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In order to enhance the sensitivity of diagnosis, a recombinant clone containing domain I of HCV core (amino acid residues 1 to
123) was subjected to random mutagenesis. Five mutants with higher sensitivity were obtained by colony screening of 616 mutants
using reverse ELISA. Sequence analysis of these mutants revealed alterations focusing on W84, P95, P110, or V129. The inclusion
bodies of these recombinant proteins overexpressed in E. coli BL21(DE3) were subsequently dissolved using 6 M urea and then
refolded by stepwise dialysis. Compared to the unfolded wild-type antigen, the refolded M3b antigen (W84S, P110S and V129L)
exhibited an increase of 66% antigenicity with binding capacity of 0.96 and affinity of 113 μM−1. Moreover, the 33% decrease of
the production demand suggests that M3b is a potential substitute for anti-HCV antibody detection.

1. Introduction

The hepatitis C virus (HCV) infected 3% world population
[1] and its asymptomatic presentation years after infection
had been labeled as “silent epidemic” [2]. Approximately
75% to 85% of the infected individuals develop chronic dis-
ease which may progress to liver cirrhosis and hepatocellular
carcinoma [1, 3]. HCV is also a major etiology agent for
blood transfusion-associated with non-A, non-B hepatitis
[1, 4]. The reduction of the posttransfusion HCV incidence
largely depends on proper screening of the blood donors.
The most common screening methods are based on ELISA
(enzyme-linked immunosorbent assay) or NAT (nucleic acid
amplification technology) to detect anti HCV antibodies or
HCV RNA in serum. NAT could identify low level viremia in
very early HCV infection even when the antibodies are not
yet present. However, its time-consuming, contamination
potential, and less reproducibility limit the clinical applica-
tion of NAT. ELISA is hence still a favorable use for its re-
latively cheap and rapid output.

HCV belonging to the Flaviviriadae family has a sin-
gle stranded positive-sense RNA genome of approximately
9.6 kb. It encodes a single open reading frame of about 3000
amino acid polyprotein which is then cleaved by viral and

cellular proteases into mature viral proteins: core protein,
envelope glycoproteins (E1 and E2), and six nonstructural
proteins (NS2, NS3, NS4a, NS4b, NS5a, and NS5b) [5, 6].
The HCV core protein, as well as the nonstructural proteins
NS3 and NS5, has been commonly used as a coating antigen
for the commercial ELISA diagnostic products (MUREX,
MP, ORTHO, INNOTEST, and GBC) [7, 8]. Nonetheless,
HCV core is the major coating antigen for detecting the
early-phase infection before seroconversion [9].

HCV core protein consists of three domains: a basic and
hydrophilic region (domain I; residues 1 to 118), a C terminal
hydrophobic domain (domain II; residues 119 to 173), and
the last hydrophobic signal sequence (domain III; residues
174 to 191). Domain I that includes numerous positively
charged amino acids involved in RNA binding contains the
immunodominant antigenic sites [10]. The recombinant
core protein has been expressed in COS cells, insect cells, E.
coli, or using the in vitro translation system [11]. Most of the
recombinant core proteins were expressed in inclusion body
and purified under denaturing condition [12–14]. The in-
clusion body form is beneficial for industrial production;
however, a proper antigenic property which could represent
the infection form is still lacking.
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In this study, random mutagenesis was employed to
generate a library of recombinant clones to express random
mutants of HCV core domain I. For efficient screening of this
library, a reverse-ELISA was established as shown in Figure
S1. Five of 616 mutants were selected and overexpressed in E.
coli and the recombinant proteins all form inclusion bodies.
The insoluble proteins dissolved in urea were then purified
and refolded by stepwise dialysis to remove urea. Finally, ki-
netic analysis of the purified proteins was performed and
the results were compared for a possible mechanism of the
antigenicity enhancement.

2. Materials and Methods

2.1. Chemicals. All reagents used in the study were of
analytical grade and purchased from Sigma or Merck.

2.2. Bacterial Strains. The E. coli strain BL21 (DE3) (E. coli
B F−dcm ompT hsdS(rB−mB

−) gal λ(DE3)) and E. coli strain
XL1-Red (E. coli endA1 gyrA96 thi-1 hsdR17 supE44 relA1
lac mutD5 mutS mutT Tn10 (Tetr)) from Stratagene were,
respectively, used for the protein expression and random
mutagenesis experiments. Talon SuperFlow Metal Affinity
resin (BD Bioscience) was used for protein purification. All
reagents are biochemical or molecular biology grade (Merck
and Sigma), and the reagents used in ELISA were supplied by
GBC (General Biologicals Corp., Taiwan).

