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Pozzolanic concrete has superior properties, such as high strength and workability.-e precise proportioning andmodeling of the
concrete mixture are important when considering its applications. -ere have been many efforts to develop computer-aided
approaches for pozzolanic concrete mix design, such as artificial neural network- (ANN-) based approaches, but these approaches
have proven to be somewhat difficult in practical engineering applications. -is study develops a two-step computer-aided
approach for pozzolanic concrete mix design. -e first step is establishing a dataset of pozzolanic concrete mixture proportioning
which conforms to American Concrete Institute code, consisting of experimental data collected from the literature as well as
numerical data generated by computer program. In this step, ANNs are employed to establish the prediction models of
compressive strength and the slump of the concrete. Sensitivity analysis of the ANN is used to evaluate the effect of inputs on the
output of the ANN.-e two ANNmodels are tested using data of experimental specimens made in laboratory for twelve different
mixtures. -e second step is classifying the dataset of pozzolanic concrete mixture proportioning. A classification method is
utilized to categorize the dataset into 360 classes based on compressive strength, pozzolanic admixture replacement rate, and
material cost.-us, one can easily obtain mix solutions based on these factors.-e results show that the proposed computer-aided
approach is convenient for pozzolanic concrete mix design and practical for engineering applications.

1. Introduction

Concrete plays an important role in the growing con-
struction industry. Presently, various types of by-product
materials, such as fly ash, silica fume, rice husk ash, and
others have been widely used as pozzolanic materials in
concrete. Studies [1–4] have shown that utilization of
pozzolanic material not only improves concrete properties
(such as strength and durability) but also helps to preserve
the environment. Moreover, superplasticizers play a crucial
role in the development of high strength and high-
performance concrete. Superplasticizers are admixtures
which are added to concrete mixture in very small dosages.
-eir addition results in a significant increase in the

workability of the mixture, as well as a reduction of
water/cement ratio and of cement quantity [5].

Several researchers have looked into the characteristic
parameters that affect the compressive strength and slump
of conventional and high-strength concrete [6–8]. -ese
parameters typically include water, cement, coarse aggre-
gate, and fine aggregate. Conventional methods initially
involve constructing a mathematical model, which is fol-
lowed by a regression analysis using experimental data to
determine unknown coefficients in that model and es-
tablish correlations between these parameters and com-
pressive strength and slump. Conventional methods
generally include complex modeling and are inappropriate
where experimental data are imprecise and parameters
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affecting compressive strength and slump are incomplete in
the experimental data.

Artificial neural networks (ANNs) were originally de-
veloped to simulate the function of the human brain or
neural system. Subsequently, they have been widely applied
to diverse fields, ranging from biology to many engineering
fields. ANNs exhibit a number of desirable properties not
found in conventional symbolic computation systems, in-
cluding robust performance when dealing with noisy or
incomplete input patterns, a high degree of fault tolerance,
high parallel computation rates, the ability to generalize, and
adaptive learning [9–11]. ANNs are capable of modeling
input-output functional relations, even when mathemati-
cally explicit formulas are unavailable. -erefore, ANNs are
suitable for prediction of compressive strength and slump of
concrete. Accordingly, the feasibility of applying ANNs to
predict compressive strength and slump of concrete has
received considerable attention. Yeh [12] investigated the
potential of using design of experiments and ANNs to
determine the effect of fly ash replacements on early and late
compressive strength of low- and high-strength concrete.
Yeh [13] further demonstrated the possibilities of adapting
ANNs to predict the compressive strength of high-
performance concrete. Kasperkiewics et al. [14] applied
ANNs to predict the 28-day compressive strength of high-
performance concrete composed of six components (ce-
ment, silica, superplasticizer, water, fine aggregate, and
coarse aggregate). Lee [15] used ANNs to predict the
compressive strength development of concrete. Bai et al. [16]
developed neural network models to predict the workability
of concrete incorporating metakaolin and fly ash. Duan et al.
[17] applied ANNs to predict the compressive strength of
recycled aggregate concrete. Ni and Wang [18] developed
a method to predict 28-day compressive strength of concrete
by using ANNs based on the inadequacy of methods dealing
with multiple variable and nonlinear problems.

In light of the above developments, this study develops
a two-step computer-aided approach for pozzolanic con-
crete mix design. -e first step is establishing the dataset of
pozzolanic concrete mixture proportioning which conform
to American Concrete Institute (ACI) code. -e dataset
consists of experimental data collected from the literature
and numerical data generated by computer program. In this
step, ANNs are employed to establish the prediction models
of compressive strength and slump of concrete. Sensitivity
analysis of the ANN is used to evaluate the effect of inputs on
the output of the ANN. -e two ANN models are tested
using data of experimental specimens made in laboratory for
twelve different mixtures. -e second step is classifying the
dataset of pozzolanic concrete mixture proportioning. A
classification method is utilized to categorize the dataset into
360 classes based on compressive strength of concrete,
pozzolanic admixture replacement rate, and cost of the
concrete.

2. Artificial Neural Networks

ANNs form a class of systems that are inspired by biological
neural networks. -e topology of an ANN model consists of

a number of simple processing elements, called nodes, which
are interconnected to each other. Interconnection weights
that represent the information stored in the system are used
to quantify the strength of the interconnections; these
weights hold the key to the functioning of an ANN.

