min-en-
tropy, where a source has min-entropy at least if every element
occurs with probability at most . From a source with some
min-entropy, we would like to have a procedure, called an ex-
tractor [30], [22], to extract almost perfect randomness, which
can then be used for randomized algorithms.

Most works on extractors focused on seeded extractors,
which can utilize an additional seed to aid the extraction. There
has been a long and fruitful line of results on constructing
seeded extractors (see [25] for a nice survey), which culmi-
nated in [21] and [13] with an optimal construction (up to
constant factors). However, there is an issue with using seeded
extractors. Namely, we need a seed which is perfectly random
and independent of the source we extract from. How do we
get such a seed? For some applications, this can be taken care
of (e.g., by enumerating through all possible seed values), but
for others, this seems to go back to the problem which we
try to solve using extractors. Can we get rid of the need for
a seed and have seedless extractors? For general sources, the
answer has been known to be negative [7]. On the other hand,
when the sources are restricted and have special structure, it
becomes possible to have seedless extractors. Examples of such
sources include samplable sources [28], bit-fixing sources [8],
[18], [10], independent-symbol sources [17], [19], and multiple
independent sources [7], [2], [3], [24], [6], [23].

In this paper, we would like to look for a more general class of
sources from which seedless extraction is still possible. In par-
ticular, we will consider sources which may contain no random-
ness at all in a statistical sense, but look slightly random to com-
putational-bounded observers, such as small circuits. That is, we
will go from a traditional, statistical setting to a computational
one. It is conceivable that in many situations when we consider
a source random, it may in fact only appear so to us, while its ac-
tual statistical min-entropy may be much smaller (or even zero)
especially if we take into account some correlated information
which we can observe. Another application of this notion is in
cryptography, and in fact the idea of extracting computational
randomness has appeared implicitly long ago since [29], [11],
[14], for the task of constructing pseudorandom generators from
one-way functions. The idea is that given a one-way function ,
it is hard to invert to get , and this means that given the
(correlated) information still looks somewhat random,
from which one can extract some bits that look almost random.
However, while there is a natural and well-accepted definition
for what it means that a distribution looks almost random [29], it
seems less clear how to define that a distribution looks slightly
random and how to measure the amount of randomness in it.
In fact, there are several alternatives which all seem reasonable,

0018-9448/$26.00 © 2011 IEEE

5486 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

but there are provable discrepancies among them [4], [15]. To
extract randomness from a source with so-called HILL-entropy
[4], the strongest among them, one can simply use any statis-
tical extractor, but we would like to extract randomness from
a broader class of sources. Here we consider a weaker (more
general) notion of computational randomness, which appears in
[15], and we call it computational min-entropy. A comparison
with other notions of computational randomness can be found
in [15].

A. Computational Min-Entropy

To model the more general situation that one may observe
some correlated information about the source, we consider the
setting with a pair of jointly distributed random variables and

, where is the source from which we want to extract and
(could be empty) is some information which one can observe. To
stress that we want to measure the randomness of conditioned
on and to extract randomness from given the information

, we use the notation to denote such a joint distribution.
The correlation between and is modeled by for
some function . In the example of one-way permutation, is
the inverse function , which is hard to compute, and is the
distribution of over a random . Here in our definition, we
allow to be probabilistic and we even do not require it to have
an efficient (or even computable) algorithm, and furthermore,
we do not require to be efficiently samplable either. We say
that such a source has computational min-entropy
if given input sampled from , any circuit of size can only
predict correctly with probability at most .1 From the
distribution , we would like to extract randomness which
when given still looks random to circuits of a certain size.
Note that a source with statistical min-entropy can be seen
as such a source with computational min-entropy ,
where we can simply have no or just have taking a fixed
value, and let be a probabilistic function with as its output
distribution. This means that extractors for sources with com-
putational min-entropy can immediately work for sources with
statistical min-entropy, and thus results in the computational set-
ting can be seen as a generalization of those in the traditional,
statistical setting. On the other hand, for a deterministic func-
tion , has no statistical min-entropy at all when given .
Still, according to our definition, as long as is hard to compute,

in fact can have high computational min-entropy.
Extractors for such sources were implicitly proposed before

[11], [14], and they are seeded ones. That is, they need an addi-
tional seed which must be perfectly random and independent
of the source. In fact, it is known that any seeded statistical
extractor with some additional reconstruction property (in the
sense of [27]) gives a seeded extractor for such sources [4], [26],
[15]. However, just as in the statistical setting, several natural
questions arise in the computational setting too. To extract from
such sources, do we really need a seed? Can we use a weaker
seed which is only slightly random, instead of perfectly random,
in a statistical sense, or an even weaker seed which only looks
slightly random in a computational sense but may contain no

1A more general definition is to have the circuit size as a separate parameter,
but our extractor construction does not seem to work for this more general def-
inition.

randomness in a statistical sense? Seeing the seed as an addi-
tional independent source, a general question is: Can we have
seedless extractors for multiple independent sources in which
each source contains some computational min-entropy? We will
try to answer these questions in this paper. One can see this as a
step toward extending the study of multisource extractors from
the traditional, statistical setting to a new, computational setting.
One can also see this as providing a finer map for the landscape
of statistical extractors, according to the degree of their recon-
struction property.