2.3. Seroconversion Panels. Two seroconversion panel sys-
tems including BBI panel and in-house panel of GBC were
used. The international BBI panel containing 3 negative
samples (HCV 10017, HCV 10026, and HCV 10058) and one
positive control (HCV 10165) were purchased from BBI
(BBI Diagnostics Boston Biomedica, Inc, USA). In-house
panel contains 4 negative samples including 3HCV3-340
(Lot C59306NCT), P4 (Lot C56AP4), P5 (Lot C56AP5), and
P6 (Lot C588P6), and 4 positive controls 3HCV3-330 (Lot
C59305PCT), P1 (high titer, Lot C588P1), P2 (medium titer,
Lot C579P2), and P3 (low titer, Lot C579P3).

2.4. Construction of the Recombinant HCV Core Antigen. The
plasmid carrying the gene coding for HCV core was a gift
from GBC ([15]; GenBank accession number M84754). The
plasmid was digested with BamHI and XhoI (New England
BioLabs), and the fragment of about 500 bps was collected
and purified using Qiaquik Gel Extraction Kit (Qiagen). The
purified fragment was ligated into BamHI/ XhoI site of
pET20b with T4 DNA ligase (Takara Bio Inc.) and the li-
gation mixture was transferred into E. coli XL10-Gold (Strat-
agene). The resulting plasmid, namely, pET-Wt contains
domain I (amino acid residues 1 to 123) of HCV core
(GenBank accession number M84754) and the neighboring
pelB leader and His tag at the N and C termini, respectively.

2.5. Random Mutagenesis of the HCV Core Antigen. The
plasmid pET-Wt was transferred into the mutator E. coli
XL1-Red and subsequently spread on LBA plate (Luria

Bertani plate supplemented with 100 μg/mL ampicillin).
After incubation at 37◦C for 18 hr, colonies were pooled and
resuspended in 3 mL LBA broth. Aliquot of the suspension
was added into 3 mL LBA broth and incubated at 37◦C for
15 hr. After repeating the subculture procedure 10 times, the
plasmid DNA was extracted and transferred into E. coli BL21
(DE3), and the transformed E. coli was then screened by its
antigenicities.

2.6. Antigenicity Screening by Reverse-ELISA. A single colony
on LBA plate was selected and inoculated into 200 μL LBA
broth in a 96 well microplate. After 24 hr incubation at 37◦C,
100 μL of bacterial culture was lysed by adding 100 μL LBA
broth containing lysozyme (10 mg/mL). The cell lysates were
then used for antigenicity screening. For high throughput
screening, a reverse-ELISA (see Figure S1 of the Supplemen-
tary Material available online at doi:10.1155/2011/359042),
in which an antigen is sandwiched by antibodies, was estab-
lished for the titration of antigen. Essentially, the cell lysates
was transferred to another 96 well microplate (100 μL/well)
which was precoated with 100 μL of the antibody from
GBC seroconversion panel (GBC positive control 3HCV3-
330, which has been diluted 200-fold in 10 mM Tris base
pH 9.5). The microplate was then incubated for 1 hr at
37◦C. After washing, 100 μL (0.2 μg/mL) of the monoclonal
antibody (Abcam ab18664-250 specific to hepatitis C virus
NS3) conjugated with horseradish peroxidase was added and
the incubation continued for 30 min at 37◦C. The microplate
was again washed and then developed by adding 100 μL
of 3,3′,5,5′-tetramethylbenzidine in the dark for 30 min at
room temperature. The peroxidase reaction was terminated
by adding 100 μL of 2 N H2SO4 and the absorbance at
450–650 nm was measured using ELISA reader (Molecular
Devices).