2.1. Back-Propagation Neural Networks. Among the many
different types of ANN, by far the most commonly applied
neural network learning model, due to its simplicity, is the
feedforward, multilayered, supervised neural network with
error back-propagation algorithm, the so-called back-
propagation (BP) network [11]. Before an ANN can be
used in an application, it must either learn or be trained from
an existing database consisting of pairs of input-output
patterns. -e topology of BP networks consists of an in-
put layer, one or more hidden layers, and an output layer.
-e training of a supervised neural network usually involves
three stages. -e first stage is the data feedforward. -e
output of each node is defined as follows:

netj � 􏽘
n

i�1
WijOi + θj,

Oj � f netj􏼐 􏼑,

(1)

where Wij is the weight associated with the ith node in the
preceding layer to the jth node in the current layer; Oi is the
output of ith node in the preceding layer; θj is the threshold
value of node j in the current layer; Oj is the output of node j
in the current layer; and function f is the activation function,
which has to be differentiable. Herein, the hyperbolic tan-
gent function is used as the activation function and is defined
as follows:

f(x) �
ex − e−x

ex + e−x
. (2)

-e second stage is error back-propagation and ad-
justment of the network weights. -e training process ap-
plies mean square error (E), the absolute fraction of variance
(R2), and sum of the squares error (SSE), to monitor the
learning performance of the network. E, R2, and SSE are
defined, respectively, as
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2
,

(3)

where P denotes the number of instances in the training set,
while dpk and opk represent the desired and calculated
output of the kth output node for the pth instance, re-
spectively. -e standard BP algorithm employs a gradient
descent approach with a constant step length (learning ratio)
to train the network.
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Wij,k+1 � Wij,k + ΔWij,

ΔWij � −η
zE

zWij

,
(4)

where η is the learning ratio, which is a constant in the
range of [0, 1]. -e suffix index k denotes the kth learning
iteration. Unfortunately, BP supervised neural network
learning models require a significant amount of time to
learn. Moreover, the convergence of a BP neural network is
highly dependent upon the use of a learning rate (η).
Consequently, several different approaches are developed
here to enhance the learning performance of the BP
learning algorithm [10].

Hung and Lin [19] developed a more effective adaptive
limited memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) learning algorithm based on the approach of
a L-BFGS quasi-Newton second-order method [20, 21] with
an inexact line search algorithm. -is algorithm achieved
a superior convergence rate to the BP learning algorithm by
using second-order derivatives of the system error function
with respect to the network weights. In the conventional
BFGS method, the approximation Hk+1 to the inverse
Hessian matrix of function E(W) is updated by

Hk+1 � I− ρksky
T
k􏼐 􏼑Hk I− ρkyks

T
k􏼐 􏼑 + ρksks

T
k

≡ VT
kHkVk + ρksks

T
k ,

(5)

where

ρk �
1

yT
k sk

,

Vk � I− ρkyks
T
k ,

sk � Wk+1 −Wk,

yk � gk+1 − gk,

gk �
zE

zW
.

(6)

Instead of forming the matrixHkwith the BFGSmethod,
the vectors sk and yk are saved. -ese vectors first define and
then implicitly and dynamically update the Hessian ap-
proximation using information from the last few iterations,
referred to here as m. -erefore, the final stage of the ad-
justment of the weights in a BP-based ANN is modified as
follows:

Wk+1 � Wk + αkdk. (7)

-e search direction is given by

dk � −Hkgk + βkdk−1, (8)

where

βk �
yT

(k− 1)H(k−1)g(k−1)

yT
(k− 1)d(k−1)

. (9)

-e step length, αk, is adapted during the learning
process through a mathematical approach: the inexact line
search algorithm. -is approach is used in the L-BFGS
learning algorithm instead of a constant learning ratio [19].
-e inexact line search algorithm is based on three se-
quential approaches: bracketing, sectioning, and in-
terpolation. -e bracketing approach brackets the potential
step length, α, between two points, through a series of
function evaluations. -e sectioning approach then uses the
two points of the bracket as the initial points, reducing the
step size, and locating the minimum between points, such as,
α1 and α2, to a specified degree of accuracy. Finally, the
quadratic interpolation approach uses the three points, α1,
α2, and (α1 + α2)/2, to fit a parabola to determine the step
length, αk. Consequently, the step length αk must satisfy the
following conditions in each iteration [19]:

E Wk + αkdk( 􏼁≤E Wk( 􏼁 + βαk ∇E Wk( 􏼁
Tdk􏼐 􏼑

β ∈ (0, 1) and αk > 0,

∇E Wk + αkdk( 􏼁
Tdk ≥ θ ∇E Wk( 􏼁

Tdk􏼐 􏼑

θ ∈ (β, 1) and αk > 0,

∇E Wk + αkdk( 􏼁
Td(k+1) < 0.

(10)

-e problem of selecting a learning ratio through trial
and error in the BP algorithm is thus circumvented in the
adaptive L-BFGS learning algorithm.

2.2. Architectures of ANN Models. -e ANN models, com-
pressive strength prediction neural network (CSPNN) and
slump prediction neural network (SPNN), are used in this
study for prediction of the 28-day compressive strength
(abbreviated below as compressive strength) and slump of
pozzolanic concrete, respectively. -e architectures of the
CSPNN and SPNN are illustrated in Figure 1. Both CSPNN
and SPNN developed in this study have seven neurons in the
input layer and one neuron in the output layer.-e inputs of
both CSPNN and SPNN are water, cement, ground gran-
ulated blast furnace slag (GGBFS), fly ash, coarse aggregate
(CA), fine aggregate (FA), and superplasticizer (SP). -e
outputs of CSPNN and SPNN are compressive strength (fc′)
and slump (S), respectively. Table 1 shows the minimum and
maximum values of the seven input parameters used in
CSPNN and SPNN.