B. Our Results

First, we show that it is impossible to have seedless extractors
for one single source, even if the source of length can have a
computational min-entropy as high as and even if we only
want to extract one bit.

Next, we show that with the help of a weak seed, it becomes
possible to extract randomness from such sources. We use a
two-source extractor of Lee et al. [20], denoted as EXT, which
takes two input strings , sees them as vectors
from , where for some with , and
outputs their inner product, denoted as , over . As shown
in [20], it works for any two independent sources both con-
taining some statistical min-entropy. Moreover, it is also known
to work when one source contains some computational min-en-
tropy and the other, the seed, is perfectly random (in a statis-
tical sense) [12]. Our second result shows that it even works
when the seed only contains some statistical min-entropy. More
precisely, we show that given any source with com-
putational min-entropy and an-
other independent source with statistical min-entropy , the
output given cannot be distinguished from

random with advantage by circuits of size
. That is, for any such Boolean circuit

, where
denotes the uniform distribution. Then we proceed to show

that the extractor even works when the seed only contains com-
putational min-entropy. More precisely, when we replace the
source by a source with computational min-en-
tropy given still cannot be distin-
guished with advantage by circuits of size about . This can be
seen as a seedless extractor for two independent sources, both
with computational min-entropy.

We do not know if the statistical extractors of [2], [3], [24],
[6], and [23] for multiple independent sources can also work in
the computational setting, since to work in this setting, we need
them to have some reconstruction property. For the extractors
from [11] and [12], this property can be translated to a task in
learning theory, and the proofs there can be recast as providing
an algorithm for learning linear functions under uniform distri-
bution with adversarial noise. Our second result can be seen as
a generalization of [11] and [12], but we are facing a more chal-
lenging learning problem: learning linear functions under arbi-
trary distribution with adversarial noise. Our third result pro-
vides an algorithm for this problem, which, in addition to being
used to prove our second result, may have interest of its own.

In the learning problem, there is some unknown linear func-
tion , defined as , which we want

LEE et al.: EXTRACTING COMPUTATIONAL ENTROPY AND LEARNING NOISY LINEAR FUNCTIONS 5487

to learn, and there is a distribution over from
which we can sample to obtain a training example ,
for some function . The function can be seen
as a noisy version of with some noise rate , and there are
two noise models. In the adversarial-noise model, is a deter-
ministic function such that . In the
random-noise model, is a probabilistic function such that in-
dependently for any . We consider the
more difficult adversarial-noise model, and our algorithm works
for an arbitrary distribution , while its complexity depends on
the min-entropy of . More precisely, our algorithm samples

training examples, runs in time ,
and with high probability outputs a list containing every linear
function satisfying , for

. The factor in our running
time is in fact unavoidable because one can easily find a distribu-
tion (e.g., the first bits perfectly random and the rest fixed)
for which the number of such ’s, and thus the running time, is
in fact at least . Note that when is the uniform distribu-
tion (with), our algorithm runs in time and
takes samples.

Previously, the algorithm of Blum, Kalai, and Wasserman [5]
can learn under arbitrary distribution but in the random-noise
model, while that of Feldman et al. [9] can learn in the ad-
versarial-noise model but under the uniform distribution. Both
algorithms learn the parity functions on variables, tolerate a
noise rate , run in time , and take

samples. Very recently, Kalai, Mansour, and Verbin
[16] gave an algorithm which can learn the parity functions
under arbitrary distribution in the adversarial-noise model, but
the hypothesis they produce is not in the linear form, so it cannot
be used for our extractors. Furthermore, their algorithm only
produces one hypothesis instead of all the legitimate ones, and
their technique does not seem to generalize from the parity func-
tions to the linear functions over larger fields. Thus, to the best of
our knowledge, the task our learning algorithm achieves has not
been accomplished before. Finally, just as the result of [11] can
yield a list-decoding algorithm for Hadamard codes, so can ours,
while that of [16] cannot. In fact, our list-decoding algorithm
can work even when all but symbols from the codeword are
erased and an fraction of the remaining symbols are corrupted.
It can also be seen as list-decoding a punctured Hadamard code,
where a punctured code is obtained from a code by deleting all
but a small number of symbols from the codeword.

C. Our Techniques

For our impossibility result, we show that for any function
, there exists a function

such that has computational min-entropy
, but takes an identical value for all . We show

the existence of such a function by a standard probabilistic
argument: in fact, a random function from to
is likely to work, for the with the larger .

To show that our extractor works in the computational set-
ting, we follow the approach of [11] and reduce it to the task
of learning linear functions as we just discussed. More pre-
cisely, for the case when the source has computa-
tional min-entropy and the seed has statistical min-entropy,

the reduction works as follows. Assume our extractor EXT does
not work, and thus some efficient distinguisher can tell the dis-
tribution of from random given

, for a large fraction of from . For any such , we can
then predict the value with a good probability, given
the ability to sample from , which can then be used by the
learning algorithm to learn . This would give us an effi-
cient algorithm for predicting for those ’s, if we could in
fact sample efficiently. However, this may not be the case in
general as could be any arbitrary distribution. Still, by an av-
erage argument, there must exist a small set of samples from
which preserve this predicting probability, so we can hard-wire
them in to get a circuit which predicts well. If the function
is hard, this is impossible, so the assumed distinguisher cannot
exit, and EXT indeed works. For the case that the seed comes
from a distribution with computational min-entropy,
observe that alone (without conditioning on) must have
some statistical min-entropy, because otherwise it becomes easy
to predict. Then a very similar argument as above can be used.