2.7. Expression and Purification of the Recombinant HCV Core
Antigen. The E. coli strain BL21 (DE3) harboring each of
the recombinant plasmids was grown in 3 mL LBA for 8 hr
at 37◦C. Ten microlitres of the culture was refreshed grown
in 50 mL of LBA at 37◦C for 15 hr and then 5 mL of the
culture was added into 2 liters of LBA. The culture was
grown at 37◦C till the absorbance (OD 600) reach ∼ 1.0, the
inducer IPTG (0.5 mM) was then added and the incubation
continued for 4 hr at 37◦C. The bacteria was collected by
centrifugation (6,000× g, 15 minutes, 4◦C), suspended with
100 mL buffer A (50 mM Tris base, 0.5 M NaCl, 100 mM
sucrose, 5 mM imidazole and 10% glycerol at pH 8.0),
and finally lysed by Homogenizer (EmuFsiFlex-C5). Total
cell lysate was precipitated by centrifugation (10,600× g,
60 min, 4◦C) and the collected pellet was resuspended
with 100 mL buffer B (6 M urea, 50 mM Tris base, 0.5 M
NaCl, 100 mM sucrose, 5 mM imidazole and 10% glycerol
at pH 8.0). After the suspension subjected to incubation
for 20 hr at 4◦C centrifugation (10,600 × g, 60 min, 4◦C),
the collected supernatant was applied to the Talon affinity
column (TALON SuperFlow Metal Affinity Resin, 2.6 cm ×
10 cm) pre-equilibrated using buffer B. After washing away
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the unbound proteins using 10 column volumes of buffer
B, the target protein was eluted using a linear gradient of
imidazole concentration from 5 mM to 100 mM. The puri-
fied HCV core antigen was pooled as “unfolded antigen” and
stored at 4◦C before use.

2.8. Refolding of the Unfolded HCV Core via Dialysis. The
unfolded HCV core antigen was dialyzed against 50 volumes
of buffer C (20 mM Tris base and 20 mM 2-Mercaptoethanol
at pH 7.6) for 8 h at 4◦C using a molecular-porous mem-
brane tubing (SPECTRUM, MWCO: 6 to 8,000). The dialysis
was repeated twice, followed by 5 times dialysis against buffer
D (20 mM Tris base pH 7.6) for 12 hr at 4◦C. The resulting
dialysis solution was centrifuged (10,600× g, 60 min, 4◦C)
to remove the insoluble portion. The supernatant containing
the soluble refolded antigen was then subjected to protein
concentration determination, SDS-PAGE analysis for the
protein homogeneity, and ELISA to evaluate the antibody
binding capacity.

2.9. HPLC Performance. Purity of the proteins was analyzed
using high performance liquid chromatography (HPLC;
600E Multisolvent Delivery System, Waters Corporation,
USA) with an Ultra High Resolution SEC column (BioSuite
125, 4 μm, Waters Corporation, USA) under 4◦C. The
insoluble proteins were separated and eluted with 0.15 M
phosphate buffer (pH 6.8) and 3 M urea at a flow rate of
0.3 mL/min, while the refolded antigens were eluted using
0.15 M phosphate buffer (pH 6.8) without urea. The data
determined by the changes of absorbance at 280 nm (996
Photodiode Array Detector, Waters Corporation, USA) were
collected and processed using Empower 2 Chromatography
Data Software (Waters Corporation, USA).

2.10. HCV ELISA. The purified HCV core antigen (the
unfolded forms in urea solution while the refolded forms in
solution D) diluted to the concentrations of 0.03 to 10 μg/mL
with coating buffer (20 mM phosphate buffer, pH 6) was ap-
plied to microplates and the plates were allowed to stand at
4◦C for at least 20 hr. The microplates were then washed,
overcoated, and dried for 15 hr. Two seroconversion panel
systems, including BBI panel and inhouse panel of GBC,
diluted 20-fold with Specimen Diluent C (3HC03-350 Lot
C58C06SDP) were then added to the microplates for 1 hr at
37◦C and used as the primary antibody. Anti-human IgG-
HRPO conjugates was applied as the secondary antibody for
30 min at 37◦C. The microplates were then washed and
developed using 3,3′,5,5′-tetramethylbenzidine. The absorb-
ance data were compiled statistically as S/Co value (S: sample
value; Co: cutoff value). The cut-off value was calculated as
the negative control OD plus positive control OD divided by
4 (Co = NCx + PCx/4). The S/Co value was calculated as
the sample OD divided by the cut-off value. Samples with an
absorbance equal to or higher than the cut-off value, that
is, S/Co value greater than 1, were considered to be initially
reactive in the assay.