2.3. Sensitivity Analysis. Cybenko [22] and Funahashai [23]
rigorously demonstrated that even with only one hidden
layer, neural networks can uniformly approximate any
continuous function. Although neural networks can find
a relationship between the input and output values in-
ternally, it is not always easy to interpret the resulting weight
state.-us, the effect of one input parameter on the output is
difficult to analyze. Alternatively, it is possible to compute
the sensitivity of the output value with respect to one of its
inputs by taking the first-order partial derivative [24, 25].
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If there is a network with n hidden layers, the output of
the kth node in the output layer is defined as follows:

Ok � f netok( 􏼁,

netok � 􏽘
j

Whnj,okHnj + θok, (11)

where Hnj is the output of the jth node in the nth hidden
layer, θok is the threshold value of the kth node in the output
layer, Whnj,ok is the weight associated with the jth node in the
nth hidden layer to the kth node in the output layer, and
function f is the activation function.

-e first-order partial derivative of the kth output with
respect to ith input D1

ki can be derived as follows:

D
1
ki �

zOk

zXi

� 􏽘
jn

, . . . , 􏽘
j1

Whnjn,okf′ netok( 􏼁, . . . , Wxi,h1j1f′ neth1j1􏼐 􏼑,

(12)

where Wxi,h1j1 is the weight associated with the ith node in
the input layer to the j1th node in the first hidden layer and
Whnjn,ok is the weight associated with the jnth node in the
nth hidden layer to the kth node in the output layer.
Equation (12) indicates that D1

ki is a function of weights,
threshold value, and the first-order derivative of the acti-
vation function (or a function of weights, threshold values,
and training instances). Since D1

ki is a function of training
instances, generally, the mean of D1

ki for the entire training
instances can be used to describe the nominal value of the

sensitivity of the kth output parameter with respect to the
ith input parameter. -e mean of D1

ki for the entire training
instances is

D
1
ki �

1
P

􏽘

P

p�1
D

1
ki,p, (13)

where D1
ki,p is the value of D1

ki of the pth training instance,
and P is the total number of training instances. In fact, D

1
ki

can represent the correlation between the kth output pa-
rameter and the ith input parameter. A positive (negative)
value of D

1
ki represents a positive (negative) correlation. -e

absolute value of D
1
ki represents the strength of the corre-

lation. A larger absolute value of D
1
ki represents a stronger

correlation. Absolute values of D
1
ki near zero indicate little or

no correlation.

3. Proposed Approach for Pozzolanic Concrete
Mix Design

-is study develops a computer-aided approach for poz-
zolanic concrete mix design. -is approach is suitable for
designing a mix of pozzolanic concrete with compressive
strength, fc′, from 210 kgf/cm2 to 980 kgf/cm2 and slump, S,
equal to 20 cm. As shown in Figure 2, this approach involves
two steps. -e first step is establishing the dataset of poz-
zolanic concrete mixture proportioning that conform to ACI
code, consisting of experimental data collected from liter-
ature and numerical data generated by computer program.
-e second step is classifying the dataset of pozzolanic
concrete mixture proportioning. A classification method is
utilized to categorize data into 360 clusters according to
compressive strength of concrete, pozzolanic admixtures
replacement rate, and material cost. -e following presents
the details of the proposed approach.

3.1. Establishing the Dataset of Pozzolanic Concrete Mixture
Proportioning. As shown in Figure 2, the process of
establishing the dataset of pozzolanic concrete mixture
proportioning is listed as follows:

(1) Collecting experimental data of pozzolanic concrete
mixture proportioning from the literature [3, 26–38].

Water

Cement

Ground granulated
blast furnace slag

Fly ash

Coarse aggregate

Fine aggregate

Superplasticizer

Compressive
strength

(a)

Water

Cement

Ground granulated
blast furnace slag

Fly ash

Coarse aggregate

Fine aggregate

Superplasticizer

Slump

(b)

Figure 1: -e architectures of (a) CSPNN and (b) SPNN.

Table 1: Range of input parameters of CSPNN and SPNN in
dataset.

Input parameters Range (kg/m3)
Water 125≤Water≤ 240
Cement 110≤Cement≤ 500
GGBFS 0≤GGBFS≤ 300
Fly ash 0≤ fly ash≤ 300
CA CA≥ 450
FA FA≥ 450
SP SP< 2% (cement + pozzolanic admixtures)
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(2) Generating numerical data of pozzolanic concrete
mixture proportioning since the collected experi-
mental data may be insufficient. Before generating
numerical data, the ranges of material contents (as
listed in Table 1) are set based on collected experi-
mental data of pozzolanic concrete mixture pro-
portioning and ACI code for pozzolanic concrete mix
design (as listed in Tables 2–8) [39]. Numerical data of
pozzolanic concrete mixture proportioning are then
generated randomly using the ACImix designmethod
for pozzolanic concrete (as shown in Figure 3).

(3) Using a portion of collected experimental data of
pozzolanic concrete mixture proportioning to train
CSPNN and SPNN. -e effect of input parameters
on the output is evaluated by sensitivity analysis. -e
prediction accuracy of CSPNN and SPNN is tested
using the remainder of the collected experimental

data and data from experimental specimens made in
our laboratory for twelve different mixtures.

(4) Using trained CSPNN and SPNN to predict com-
pressive strength and slump of experimental and
numerical data, respectively. Data that satisfy the
following conditions are kept in the dataset.