Note that our results on extractors still depend on the exis-
tence of a good learning algorithm, and our main technical con-
tribution can be seen as providing such an algorithm. Our algo-
rithm can be seen as extending that of [5] from the random-
noise model to the adversarial-noise model. Note that in the
random-noise model, it is possible to predict the value of
with confidence for an input by taking the majority vote on
several independent predictions, while in the adversarial-noise
model, this does not seem so and the learning task becomes
much harder.

Our learning algorithm works as follows. We start by sam-
pling some number of training examples from

. Note that each example gives us a linear
equation for the unknown , so the examples
gives us a system of linear equations, some of which may
be wrong. We reduce the original problem of learning the un-
known to the problem of solving such a noisy system of linear
equations. To solve the system, we proceed in two phases. In
the forward phase, we start from the system, and use several it-
erations to produce smaller and smaller systems with fewer and
fewer variables, until we have a small enough system which we
can afford to solve using brute force. Then we enter the back-
ward phase, and starting from the last system produced by the
forward phase, we work backward on larger and larger systems
produced in the forward phase to obtain solutions for more and
more variables. Since the possible solutions may not be unique,
we keep them all in a list in each iteration, and the list in the
final iteration of the backward phase is our output, which we
hope contains the correct .

The forward phase is similar in spirit to an approach in [5]. The
key is to guarantee that after each iteration, the solution is still
good for the new system in the sense that the new system still con-
tains a good fraction of correct equations with respect to , so that

will not be lost when solving this new system. Using an argu-
ment similar to that in [5], we can show that this does hold with a
significant probability. On the other hand, it is not clear whether
or not some iteration in the forward phase would turn many origi-
nally bad solutions into good ones for the new system (satisfying
a good fraction of its equations). That is, not only is a good so-

5488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

lution for the system, there are in fact too many good solutions
for it. If this happens, then in the backward phase when we try to
solve this system, we cannot afford to keep all such solutions, and
we have the risk of losing the actual solution . This tricky situa-
tion does not arise in the random-noise model considered in [5],
so a much simpler algorithm works there. However, in the adver-
sarial-noise model, this seems unavoidable. Fortunately, we can
show that with high probability, the systems we produce indeed
do not have too many good solutions. This turns out to rely on the
fact that our extractor is also a good statistical extractor, together
with the property, which we will show, that each system is likely
to have a distribution which is close to some good distribution
with high statistical min-entropy.

II. PRELIMINARIES

For any , let denote the uniform distribution over
. Let be the class of functions computable by

Boolean circuits of size . We say that a function
is an -distinguisher for two distributions and over

if

All logarithms in this paper will have base two.
We consider two types of min-entropy: statistical min-en-

tropy and computational min-entropy. The notion of statistical
min-entropy is a standard one, usually just called min-entropy.

Definition 1: We say that a distribution has statistical min-
entropy at least , denoted by , if for any

.
Next, we define the notion of computational min-entropy.

Here, we consider the more general setting of measuring the ran-
domness of a distribution given a correlated distribution ,
and we use to denote such a joint distribution. The cor-
relation between and is modeled by for some
function , which could be either probabilistic or deterministic.

Definition 2: We say that a distribution has compu-
tational min-entropy , denoted by , if for any

.
We consider three kinds of extractors: statistical extractors,

hybrid extractors and computational extractors. The notion of
statistical extractors is a standard one for 2-source extractors,
usually just called 2-source extractors, while we introduce the
notions of hybrid extractors and computational extractors.

Definition 3: A function
is called a

• -statistical-extractor if for any source with
and any source , independent of , with
, there is no -distinguisher (without any

complexity bound) for the distributions
and .

• -hybrid-extractor if for any source
with and any source , independent of

, with , there is no -distinguisher
in for the distributions and

.

• -computational-extractor if for any source
with and any source ,

independent of , with , there
is no -distinguisher in for the distributions

and .

Remark 1: Note that the definition above corresponds to the
notion of strong extractors in the setting of seeded statistical ex-
tractors, which guarantees that even given the seed (the second
source), the output still looks random.

We will need the following statistical extractor from [20],
which generalizes the construction from [7]. For any
with , let , and see any as an -dimen-
sional vector over . Then for
any , let be their inner product over defined as

Theorem 1: [20] The function
defined as is a -statis-

tical-extractor when .
We will need the following fact about statistical extractors.

Lemma 1: Let be
any -statistical-extractor. Then for any source over

with and any function
, there are at most different ’s satisfying

Proof: Let be the set consisting of such ’s and let
be the uniform distribution over . Consider the distinguisher

defined as if and
otherwise. Then, the difference

is equal to

which is at least

This implies that , because otherwise it
would contradict the fact that EXT is a good statistical extractor.

Finally, we will need the following lemma about obtaining
predictors from distinguishers. The Boolean case is
well known, and a proof for general can be found in [12].

Lemma 2: For any source over and any function
, if there is an -distinguisher for the

distributions and , then there is a predictor
with as oracle which calls once and runs in time

such that

LEE et al.: EXTRACTING COMPUTATIONAL ENTROPY AND LEARNING NOISY LINEAR FUNCTIONS 5489

III. AN IMPOSSIBILITY RESULT

Just as in the statistical setting [7], we show that seedless
extractors do not exist either in the computational setting. In
fact, we show the impossibility result even for sources with a
computational min-entropy as high as .