3. Results and Discussion

3.1. Generation and Screening of HCV Core Antigen Mutants.
The culture mutator E. coli XL1-Red carrying the plasmid
pET-Wt encoding the domain I of HCV core flaked with
pelB leader and His-tag (Figure 1(a)) was refreshed and then
subjected to a series of subculture to introduce mutations
into the HCV core antigen. After 10 generations, 616 colonies
were arbitrarily selected for the antigenicity screening using
the reverse ELISA. In the reverse ELISA, HCV core antigen
mutant is sandwiched by two kinds of HCV antibodies, the
serum antibody of positive control panel and a monoclonal
antibody (abcam, ab18664-250). The monoclonal antibody
was described as specific to HCV NS3. However, it reacted
with our HCV core antigen in previous experiments (data
not shown). Besides, it was produced by using a chimeric
HCV polyprotein as its immunogen, and the sequence align-
ment of this immunogen and HCV core protein showed
90% identity (see Figure S2). Finally, five of the 616 colonies
which exhibiting relatively higher antigenicities than the
original pET-Wt were isolated and the plasmids were purified
for sequence determination.

3.2. Isolation and Alignment of the HCV Core Antigen
Mutants. The sequences from the residues 68 to137 of the
five mutants were aligned with that of the wild-type antigen.
As shown in Figure 1(b), these mutations were mapped to
W84, P95, P110, and V129. The mutants were named according
to the number of residue changed as M1a, M1b (one residue
mutation), M2 (two residue mutation), M3a, and M3b (three
residue mutation). The alterations included tryptophan or
proline to serine or leucine. When analyzed using Burgess
Ponnuswamy Scheraga (BPS) method [16], the residue al-
terations have apparent effects on the secondary structure
with respect to random coil fluctuations to help exposure
of the residue. Besides, it is believed that the replacement
by hydrophilic or less hydrophobic amino acids enhance the
solubility of HCV core antigens in aqueous system. A single
mutation alters the immunogenic properties via changes of
the secondary structure had been reported in the case of HIV
[17]. Whether the mutations have similar effects could only
be verified until the structure of HCV core is available.

3.3. Expression and Purification of the Recombinant HCV
Core Antigens. The recombinant proteins of Wt and the five
mutants overexpressed in E. coli BL21 (DE3) all formed in-
clusion body with deduced molecular mass of 19 kDa. After
the inclusion bodies dissolved in urea, the denatured pro-
teins were purified by Talon affinity chromatography under
denaturing condition with 6 M Urea. In our previous exper-
iments, to remove urea by one-step dialysis against solution
D or by above 1000-fold (<6 mM urea) dilution with coating
buffer will cause aggregation and precipitation of HCV core
antigens. By stepwise dialysis, less precipitates were found
and the supernatants containing soluble HCV core antigens
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Figure 1: Sequence comparison. (a) The primary sequence of wild-type recombinant HCV core antigen presented in single letter code. It
consists of three components: pelB leader (from aa 1 to aa 31 in border-box), HCV core fragment containing domain I (from aa 32 to aa 154,
total 123 aa), and His tag (from aa 155 to aa 162, underlined). (b) Five mutants with higher antigenicities are aligned with wild-type antigen
covering residues 68 to 137. Four high-frequency mutation points at W84, P95, P110, and V129 are in boldface. The mutations are marked with
a shaded box. The characters H, E, and C stand for alpha helices, beta strands, and random coil, respectively.

were above 95% purity by SDS-PAGE and HPLC chromatog-
raphy (see Figure S3).

3.4. HCV ELISA of the Core Mutants. The unfolded or re-
folded form of Wt or any of the mutant antigens (4 μg/mL
× 100 μL per well) was used to coat the ELISA microplate
individually for the subsequent HCV ELISA. As shown in
Figure 2(a), these recombinant antigens were able to readily
differentiate the positives (i.e., S/Co > 1) from negative
samples (i.e., S/Co < 1) of BBI panels. As shown in Fig-
ure 2(b), all the sequentially diluted PCs (positive control of
GBC inhouse panel) could be detected by these recombinant
antigens except the 70-fold diluted one. The mutations with
more residue substitutions (M3a and M3b) appeared to
enhance the detection sensitivity as assessed with the larger
S/Co value than the others.