210 kgf/cm2 ≤fc,CSPNN′ ≤ 980 kgf/cm2
,

20 + 3.8 cm≤ SSPNN ≤ 20− 3.8 cm,
(14)

where fc,CSPNN′ and SSPNN are compressive strength and
slump predicted by CSPNN and SPNN, respectively. -e
reasons for this are (1) this approach is suitable for mixing
design of pozzolanic concrete with compressive strength, fc′,
from 210 kgf/cm2 to 980 kgf/cm2 and slump, S, equal to 20 cm,
and (2) the allowable data range width of slump in Taiwan is
set to be 3.8 cm when slump is larger than 10 cm [40].

3.2. Classifying the Dataset of Pozzolanic Concrete Mixture
Proportioning. To produce a dataset of pozzolanic concrete
mixture proportioning which is more feasible and conve-
nient for engineering applications, it is classified further.

In classification, a sampling unit (subject or object)
whose class membership is unknown is assigned to a class on
the basis of the vector, y, associated with the unit. To classify
the unit, we must have available a previously obtained
sample of observation vectors from each class. One approach
is to then compare y with the mean vectors y1, y2,. . ., yk of
the k classes and assign the unit to the class whose yi is
closest to y [41]. Many techniques use an index of similarity
or proximity between y and yi. A convenient measure of
proximity is the distance. -e distances used in classification
algorithms include Euclidean distance, Manhattan distance,
Chebyshev distance, Minkowski distance, and Mahalanobis
distance. Since Euclidean distance is the most well-known
distance, it is applied in this study. -e Euclidean distance
between two vectors (points) a and b is defined as

dis(a, b) �

�����������

􏽘
j

aj − bj􏼐 􏼑
2

􏽳

, (15)

where aj and bj are the jth element of a and b, respectively.
-e proposed classification of the dataset of pozzolanic

concrete mixture proportioning is according to compressive
strength, pozzolanic admixture replacement rate, and cost. As
shown in Figure 2, the classification method used in this study
involves three stages.-efirst stage is the classification of dataset
according to compressive strength and slump. -e number of
classes is set as twelve in this stage. -e mean (designed) values
of compressive strength of the twelve classes are increased from
210kgf/cm2 (20.6MPa) to 980kgf/cm2 (96.1MPa) every
70kgf/cm2 (6.8MPa). -e mean (designed) values of slump of
all twelve classes are the same and are equal to 20 cm.According
to the related code in Taiwan, the allowable data range width of
compressive strength and slump is 3.4MPa and 3.8 cm, re-
spectively. -us, the classification rule can be written as

Step 1: establishing the dataset of pozzolanic concrete
mixture proportioning

The first stage is the classification of dataset according to
compressive strength and slump. The number of class is set to

be twelve in this stage.

The second stage is the classification of dataset according to
pozzolanic admixtures replacement rate. Each class in the first

stage is divided into five smaller classes

Collecting experimental data of pozzolanic concrete mixture
proportioning from the literature.

Using collected experimental data and ACI code to calculate
numerical data of pozzolanic concrete mixture proportioning

by computer program.

Using trained CSPNN and SPNN to predict compressive
strength (f ′c,p) and slump (Sp) of experimental and numerical
data, respectively. Data with 210 kg/cm2 ≤ f ′c,p ≤ 980 kg/cm2

and Sp = 20±3.8 cm were kept in the dataset.

Using collected experimental data of pozzolanic concrete mixture
proportioning from the literature to train CSPNN and SPNN.

The third stage is the classification of dataset according to the
cost of pozzolanic concrete. Each class in the second stage is

divided into six smaller classes.

Step 2: classifying the dataset of pozzolanic concrete
mixture proportioning

Figure 2: Schematic diagram of the proposed approach for poz-
zolanic concrete mix design.
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Table 2: Cementitious materials requirements for concrete exposed to deicing chemicals “Table 2 is reproduced from Kosmatka et al. [39]
(under the creative commons attribution license/public domain).”

Cementitious materials Maximum percent of total cementitious
materials by mass

Fly ash and natural pozzolans 25
Slag 50
Silica fume 10
Total of fly ash, slag, silica fume, and natural pozzolans 50
Total of natural pozzolans and silica fume 35

Table 3: Approximate mixing water and target air content requirements for different slumps and nominal maximum sizes of aggregate
“Table 3 is reproduced from Kosmatka et al. [39] (under the creative commons attribution license/public domain).”

Slump (mm) or air content
Water, kilograms per cubic meter of concrete, for indicated sizes of aggregate

(kg/m3)
9.5mm 12.5mm 19mm 25mm 37.5mm 50mm 75mm 150mm

Non-air-entrained concrete
25 to 50 207 199 190 179 166 154 130 113
75 to 100 228 216 205 193 181 169 145 124
150 to 175 243 228 216 202 190 178 160 –
Approximate amount of entrapped air in non-air-
entrained concrete (%) 3 2.5 2 1.5 1 0.5 0.3 0.2

Air-entrained concrete
25 to 50 181 175 168 160 150 142 122 107
75 to 100 202 193 184 175 165 157 133 119
150 to 175 216 205 197 184 174 166 154 –
Recommended average total air content, percent, for
level of exposure:
Mild exposure 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Moderate exposure 6.0 5.5 5.0 4.5 4.5 4.0 3.5 3.0
Severe exposure 7.5 7.0 6.0 6.0 5.5 5.0 4.5 4.0

Table 4: Bulk volume of coarse aggregate per unit volume of concrete “Table 4 is reproduced from Kosmatka et al. [39] (under the creative
commons attribution license/public domain).”