Theorem 2: For any with and for any
function , there exists a deterministic
function such that

for but takes the same value for all
(so can be easily distinguished from random).

Proof: Consider any function .
Assume without loss of generality that .
Then we will show the existence of a function such that

but for all . In fact, a
standard argument can show that a random function is likely to
work, as we will describe next.

Consider a random function . Fix
any , and for each

, define a binary random variable such that
if and only if . Observe that is the

number of satisfying . Note that

and let . Then by a Chernoff bound (see e.g.,
[1]), we have

Since and , a union bound
gives

Hence, there exists some , such that
for any , but

for any . This completes the proof.

IV. HYBRID AND COMPUTATIONAL EXTRACTORS

In this section, we show that the function
defined in Theorem 1 as

which is known to be a good statistical extractor, is also a good
hybrid extractor and a good computational extractor.

Theorem 3: For any , any

dividing , any , any ,
and for some , the function

defined above is both
a -hybrid-extractor and a -computa-
tional-extractor.

The proof for Theorem 3 relies on the following result, which
gives an algorithm for the problem of learning linear functions
under arbitrary distribution with adversarial noise.

Theorem 4: For any , any

dividing , and any , there exists a learning
algorithm with the following property. Given any source
over with and any function

, the algorithm samples training exam-
ples from the distribution and then runs in time

to output a list of size which
with probability contains every satisfying

Note that as in a standard learning-theoretical setting, we do
not count the complexity of sampling the training examples (or
just count each sampling as unit cost) in Theorem 4. We will
prove the theorem in the next section, and now let us see how it
is used to show Theorem 3.

Proof: (of Theorem 3)
First, we prove that the function EXT is a good hybrid ex-

tractor. Consider any source with and any
source , which is independent of , with .
Assume for the sake of contradiction that there exists an -dis-
tinguisher for the distributions
and . By Lemma 2, this implies the existence of a
predictor with

Let , and call any heavy if

Then a Markov inequality shows that

Given any heavy , we want to predict from with a
good probability. This can be reduced to the task of learning
the linear function , through noisy training examples

, with , under the distribution
. Consider the algorithm which on input calls the

algorithm in Theorem 4 using the function ,
and outputs a random element in the list produced by . It
samples independent elements, denoted as , from

, makes calls to , and for any heavy it
outputs with probability .
Then is at least

which is at least

5490 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

That is, we have

We are almost done except that we still cannot bound the
complexity of the algorithm because it needs a way to sample
elements from the source which may not have an efficient
sampling algorithm, unlike in the learning setting where one
does not count the complexity of sampling. Fortunately, by an
average argument, the bound above still holds for some fixed

, and we can simply hard-wire it into . Similarly, we can do
this for other random choices of , and it is not hard to show
that one can have a resulting circuit of size

which is at most

Thus, for some large enough , we have
a circuit of size smaller than which can predict correctly
with probability at least

This contradicts the assumption that , which
means that the distinguisher assumed at the beginning cannot
exist, so EXT is a good hybrid extractor as claimed.

Next, we prove that EXT is also a good computational ex-
tractor, and the proof is almost identical. Consider two inde-
pendent sources and , with and

. Observe that the distribution of must have
statistical min-entropy at least , because otherwise the pre-
dictor which always outputs the value with the largest mea-
sure can predict correctly with probability larger than ,
a violation of the assumption that . Then we
can follow the proof above: assuming the existence of a distin-
guisher for EXT, we can obtain a predictor of size smaller than

, with some elements from hard-wired
in it, which can predict correctly with probability larger than

. This contradicts the fact that , so EXT is a
good computational extractor.

V. LEARNING NOISY LINEAR FUNCTIONS

In this section, we prove Theorem 4. Recall that given any
source over with , any

, and any function , we would like
to learn some unknown such that

(1)

Since such may not be unique, we will list them all. Let us
first imagine one such fixed .

We start by randomly choosing indepen-
dent training examples (with replacement) from the distribution

, for some large enough constant (depending on
). Let denote the matrix and the -dimen-

sional vector, both over , such that for each training example
has as a row and has

Fig. 1. FORWARD PHASE.

Fig. 2. BACKWARD PHASE.

as an entry. Note that each training example , with
, gives us a linear equation

for . Thus from these training ex-
amples, we obtain a system of linear equations, denoted as

, and we would like to reduce the task of learning
to that of solving this system of linear equations. However, this
system is highly noisy as about fraction of the equa-
tions are likely to be wrong, according to (1). We will roughly
follow the approach of Gaussian elimination (which works for
noiseless systems of linear equations), but will make substantial
changes in order to deal with our noisy case.

