Hindawi

Complexity

Volume 2018, Article ID 2170585, 15 pages
https://doi.org/10.1155/2018/2170585

Research Article

WILEY

Hindawi

Distributed Testing System for Web Service

Based on Crowdsourcing

Xiaolong Liu(®,"? Yun-Ju Hsieh,’ Riging Chen (®,"* and Shyan-Ming Yuan

3

ICollege of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
°Digital Fujian Institute of the Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University,

Fuzhou, Fujian 350002, China

*Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan

Correspondence should be addressed to Shyan-Ming Yuan; smyuan@gmail.com

Received 29 June 2018; Revised 6 September 2018; Accepted 16 September 2018; Published 8 November 2018

Guest Editor: Zhihan Lv

Copyright © 2018 Xiaolong Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To appropriately realize the performance of a web service, it is essential to give it a comprehensive testing. Although an elastic test
could be guaranteed in traditional cloud testing systems, the geographical test that supports real user behavior simulation remains a
problem. In this paper, we propose a testing system based on a crowdsourcing model to carry out the distributed test on a target web
server automatically. The proposed crowdsourcing-based testing system (CTS) provides a reliable testing model to simulate real user
web browsing behaviors with the help of web browsers scattered all around the world. In order to make the entire test process the
same as the real situation, two test modes are proposed to simulate real user activity. By evaluating every single resource of web
service automatically, a tester can not only find out internal problems but also understand the performance of the web service. In
addition, the complete geographical test is available with the performance measurements coming from different regions in the
world. Several experiments are performed to validate the functionality and usability of CTS. It demonstrates that CTS is a
complete and reliable web service testing system, which provides unique functions and satisfies different requirements.

1. Introduction

Technological developments for broadband networks, dis-
tributed systems, and applications have led to tremendous
changes in service-oriented society. With the advancement
of web technology, service-oriented applications have become
an indispensable part of our daily life. RESTful service, which
uses HT'TP as its underlying protocol, is considered to be the
most common and important form of web application now-
adays [1]. By using a readable URL, people are capable of
accessing all kinds of resources on the Internet, such as web
pages, pictures, video files, and diversified information assets.
As for the system that provided web service, it is unavoidable
to handle thousands of user requests from all over the world.
If the design of the web server is not perfect, it will cause low
performance and then affect user experience. Therefore, for
the staging of the service lifecycle, every system should be
tested properly before being implemented as a service. The
testing procedure should verify whether the performance of

the system is sufficiently good to satisty users in terms of
capability and availability.

Web service testing is a kind of software testing which
carries out a series of tests on a web server such as a regres-
sion test, performance test, and load test [2-4] under specific
conditions. With the help of web service testing, the tester
can be aware of weak points of the web service and improve
the defect. Currently, web service testing can be divided into
two forms, i.e., single-node testing and cloud testing [5]. For
single-node testing, the test is generated and executed on the
local terminal or within the local area network environment.
Generally, a bunch of threads will be created and used to con-
duct test tasks like real users. However, most web services
need to deal with a great number of requests, and the
restricted number of threads would make it difficult to simu-
late such a large-scale testing. As for cloud testing, also
known as testing-as-a-service (TaaS), this testing takes
advantage of cloud computing technology. The testing ser-
vice will be installed in a virtual machine and deployed on

http://orcid.org/0000-0001-7772-9607
http://orcid.org/0000-0001-7828-550X
http://orcid.org/0000-0002-3621-9528
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2170585

each data center located around the world. However, cloud
testing has some problems on the geographical test since the
limited number of worldwide data centers is not enough to
build the environment that is the same as the real situation of
global users.

Crowdsourcing [6, 7] is recently a novel distributed
problem-solving and production model, which has emerged
in recent years as the information technology of the new
generation. It is a process of obtaining ideas by seeking a
large number of people, volunteers, or part-time workers,
to contribute all kinds of abilities, aimed at achieving a better
result than the traditional manner. In general, we can take
crowdsourcing as a virtual labor market [8], taking advan-
tage of advanced Internet technologies to outsource work
to individuals. Since workers are a large group of individuals
from all over the world, it makes possible to keep a flexible
scale and produce diverse results. Therefore, based on the
concept of crowdsourcing, this paper tries to design and
implement a new kind of testing scenario that can not only
go deep into the core structure of a web server to discover
potential bottleneck but also perform reliable testing with
real global user behaviors.