Nominal maximum size of aggregate (mm)
Bulk volume of dry-rodded coarse aggregate per unit volume of concrete

for different fineness moduli of fine aggregate
2.40 2.60 2.80 3.00

9.5 0.50 0.48 0.46 0.44
12.5 0.59 0.57 0.55 0.53
19 0.66 0.64 0.62 0.60
25 0.71 0.69 0.67 0.65
37.5 0.75 0.73 0.71 0.69
50 0.78 0.76 0.74 0.72
75 0.82 0.80 0.78 0.76
150 0.87 0.80 0.83 0.81

Table 5: Relationship between water to cementitious material ratio and compressive strength of concrete “Table 5 is reproduced from
Kosmatka et al. [39] (under the creative commons attribution license/public domain).”

Compressive strength at 28 days (MPa)
Water-cementitious materials ratio (by mass)

Non-air-entrained concrete Air-entrained concrete
45 0.38 0.30
40 0.42 0.34
35 0.47 0.39
30 0.54 0.45
25 0.61 0.52
20 0.69 0.60
15 0.79 0.70

6 Advances in Civil Engineering



if disp,i �

��������������������

fc,p′ −fc,i′􏼐 􏼑
2

+ Sp − Si􏼐 􏼑
2

􏽲

≤ 5.10

then classp � i(i � 1, 2, . . . , 12),

else classp � null,

(16)

where fc,p′ and Sp are the compressive strength and slump of
the pth instance in the dataset, respectively; fc,i′ and Si are the
mean (designed) compressive strength and mean (designed)
slump of the ith class, respectively; dp,i is the Euclidean
distance between the vector associate to the pth instance in
the dataset, yp � (fc,p′ , Sp), and mean vector of class i,
yi � (fc,i′ , Si); and classp is the class the pth instance in the
database belongs to.

-e second stage is the classification of dataset according
to pozzolanic admixtures replacement rate. Pozzolanic ad-
mixtures may be used as a partial replacement of cement in

concrete. -e pozzolanic admixtures used in this study are
fly ash and ground granulated blast furnace slag. Pozzolanic
admixture replacement rate, RPA, is expressed as follows:

RPA �
PA

PA + cement
× 100%, (17)

where PA is pozzolanic admixtures. Each class in the first
stage is divided into five smaller classes.-e class intervals of
RPA are 0–≤10%, >10%–≤20%, >20%–≤30%, >30%–≤40%,
and >40%–≤50%.

-e third stage is the classification of dataset according
to the cost of pozzolanic concrete. Each class in the second
stage is divided into six smaller classes. -e class intervals of
the cost of pozzolanic concrete are 0 (NTD/m3)–≤2000
(NTD/m3), >2000 (NTD/m3)–≤2250 (NTD/m3), >2250
(NTD/m3)–≤2500 (NTD/m3), >2500 (NTD/m3)–≤2750
(NTD/m3), >2750 (NTD/m3)–≤3000 (NTD/m3), and >3000

Table 6: Maximum water-cementitious material ratios and minimum design strengths for various exposure conditions “Table 6 is
reproduced from Kosmatka et al. [39] (under the creative commons attribution license/public domain).”

Exposure condition Maximum water-cementitious material ratio
by mass for concrete

Minimum design compressive strength, fc′
(Mpa)

Concrete protected from exposure to freezing
and thawing, application of deicing
chemicals, or aggressive substances

Select water-cementitious material ratio on
basis of strength, workability, and finishing

needs

Select strength based on structural
requirements

Concrete intended to have low permeability
when exposed to water 0.50 28

Concrete exposed to freezing and thawing in
a moist condition or deicers 0.45 31

For corrosion protection for reinforced
concrete exposed to chlorides from deicing
salts, salt water, brackish water, sea water, or
spray from these sources

0.40 35

Table 7: Recommended slumps for various types of construction “Table 7 is reproduced from Kosmatka et al. [39] (under the creative
commons attribution license/public domain).”

Concrete construction
Slump (mm)

Maximum Minimum
Reinforced foundation walls and footings 75 25
Plain footings, caissons, and substructure walls 75 25
Beams and reinforced walls 100 25
Building columns 100 25
Pavements and slabs 75 25
Mass concrete 75 25

Table 8: Requirements for concrete exposed to sulfates in soil or water “Table 8 is reproduced from Kosmatka et al. [39] (under the creative
commons attribution license/public domain).”

Sulfate
exposure

Water-soluble sulfate
(SO4) in soil, percent by

mass

Sulfate (SO4)
in water, ppm Cement type

Maximum water-
cementitious material

ratio, by mass

Minimum design
compressive strength, fc′

(MPa)
Negligible Less than 0.10 Less than 150 No special type required – –

Moderate 0.10 to 0.20 150 to 1500
II, MS, IP(MS), IS(MS), P
(MS), I(PM) (MS), I(SM)

(MS)
0.50 28

Severe 0.20 to 2.00 1500 to
10,000 V, HS 0.45 31

Very
severe Over 2.00 Over 10,000 V, HS 0.40 35
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(NTD/m3). -ere are 360 classes overall in the dataset of
pozzolanic concrete mixture proportioning.