Our algorithm consists of two phases: the forward phase,
shown in Fig. 1, and the backward phase, shown in Fig. 2. The
forward phase works as follows, which is similar to an ap-
proach of Blum et al. [5]. Starting from the system
of linear equations, we use several iterations to produce smaller
and smaller systems with fewer and fewer variables, until we
have a small enough system which we can afford to solve using
brute force. More precisely, we choose the parameters

divide each row of into blocks, with each block con-
taining elements in , and proceed in iterations, as shown in
Fig. 1. Note that after iteration , we have the system
which has variables and equations, with

LEE et al.: EXTRACTING COMPUTATIONAL ENTROPY AND LEARNING NOISY LINEAR FUNCTIONS 5491

for a large enough constant . The key is to guarantee that the
system still contains a good fraction of correct equations. Let

A simple induction shows that for

for a large enough constant . We say that any is
-good for the system if it satisfies at least

fraction of equations in the system. Let denote
without its first blocks, and we call the forward phase good
if for every is -good for . Lemma 3 below,
which will be proved in Section V-A, guarantees that the for-
ward phase is good with a significant probability.

Lemma 3: The forward phase is good with probability at least
.

For the backward phase, we start from the last system
produced by the forward phase, and work back-

ward on larger and larger systems produced in the forward
phase to obtain solutions for more and more variables. More
precisely, we go from down to , and while in
iteration , we try to find all possible solutions which extend
solutions from iteration and are -good for , as
shown in Fig. 2. However, in order to bound the running time,
we will stop including the solutions once their number grows
beyond the threshold

If this happens, we may fail to include the actual solution in
our final list. Call the backward phase good if for every , the
number of such -good solutions for is at most ,
or equivalently, it never reports “error.” Lemma 4 below, which
will be proved in Section V-B, guarantees that the backward
phase is indeed good with a high probability.

Lemma 4: The backward phase is not good with probability
at most .

From Lemma 3 and Lemma 4, the probability that both the
forward and backward phases are good is at least

Assuming that both phases are good, a simple induction shows
that for any and hence . Thus, we have
shown that any fixed satisfying the bound in (1) is contained in
the list of size at most with probability . We
can further reduce the probability of missing this to
by repeating the process times, and take the union
of the produced lists. Then a union bound shows that some
satisfying (1) is not included in the final output with probability
only .

Finally, let us measure the complexity of our algorithm. First,
training examples are sampled from the dis-

tribution . Next, each iteration of the forward phase

works on a system of at most equations with at most vari-
ables and runs in time , and hence the whole forward
phase runs in time

since . Then, each iteration of the backward
phase runs in time

so the whole backward phase runs in time

Finally, the process is repeated for times, and thus
the total running time is

As a result, we have Theorem 4. To complete the proof, it re-
mains to prove Lemma 3 and Lemma 4, which we do next.

A. Proof of Lemma 3

First, by a Chernoff bound, we know that satisfies
less than fraction of equations in with
probability at most . That is, is -good
for with probability . Next, we need the
following lemma.

Lemma 5: In the forward phase, if is -good for
, then is -good for with prob-

ability at least .
Proof: Let . Assume that is -good,

so it satisfies at least fraction of equations in the
system . Partition equations in the system

into groups according to their first blocks,
as in Step 1(a) of the forward phase. Suppose group con-
tains fraction of equations in and
satisfies fraction of equations in the group, for some

. Then we have

(2)

We would like to count the expected fraction of new equa-
tions satisfied by , where we count equations in their
multiplicity. Before doing that, let us first count the fraction
with respect to the system obtained before Step 1(d) (before re-
moving pivots). Let us denote a generic equation of the system

by . Consider any group . For

5492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

, let denote the fraction of equations
in the group which are off by a value in the sense that

Note that for to satisfy a new equation, which is the dif-
ference between two equations, these two involved equations
must be off by the same value. Therefore, the expected frac-
tion of new satisfied equations in this group is , which
under the constraint achieves its minimum when

for all other . Hence, after one itera-
tion, the expected fraction of new equations in group (before
removing pivots) satisfied by is at least

Combing all groups together, the expected fraction of satisfied
equations overall (before removing the pivots) is at least

where the first inequality is due to Jensen inequality, and the
second inequality uses the bound implied by that
in (2).

To get the expected fraction of satisfied equations in the final
system , after performing Step 1(d), observe that we
only need to discard at most equations, each
with measure , so the total discarded measure, de-
noted as , is at most

for a large enough constant . As a result, the expected fraction
of equations in satisfied by is at least

by recalling that and . Finally, by a
Markov inequality, we have the lemma.

Then by Lemma 5 and an induction, the forward phase is good
with probability at least

This proves Lemma 3.

B. Proof of Lemma 4

Recall that a solution is -good for the system if
it satisfies at least fraction of the equations. For any

such that , consider the following event:
• : the number of -good solutions for ex-

ceeds .
Thus, our goal is to show that

We will prove this by a union bound, so our goal is reduced to
bounding each for .

To get a quick idea, let us first consider how to bound
. Note that since EXT is a good statistical ex-

tractor and has a high min-entropy, Lemma 1 guaran-
tees that the number of satisfying the probability bound

is at most . Any
other is very unlike to be -good for by a
Chernoff bound because each row of is sampled indepen-
dently from . Since happens only when any such (not
satisfying that probability bound) is -good, a union bound
shows that is indeed small.

Now for , to follow this idea to bound , we
would also like the distribution of , denoted as , to
have the nice property that each of its rows comes indepen-
dently from a high min-entropy source. Unfortunately, this is not
true in general,2 and a much more involved analysis is needed.
Our approach is to consider the distribution conditioned on
the choice of pivots in the first iterations. We call a particular
choice of the pivots a restriction of the pivots, which includes
fixing the indices and the values of some rows as pivots while
leaving other rows free. We will show that the distribution
conditioned on most restrictions is close to a distribution with
the nice property. For our purpose here, instead of using the
standard definition of “closeness” (which would be measured
according to the statistical distance), we consider the following
one.