3.5. Comparison of the Detection Sensitivity of the Insoluble
and Refolded Proteins. As shown in Figures 3(a) and 3(b),
both antigen forms at the concentration of 2 μg/mL exhibited
a similar level of antigenicity in the order of M3b > M3a >
M2 > M1a > M1b > Wt. The saturated sensitivities of the
refolded proteins were 1.19- to 1.27-fold higher than their
unfolded forms. The saturated concentrations of the un-
folded/refolded antigens were about 0.7/0.6 mg/mL (M3b),
0.8/0.6 mg/mL (M3a), 0.9/0.7 mg/mL (M2), 0.9/0.9 mg/mL
(M1a), 1.0/0.8 mg/mL (M1b), and 0.9/0.9 mg/mL (Wt),
indicating the refolding process had no apparent effect on
the saturation concentration. As for refolded M3b used as
the coating antigen to substitute the currently used HCV core
antigen (Wt) for the anti-HCV antibody ELISA, it appeared
to enhance about 20% of the antigenicity which allowed
reducing about 33% of the production demand.
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Figure 2: HCV ELISA for urea-denatured HCV core mutants. The urea-denatured HCV core antigens (100 μL of 4 μg/mL per well) were
used to coat the microplate for the detection of anti-HCV antibody of BBI panel (a) and GBC inhouse panel (b). The absorbance data
were compiled statistically as S/Co value (S: sample value; Co: cut-off value). The cut-off value was calculated as the negative control OD
plus positive control OD divided by 4 (Co = NCx + PCx/4). The positive samples (i.e., S/Co > 1, marked as open circle, lot number
HCV10165-6∼9) could be clearly separated from the negative samples (i.e., S/Co < 1, marked as closed circle, lot number HCV10017-1∼7,
HCV10026-1∼5, HCV10058-1∼3) of BBI panel. In Figure 2(b), the primary antibodies used are sequentially diluted in 10-fold order from
10x to 70x of the PC (positive control) and NC (negative control). Co value was calculated by the average OD values of NC and 20x PC. The
data are marked as • (10x), ◦ (20x), � (30x), � (40x), � (50x), � (60x), � (70x), and (negative control).
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Figure 3: Saturation curves for urea-denatured (a) and refolded (b) forms of HCV core antigens. Antigenicity of unfolded (a) and refolded
(b) forms of HCV core antigens were examined by ELISA using the microplate that had been coated with different amounts of Wt (•), M1a
(◦), M1b (�), M2 (�), M3a (�), and M3b(�).

3.6. Kinetic Analysis. As shown in Table 1, comparison of the
Langmuir equilibrium constant (KL) and maximum binding
capacity (Amax), assessed using the reciprocals of absorbance
(1/A) and the antigen concentration (1/[S]) (see Figure S4),
revealed that either mutation enhanced the affinity and bind-
ing capacity to the antibody. The refolding procedure further
increased the binding capacity (Amax) and the affinity index
(KL). The mutant M3b antigen exhibited the highest affinity
and binding capacity. When compared to the unfolded Wt
antigen, the refolded M3b showed an increase of about 38%
of KL (from 82 to 113 μM−1) and 113% of Amax (from 0.45 to
0.96).

4. Conclusion

Five HCV core antigen mutants with an improved anti-
genicity were obtained via random mutagenesis and reverse-
ELISA screening. The mutant-carrying plasmids were indi-
vidually expressed in E. coli, the inclusion bodies formed
were dissolved in urea and purified, the denatured protein
refolded by dialysis, and the dialyzed proteins were used to
coat the microplates for the ELISA of anti-HCV antibody.
Sequence analysis of the mutated residues suggested that the
random coils play a critical role in the antigenicity enhance-
ment. Kinetic analysis using Langmuir simulation further
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Table 1: KL (affinity) and Amax (maximum binding capacity) of HCV core antigens.

Wild type M1a M1b M2 M3a M3b

Core protein Ua Rb R/U U R R/U U R R/U U R R/U U R R/U U R R/U

KL (μM−1) 82± 8 69± 5 0.9 74± 7 64± 4 0.9 43± 3 39± 3 0.9 77± 6 61± 4 0.8 93± 8 115± 5 1.2 87± 10 113± 10 1.3

Amax (10−2) 45± 2 54± 2 1.2 54± 2 64± 2 1.2 55± 3 66± 3 1.2 58± 2 74± 2 1.3 65± 2 78± 1 1.2 80± 3 96± 3 1.2

Rsqr 0.96 0.92 0.97 0.94 0.97 0.96 0.97 0.95 0.98 0.94 0.93 0.91
a, b

Un-folded and refolded protein, respectively.

confirmed that the antigenicity has been improved via
increasing the affinity and binding capacity to the anti-
body. All five mutants appeared to contain either change of
W84 or V129, the ones harbor additional mutation on P95

or P110 had better antigenicity. It would be of interest to
investigate that if a significant increase of the antigenicity
could be observed after all four residues of the protein are
altered.
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