4. Results and Discussion

4.1. ANN-Based Compressive Strength Prediction
Model: CSPNN

4.1.1. Training and Testing of the CSPNN Using Collected
Experimental Data. All 482 samples collected were used to
train and test the CSPNN. Among the 482 samples, 462 and
20 samples were used to train and test CSPNN, respectively.
Here, the CSPNN is constructed with seven, fourteen, and
one nodes in input layer, hidden layer, and output layer,
respectively, and denoted as CSPNN(7-14-1). -e complete
offline training process took 47 cycles. -e E and R2 were
0.005988 and 0.92556, respectively. After the CSPNN was
trained on the 462 training samples, it was tested to observe
how accurately it would predict compression strength of
other samples. Table 9 and Figure 4 summarize the results of
these tests, indicating that the CSPNN can satisfactorily
predict the compression strength in all 20 testing samples.

4.1.2. Sensitivity Analysis of the CSPNN. Figure 5 shows the
distribution of compressive strength and water for the
training samples of the CSPNN. It shows that compressive
strength decreases with increasing amounts of water in the
concrete mixture. Compressive strength is inversely pro-
portional to water content, and the slope of the fitted simple

regression line is −0.123. Figure 6 shows the distribution of
water and the first-order partial derivative of compressive
strength with respect to water for the training samples of the
CSPNN, and its mean is −0.092. -e negative mean value of
the first-order partial derivative of compressive strength
with respect to water indicates a negative correlation be-
tween compressive strength and water, which is consistent
with the negative slope value of the fitted simple regression
line in Figure 5.

Figure 7 shows the distribution of compressive
strength and cement for the CSPNN training samples. It
shows that compressive strength increases with an in-
crease in the amount of cement in the concrete mixture.
Compressive strength is proportional to cement, and the
slope of the fitted simple regression line is 0.0764. Figure 8
shows the distribution of cement and the first-order
partial derivative of compressive strength with respect
to cement for the CSPNN training samples, where the
mean is found to be 0.037. -e positive mean value of the
first-order partial derivative of compressive strength with
respect to cement indicates a positive correlation between
compressive strength and cement, which is consistent
with the positive slope value of the fitted simple regression
line in Figure 7.

Figure 9 shows a similar distribution of compressive
strength and SP for the CSPNN training samples. Com-
pressive strength increases with an increase in the amount of
SP in the concrete mixture. Compressive strength is pro-
portional to SP, and the slope of the fitted simple regression
line is 1.6298. Figure 10 shows the distribution of SP and the
first-order partial derivative of compressive strength with
respect to SP for the CSPNN training samples. -e mean of
the first-order partial derivative of compressive strength

Selection of mixture
characteristics

Start

Selection of slump

Selection of nominal
maximum aggregate

size

Estimation of
water-cement ratio or

water-cementitious
material ratio

Estimation of mixing
water, air, and

superplasticize content

Selection of the
proportion of each

pozzolanic material to
total cementitious

materials

Estimation of cement
and pozzolanic

materials content

Estimation of coarse
aggregate content

Estimation of fine
aggregate content

Adjustment of mix
proportions for the field

conditions

End

Mixing

Figure 3: -e flow chart of ACI mix design method.

Table 9: Comparison of exact compressive strength with CSPNN-
predicted compressive strength for the 20 testing samples.

No. of
sample

Exact
compressive
strength (fc,e′ )

(MPa)

Predicted
compressive

strength (fc,CSPNN′ )
(MPa)

fc,e′ -fc,CSPNN′ (MPa)

1 57.67 54.93 2.74
2 67.06 58.74 8.32
3 54.90 51.92 2.98
4 41.67 41.12 0.54
5 57.45 58.72 −1.27
6 51.08 52.51 −1.43
7 60.70 62.97 −2.27
8 44.70 38.17 6.53
9 24.20 16.85 7.35
10 46.14 54.93 −8.79
11 44.62 40.39 4.23
12 40.80 44.19 −3.39
13 25.00 30.28 −5.28
14 57.00 59.32 −2.32
15 77.00 70.62 6.38
16 69.00 65.30 3.70
17 64.00 57.01 6.99
18 84.30 85.01 −0.71
19 78.10 75.91 2.19
20 59.00 59.52 −0.52
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with respect to SP for the training samples of the CSPNN is
0.087. -e positive mean value of the first-order partial
derivative of compressive strength with respect to SP in-
dicates positive correlation between compressive strength
and SP, which is again consistent with the positive slope
value of the fitted simple regression line in Figure 9. Sen-
sitivity analysis results of the CSPNN therefore indicate that
the CSPNN is a reasonable model representing the re-
lationship between the 7 input parameters and compressive
strength.

4.2. ANN-Based Slump Prediction Model: SPNN

4.2.1. Training and Testing of the SPNN Using Collected
Experimental Data. As mentioned, only 295 samples have
slump data among the total of 482 collected samples.
-erefore, 295 samples were used to train and test the SPNN.
Among the 295 samples, 285 and 10 samples were used to
train and test SPNN, respectively. Here, the SPNN is con-
structed with seven, six, and one nodes in the input layer,
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hidden layer, and output layer, respectively, and is denoted as

SPNN(7-6-1). -e complete offline training process took 31
cycles.-e E andR2 were 0.0079527 and 0.93996, respectively.
After the SPNN was trained on the 285 training samples, it
was tested to observe how accurately it would predict slump of
other samples. Table 10 and Figure 11 summarize the results
of these tests, indicating that the SPNN can satisfactorily
predict the slump in all 10 testing samples.