Definition 4: We say that two distributions are -close if the
probabilities of any event according to the two distributions are
within a multiplicative factor of from each other.

Observe that one can generate the matrix in an alterna-
tive way by first choosing the pivots in iterations and then gen-
erating the matrices consistent with the pivots.
Formally, the distribution (the distribution of the matrix

) can be generated in two passes as follows. In the first pass,
we select a restriction of pivots in the first iterations, denoted
as , by running the forward phase on the matrix

sampled from and collecting the pivots, which include
the indices and the values of rows as pivots, in each iteration. In

2This is true in the simple case considered by [5] that one has � � � to
start with. In this case, for each �, one can easily show that each row of �
does come independently from the uniform distribution � .

LEE et al.: EXTRACTING COMPUTATIONAL ENTROPY AND LEARNING NOISY LINEAR FUNCTIONS 5493

the second pass, we again sample a matrix from and
then run the forward phase accordingly for iterations to derive
the matrix , under the condition, denoted as ,
that the pivots selected in the iterations match .
Let denote such a conditional dis-
tribution of with respect to the restriction .
Now consider the following event about , over the distribu-
tion of selected in the first pass.

• : the distribution is -close to some distribu-
tion which has rows, each coming independently
from a distribution with ,
for some .

The following lemma, which will be proved later, shows that
when conditioned on , the probability of is indeed
small.

Lemma 6: For any such that

Next, we would like to show that happens with high
probability. Note that for , the event always happens
because the initial distribution has the nice property itself,
so we have and . For , we
use induction to show that

and then we rely on the following lemma, which will be proved
later.

Lemma 7: For any such that

From these two lemmas, we have that for any such that

For , we have

As a result, a union bound gives us

which proves Lemma 4. Thus, it remains to prove Lemma 6 and
Lemma 7, which we do in the next two subsections.

C. Proof of Lemma 6

Let us first count the number of solutions such that

Let denote the set of such ’s. Note that is a source over
with . Thus

by Theorem 1 and Lemma 1, we have

This means that for the event to happen, some must
be -good.

Consider any restriction such that the event
happens. If we sample the matrix according to the

distribution , which has each row coming independently
from , then any fixed is -good (satisfying at least

fraction of equations in) with probability
at most by a Chernoff bound, and a union bound
shows that

Now if we sample according to the distribution
, which is -close to (given that

happens), the probability is only scaled up by a factor . Thus,
we have

Since the bound holds for any restriction such
that the event happens, we have the lemma.

D. Proof of Lemma 7

Let us consider any restriction such that the
event happens, and we will show that happens with
high probability, over the selection of . More precisely, the
assumption that happens means that we start iteration
from the distribution which is close to some nice distri-
bution , and our task is to show that with high probability
over the selection of , the resulting conditional distribution

after iteration is close to another nice distribution ,
so that happens. For this, we need to figure out which of
these ’s make happen.

Note that for a restriction , the corresponding distribution
is obtained by applying Steps 1(c) and 1(d) on the matrix

sampled from under the condition that it is con-
sistent with . The restriction fixes some rows

5494 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

Fig. 3. If �� is close to � , then �� is close to � , conditioned on � .

of the matrix as pivots and it has the effect on the dis-
tribution that all the rows of must belong to the

groups of those rows. We would like the effect to be small,
and we consider the following event, over the selection of .

• : those elements in the support of which would
belong to those groups of when selected as rows
of (i.e., those with their first blocks matching one
of the first blocks of the rows in) have a combined
measure of in the distribution .

We will show that if happens then happens. For this,
let us consider any fixed restriction such that happens,
and let us use to denote the event that the pivots chosen in
iteration match those in . Our approach is illustrated in
Fig. 3.

First, let us consider the case of starting iteration from the
nice distribution , instead of , conditioned on

, and let be the resulting distribution after iteration .
The following claim shows that is in fact close to a nice
distribution.

Claim 1: For some , the distribution is
-close to some nice distribution described in the event

(i.e., has rows, each coming independently from
a distribution with).

Next, let us go back to the actual situation of starting itera-
tion from the distribution , instead of as we did
in the above claim. Using the assumption that is close
to , our next claim shows that when we start iteration
from the distribution conditioned on , the resulting
distribution is close to the distribution .

Claim 2: The distribution is -close to the distribu-
tion .

From these two claims, we can conclude that is -close
to , for , which by induction is at
most

This implies that for any restriction such that the event
happens, the event must happen as well. Therefore, the
probability that does not happen is at most the probability
that does not happen, which we bound by the following
claim.

Claim 3: The probability over the selection of that
does not happen is at most .

We have shown that for any restriction such
that the event happens, the probability, over the selection
of , that the event does not happen is at most .
This implies that , which proves
Lemma 7. Thus, it remains to prove the three claims above,
which we do next.

Proof: (of Claim 1)
Recall that we have fixed a restriction which fixes some

rows as pivots such that the event happens, and we use
to denote the event that the pivots selected during iteration
match those in the restriction . In this claim, we consider the
situation of starting iteration from the nice distribution
conditioned on the event .