4.2.2. Sensitivity Analysis of the SPNN. Figure 12 shows the
distribution of slump and SP for the training samples of the
SPNN. It shows that slump increases with an increase in the
amount of SP in the concrete mixture. Slump is proportional
to SP, and the slope of the fitted simple regression line is
0.6246. Figure 13 shows the distribution of SP and the first-
order partial derivative of slump with respect to SP for the
SPNN training samples. -e mean of the first-order partial
derivative of slump with respect to SP for the training
samples of the SPNN is −0.146. -e negative mean value of
the first-order partial derivative of slump with respect to SP
indicates negative correlation between slump and SP, which
is inconsistent with the positive slope value of the fitted
simple regression line in Figure 12. -e reason may be that
SP is a material with larger variance, and the properties of
different brands of SP are different.

4.3. Experimental Program. Experimental specimens were
also made in the laboratory to study the prediction accuracy
of the CSPNN and SPNN in terms of pozzolanic concrete
conforming to the ACI concrete mixture code. Twelve
concrete mixtures (listed in Table 11) were generated ran-
domly by computer program according to the concrete
mixture in ACI code. Four experimental specimens were
made for each concrete mixture.

4.3.1. Prediction of Compressive Strength. Figure 14 shows
a comparison of exact compressive strength to CSPNN-
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Table 10: Comparison of exact slump with SPNN-predicted slump
for the 10 testing samples.

No. of
sample

Exact slump (Se)
(cm)

Predicted slump (Sp)
(cm)

Se-Sp
(cm)

1 23.0 19.9 3.1
2 20.0 17.6 2.4
3 23.5 24.6 −1.1
4 27.0 27.2 −0.2
5 13.5 16.1 −2.6
6 11.5 11.5 0.0
7 22.0 22.4 −0.4
8 26.5 25.9 0.6
9 26.0 22.8 3.2
10 19.0 21.1 −2.1
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Figure 13: Distribution of SP and the first-order partial derivative
of slump with respect to SP for the training samples of the SPNN.
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predicted compressive strength for the 12 experimental
concrete mixtures. -e compressive strength of each con-
crete mixture is the average compressive strength of the four
specimens for each concrete mixture. Most exact compressive
strength values are larger than the CSPNN-predicted com-
pressive strength values. Possible reasons may be that (1)
coarse aggregates were crushed by machine; thus, the edges of
coarse aggregates are sharp, producing a good interlocking
effect which increases compressive strength or that (2) ex-
perimental specimens were kept submerged in lime water,
and the fine weather and relative humidity was sufficient
during the curing period to cause the concrete hydration to
occur more quickly such that the late compressive strength
was reached early. Although some predicted errors of com-
pressive strength are large, it is still acceptable.

4.3.2. Prediction of Slump. Figure 15 shows a comparison of
exact slump to SPNN-predicted slump for the 12 experimental
concrete mixtures. -e slump of each concrete mix is the
average slump of the four specimens for each concrete
mixture. Most predicted errors for slump are within the al-
lowable data range for width of slump (3.8 cm), with only one
being extreme (7.4 cm). -e predicted error of slump may be
mainly caused by SP, since SP is amaterial with larger variance
and the properties of different brands of SP are different.
Notably, CSPNN and SPNN were trained using experimental
data of pozzolanic concrete mixture proportioning collected
from the literature. It is believed that predicted error of
compressive strength and slump can be largely decreased if
a sufficient number of experimental specimens could be made
and used for training of CSPNN and SPNN.

-e trained and tested CSPNN and SPNN represent
accurate models for compressive strength and slump, re-
spectively, and they were used to predict compressive
strength and slump of experimental and numerical data.
Among 1500 experimental and numerical data, 278 data
satisfy Equation (14) and they were kept in the dataset.

4.4. Classification of Pozzolanic Concrete Mixture
Proportioning. After establishing the dataset of pozzolanic
concrete mixture proportioning, it was classified further
according to compressive strength, pozzolanic admixture re-
placement rate, and cost of concrete. Tables 12 and 13 give
some of the results. Table 12 lists concrete mixture pro-
portioning samples for compressive strength� 210 kgf/cm2 and
cost ≤2000 NTD/m3. Table 13 lists concrete mixture pro-
portioning samples for compressive strength� 700 kgf/cm2

and 2000NTD/m3≤ cost≤ 2250NTD/m3. Engineers can uti-
lize the classified dataset to easily predict mix proportioning
(solution) from required compressive strength of concrete,
pozzolanic admixture replacement rate, and cost of concrete.

5. Conclusions

-is study develops a two-step computer-aided approach for
pozzolanic concrete mix design. -e first step is to establish
a dataset of pozzolanic concrete mixture proportioning that
conforms to ACI code. In this step, ANNs are employed to

establish the prediction models of compressive strength and
slump of concrete.-e second step is to classify the dataset of
pozzolanic concrete mixture proportioning. A classification
method is utilized to categorize the dataset into 360 classes
based on compressive strength of concrete, pozzolanic ad-
mixture replacement rate, and material cost. -e following
important conclusions are drawn from the results:

(1) -e CSPNN and SPNN were trained using a portion
of collected experimental data. After training, the
CSPNN and SPNN were tested using the rest of
collected experimental data and data of experimental
specimens made in our laboratory for twelve different
mixtures. Results prove that CSPNN and SPNN can
satisfactorily predict compressive strength and slump,
respectively, from respective amounts of water, ce-
ment, ground granulated blast furnace slag, fly ash,
coarse aggregate, fine aggregate, and superplasticizer.

(2) Sensitivity analysis of the ANN can be used to explore
the cause and effect relationship between network
input and output. -erefore, sensitivity analysis of the
CSPNN and SPNN, respectively, can be used to
evaluate the effect of various concrete mix constitu-
ents (water, cement, ground granulated blast furnace
slag, fly ash, coarse aggregate, fine aggregate, and
superplasticizer) on the compressive strength and
slump of concrete.
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Figure 14: Comparison of exact compressive strength with
CSPNN-predicted compressive strength for the 12 experimental
concrete mixtures.
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(3) -e distribution of slump and SP for the training
samples of the SPNN shows that slump increases
with an increase in the amount of SP in the concrete
mixture. Slump is proportional to SP, and the slope
of the fitted simple regression line is a positive value
(0.6246). However, the mean of the first-order partial
derivative of slumpwith respect to SP for the training
samples of the SPNN is a negative value (−0.146).-e
negative mean value of the first-order partial de-
rivative of slump with respect to SP indicates neg-
ative correlation between slump and SP, which is
inconsistent with the positive slope value of the fitted
simple regression line. -e reason for this may be
that SP is a material with larger variance and the
properties of different brands of SP are different.

(4) To construct a dataset of pozzolanic concrete mix-
ture proportioning which is practical and convenient
for engineering applications, it is classified further.
Engineers can utilize the classified dataset to easily
predict mix proportioning from required compres-
sive strength of concrete, pozzolanic admixture re-
placement rate, and the necessary cost of concrete.

Abbreviations

AAN: Artificial neural network
ACI: American Concrete Institute
BFGS method: Broyden–Fletcher–Goldfarb–Shanno

method
BP network: Back-propagation network
CA: Coarse aggregate
classp: -e class the pth instance in the

database belongs to
CSPNN: Compressive strength prediction neural

network
d: Search direction
D1

ki: -e first-order partial derivative of the
kth output with respect to ith input

D
1
ki: -e mean of D1

ki

dpk: -e desired output of the kth output
node for the pth instance

dis(a, b): -e Euclidean distance between two
vectors (points) a and b

disp,i: -e Euclidean distance between the
vector associate to the pth instance in
the dataset

E: Mean square error
f: -e activation function
FA: Fine aggregate
fc′: Compressive strength
fc,CSPNN′ : Compressive strength predicted by

CSPNN
fc,i′ : Mean (designed) compressive strength

of the ith class
fc,p′ : Compressive strength of the pth

instance in the dataset
GGBFS: Ground granulated blast furnace slag
H: -e inverse Hessian matrix
Hnj: -e output of the jth node in the nth

hidden layer
L-BFGS learning
algorithm:

Limited memory
Broyden–Fletcher–Goldfarb–Shanno

Oi: -e output of ith node
opk: -e calculated output of the kth output

node for the pth instance
P: -e number of instances in the training

set
PA: Pozzolanic admixtures
R2: -e absolute fraction of variance
RPA: Admixture replacement rate
S: Slump
Si: -e mean (designed) slump of the ith

class
Sp: -e slump of the pth instance in the

dataset
SSPNN: Slump predicted by SPNN
SP: Superplasticizer
SPNN: Slump prediction neural network

Table 12: Concrete mixture proportioning samples for compressive strength� 210 kg/cm2 and cost ≤2000NTD/m3.

Water-
binder ratio

Water
(kg/m3)

Cement
(kg/m3)

Fly ash
(kg/m3)

GGBFS
(kg/m3)

CA
(kg/m3)

FA
(kg/m3)

SP
(kg/m3) f′c,CSPNN(MPa) SSPNN

(cm)
Cost

(NTD/m3) RPA(%)

0.55 199 337 20 6 704 991 0.74 23.80 20.4 1952 7.16
0.55 192 244 65 41 1024 703 2.26 23.45 23.0 1858 30.29
0.48 177 221 39 106 1136 629 3.58 21.55 22.9 1971 39.62
0.52 186 195 72 92 1056 671 2.67 23.87 23.3 1826 45.68

Table 13: Concrete mixture proportioning samples for compressive strength� 700 kg/cm2 and 2000NTD/m3< cost≤ 2250NTD/m3.

Water-
binder ratio

Water
(kg/m3)

Cement
(kg/m3)

Fly ash
(kg/m3)

GGBFS
(kg/m3)

CA
(kg/m3)

FA
(kg/m3)

SP
(kg/m3) f′c,CSPNN(MPa) SSPNN

(cm)
Cost

(NTD/m3) RPA(%)

0.34 134 292 3 103 1104 763 2.43 71.16 22.2 2137 26.63
0.30 145 281 97 101 1056 673 0.90 71.17 22.5 2013 41.34
0.33 144 232 36 173 736 1009 3.56 68.25 23.4 2127 47.39
0.32 157 253 3 239 1056 648 0.73 65.67 21.5 2065 48.89
0.28 175 322 131 183 944 542 1.46 69.62 18.0 2213 49.37
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SSE: Sum of the squares error
Whnj,ok: -e weight associated with the jth node

in the nth hidden layer to the kth node
in the output layer

Whnjn,ok: -e weight associated with the jnth
node in the nth hidden layer to the kth
node in the output layer

Wij: -e weight associated with the ith node
in the preceding layer to the jth node in
the current layer

Wxi,h1j1: -e weight associated with the ith node
in the input layer to the j1th node in the
first hidden layer

θj: -e threshold value of node j in the
current layer

θok: -e threshold value of the kth node in
the output layer

η: Learning ratio
α: Step length.

Data Availability
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