First, let us see how the distribution is affected by the
conditioning on . Consider any fixed matrix of

rows, insert the rows of at the proper places to
get a fixed matrix of rows, and let us use
to denote the event that a randomly sampled matrix from
equals this matrix . If the matrix has a row not in the
groups of , then . Otherwise,

is

where is the measure of the ’th row of in
is the number of rows of in group , and is

the measure of group in . Note that for some
, the numerator equals

while the denominator equals

LEE et al.: EXTRACTING COMPUTATIONAL ENTROPY AND LEARNING NOISY LINEAR FUNCTIONS 5495

where as we assume that the event
happens. As a result, for , we have

Note that the first factor above can be seen as the probability
when we sample each row of the matrix independently ac-
cording a new distribution , which is the distribution

restricted to those groups of and normalized
by their measure . Thus, although the conditioning on the
event may destroy the independence so that we can no
longer see each row as coming independently from , we
can somehow have the independence restored by considering
another distribution with some distortion factor .
More precisely, we have shown that the distribution
conditioned on the event is -close to a nice distribution,
denoted as , which has each of its remaining row (not
fixed by) coming independently from , with

Next, let us see what the resulting distribution will be when
Steps 1(c) and 1(d) are performed on the distribution
conditioned on . Again, we first consider the case of ap-
plying the two steps on the nice distribution instead.
When we perform Step 1(c) to subtract from each row its cor-
responding pivot, which is a fixed value, each resulting row
still remains independent from others. However, the distribu-
tion of each resulting row is now changed to another distribution
which may have a smaller min-entropy than that of , be-
cause different initial rows after subtracting their corresponding
pivots may result in the same value. Still, the number of such
initial rows can be at most since no two such rows can
come from the same group, which implies that the min-entropy
only decreases by at most . Then after performing Step 1(d)
to remove the pivots and delete the first blocks, the resulting
matrix has each row coming independently from some distribu-
tion with min-entropy at least

That is, after performing Steps 1(c) and 1(d) on the distribution
, the resulting distribution, denoted as , satisfies the

condition in event . Finally, let us get back to the actual case
of starting with the distribution conditioned on .
Since it is -close to , the resulting distribution after
applying the two steps is -close to the corresponding resulting
distribution , which proves the claim.

Proof: (of Claim 2)
In this claim, we go back to the actual situation of starting

iteration from the distribution , instead of as we
just did. We would like to show that the resulting distribution

when starting from is -close to the distribution
when starting from . For this, it suffices to show

that for any event , the probabilities of

and are within a multiplicative factor of
. This is true because from the fact that and

are -close, we know that and
are within a multiplicative factor of , and

so are and .

Proof: (of Claim 3)
Note that the restriction can be selected by sampling a

matrix according to the distribution and then ap-
plying Steps 1(a) and 1(b) to select the pivots. Thus, the prob-
ability that does not happen is at most the probability that
all the rows of lie in some groups with a com-
bined measure of in the distribution .

Again, let us first consider the case of sampling ac-
cording to the distribution , instead of . Note that
there are at most ways of choosing the groups with a
combined measure of in , and the probability
that all the independent rows lie in any partic-
ular choice of such groups is at most . Then a union
bound shows that the probability of having is at most

Next, let us go back to actual case of sampling ac-
cording to the distribution . Note that the probability of
having according to can only be larger than that
according to by at most a factor of , and hence it is
still at most

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method. : John Wiley,
1992.

[2] B. Barak, R. Impagliazzo, and A. Wigderson, “Extracting randomness
using few independent sources,” SIAM J. Comput., vol. 36, no. 4, pp.
1095–1118, 2006.

[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson,
“Simulating independence: New constructions of condensers, Ramsey
graphs, dispersers, and extractors,” in Proc. 37th Annu. ACM Symp. on
Theory of Computing (STOC’05), 2005, pp. 1–10.

[4] B. Barak, R. Shaltiel, and A. Wigderson, “Computational analogues of
entropy,” in Proc. 7th Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM’03), 2003, pp. 200–215.

[5] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning, the
parity problem, and the statistical query model,” J. ACM, vol. 50, no.
4, pp. 506–519, 2003.

[6] J. Bourgain, “More on the sum-product phenomenon in prime fields
and its applications,” Int. J. Numb. Theory, vol. 1, no. 1, pp. 1–32, 2005.

[7] B. Chor and O. Goldreich, “Unbiased bits from sources of weak
randomness and probabilistic communication complexity,” SIAM J.
Comput., vol. 17, no. 2, pp. 230–261, Apr. 1988.

[8] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and R.
Smolensky, “The bit extraction problem of �-resilient functions,” in
Proc. 26th Annu. IEEE Symp. Found. Comput. Sci. (FOCS’85), pp.
396–407.

[9] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami, “On agnostic
learning of parities, monomials, and halfspaces,” SIAM J. Comput., vol.
39, no. 2, pp. 606–645, 2009.

[10] A. Gabizon, R. Raz, and R. Shaltiel, “Deterministic extractors for bit-
fixing sources by obtaining an independent seed,” SIAM J. Comput.,
vol. 36, no. 4, pp. 1072–1094, 2006.

[11] O. Goldreich and L. A. Levin, “A hard-core predicate for all
one-way functions,” in Proc. 21st Annu. ACM Symp. Theory Comput.
(STOC’89), pp. 25–32.

5496 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

[12] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning polynomials with
queries: The highly noisy case,” SIAM J. Discrete Math., vol. 13, no.
4, pp. 535–570, 2000.

[13] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes,” J. ACM, vol. 56,
no. 4, 2009, Art. 20.

[14] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom
generator from any one-way function,” SIAM J. Comput., vol. 28, no.
4, pp. 1364–1396, 1999.

[15] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin, “Conditional computational en-
tropy, or toward separating pseudoentropy from compressibility,” in
Proc. Adv. Cryptol.—EUROCRYPT, 2007, pp. 169–186.

[16] A. Kalai, Y. Mansour, and E. Verbin, “On agnostic boosting and parity
learning,” in Proc. 40th Annu. ACM Symp. Theory Comput. (STOC’08),
pp. 629–638.

[17] J. Kamp, A. Rao, S. Vadhan, and D. Zuckerman, “Deterministic extrac-
tors for small-space sources,” in Proc. 38th Annu. ACM Symp. Theory
Comput. (STOC’06), pp. 691–700.

[18] J. Kamp and D. Zuckerman, “Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography,” SIAM J. Comput., vol.
36, no. 5, pp. 1231–1247, 2007.

[19] C.-J. Lee, C.-J. Lu, and S.-C. Tsai, “Deterministic extractors for inde-
pendent-symbol sources,” in Proc. 33rd Int. Colloq. Automata, Lang.,
Program. (ICALP 2006), pp. 84–95.

[20] C.-J. Lee, C.-J. Lu, S.-C. Tsai, and W.-G. Tzeng, “Extracting random-
ness from multiple independent sources,” IEEE Trans. Inf. Theory, vol.
51, no. 6, pp. 2224–2227, Jun. 2005.

[21] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson, “Extractors: Op-
timal up to constant factors,” in Proc. 35th Annu. ACM Symp. Theory
Comput. (STOC’03), pp. 602–611.

[22] N. Nisan and D. Zuckerman, “Randomness is linear in space,” J.
Comput. Syst. Sci., vol. 52, no. 1, pp. 43–52, 1996.

[23] A. Rao, “Extractors for a constant number of polynomially small min-
entropy independent sources,” SIAM J. Comput., vol. 39, no. 1, pp.
168–194, 2009.

[24] R. Raz, “Extractors with weak random seeds,” in Proc. 37th Annu. ACM
Symp. Theory Comput. (STOC’05), pp. 11–20.

[25] R. Shaltiel, “Recent developments in explicit constructions of extrac-
tors,” Bull. Eur. Assoc. Theor. Comput. Sci., vol. 77, pp. 67–95, 2002.

[26] A. Ta-Shma and D. Zuckerman, “Extractor codes,” IEEE Trans. Inf.
Theory, vol. 50, no. 12, pp. 3015–3025, Dec. 2004.

[27] L. Trevisan, “Extractors and pseudorandom generators,” J. ACM, vol.
48, no. 4, pp. 860–879, 2001.

[28] L. Trevisan and S. Vadhan, “Extracting randomness from samplable
distributions,” in Proc. 41st Annu. IEEE Symp. Found. Comput. Sci.
(FOCS’00), pp. 32–42.

[29] A. C. Yao, “Theory and applications of trapdoor functions,” in Proc.
23rd Annu. IEEE Symp. Found. Comput. Sci. (FOCS’82), pp. 80–91.

[30] D. Zuckerman, “General weak random sources,” in Proc. 31st Annu.
IEEE Symp. Found. Comput. Sci. (FOCS’90), pp. 534–543.

Chia-Jung Lee received the B.S. degree from the National Taiwan Normal
University, Taipei, Taiwan, in 2000, and the Ph.D. degree in computer science
from the National Chiao-Tung University, Hsinchu, Taiwan, in 2010. She is now
doing postdoctoral research at the Institute of Information Science, Academia
Sinica, Taipei, Taiwan. Her research interests are randomness in computation,
cryptography, and theoretical computer science.

Chi-Jen Lu received his B.S. and M.S. degrees from National Taiwan Univer-
sity, Taiwan, in 1988 and 1990 respectively, and his Ph.D. degree from Univer-
sity of Massachusetts at Amherst, USA, in 1999, all in computer science. He
is currently a research fellow in the Institute of Information Science, Academia
Sinica, Taiwan. His research interests include randomness in computation, com-
putational complexity, cryptography, game theory, and machine learning.

Shi-Chun Tsai (M’06) received his B.S. and M.S. degrees in computer science
and information engineering from National Taiwan University, Taiwan, in 1984
and 1988, respectively, and the Ph.D. degree in computer science from the Uni-
versity of Chicago, USA, in 1996. During 1993–1996, he served as a Lecturer in
the Computer Science Department, University of Chicago. During 1996–2001,
he was Associate Professor of Information Management Department, and Com-
puter Science and Information Engineering Department, National Chi Nan Uni-
versity, Taiwan. He has been with the Department of Computer Science, Na-
tional Chiao Tung University, Taiwan since 2001, and was promoted to full
Professor in 2007. He is currently serving as the Director of the Information
Technology Service Center of National Chiao Tung University. His research in-
terests include computational complexity, algorithms, coding theory, and com-
binatorics.