In this paper, a novel automatic crowdsourcing-based
testing system named CTS is proposed. With the power of
a crowd-joining model, we utilize the computing nodes pro-
vided by the worldwide end users to conduct a series of tests,
such as performance testing, availability testing, and geo-
graphical testing. In CTS, a web browser is the interface that
is taken as the test node responsible for interacting between
the testing server side and the target web server. By the use
of this model, testers can save their time on building a test-
ing environment and cutting down the workload on a host
machine. Our design has therefore focused on efficiency,
reliability, cost minimization, and ease of use. The main
contributions of our proposed automatic testing system are
the following:

(1) Real User Behavior Simulation Ability. Generally, the
traditional testing tools and services focus on gener-
ating workloads to test the web server with their
own testing infrastructure. Although it can simulate
user requests by using concurrent threads, this kind
of simulation is not good enough to act like the way
that a real user behaves in web browsing. In the pro-
posed system, we design a reliable testing model to
simulate real user web browsing behaviors with the
help of web browsers scattered all around the world

(2) Geographical Test Guarantee. With the geographical
test, the tester is able to perform the web service test
on location-based service (LBS) [9], which is able to
make use of the geographical location information
of the end user so as to provide corresponding ser-
vices. The proposed system testing service deploys
numerous web browsers distributed all over the
world with crowdsourcing. In this way, it can not only
really support the geographical test but also carry out
a large-scale load testing, which is hard to be accom-
plished in single-node testing and cloud testing

Complexity

(3) Comprehensive Resource Evaluation. The simulated
testing workload generated by the traditional testing
service is not able to assess the functionality and
availability of resources that end users actually
obtain. Even if extra resources can be added, the tes-
ter still needs to configure one by one or write some
scripts manually. Thus, in order to find out the real
weakness and problems of the target server, the pro-
posed system is aimed at reaching the goal that every
resource in the domain could be traversed and
evaluated

(4) Detailed Test Result Provision. The proposed system
provides two testing modes for different testing pur-
poses, i.e., blanket mode and emulation mode. We
provide detailed and reliable test results through the
adoption of the proposed modes, which makes the
tester clearly understand the overall situation of the
target system

The remainder of this paper is as follows: related works
are described in Section 2. Section 3 presents the design of
CTS, including the conceptual architecture and test modes.
In Section 4, system implementation is illustrated. Some
experiments are performed to validate the usability of the
proposed testing service in Section 5. Also, discussions about
the comparison between the proposed modes are given in
this section. Eventually, the conclusion of this work is
described in Section 6.

2. Related Works

In order to evaluate the performance and the ability of a web
service, a reliable web service testing approach is essential.
Early studies on web service testing have mainly focused on
automated software testing [10], in which testing is created
and installed automatically using the target software in a sin-
gle node. Afterward, the test results, information on bugs,
and logs of the service are collected using different test cases.
In general, single-node testing tools create a large number of
threads to simulate concurrent requests to the tested server.
For example, Apache JMeter [11] is a well-known web service
testing tool which creates numerous threads to simulate mul-
tiple access requests in a single node simultaneously. It
enables the tester to validate the correctness of the web ser-
vice under heavy loads and measure their performance.
Analogously, Httperf [12] is another web service perfor-
mance testing tool which provides a flexible facility for creat-
ing multiple kinds of HTTP workloads.

Cloud testing [13, 14] is an emerging model of testing
which leverages the vast resources of cloud environments to
offer testing services to consumers. It is viewed as a kind of
service that uses a cloud computing platform to deploy the
testing service on top of cloud infrastructure. Due to the
advantages of cloud computing technology, elastic resource
provisioning, cost efficiency, and high availability, cloud test-
ing resolves some problems existing on the usage of single-
node testing such as limited budget, high cost, and geograph-
ical distribution of users. Using the cloud testing technique,

Complexity

the tester can flexibly simulate real-world users with the
distributed testing environment, execute a large number of
test tasks without maintaining expensive hardware, and
increase or decrease the computing resources according to
the test requirement.

SOASTA [15] and LoadStorm [16] are industrial cloud
testing tools for performance testing. They provide nice
web GUI to make testers configure test plans and interact
with the testing platform. All test requests are sent by virtual
machines scattered in worldwide data centers. After the test-
ing finishes, testers can view results collected from these vir-
tual machines directly. With these tools, the tester is able to
perform on-demand automated tests anytime and anywhere
and conduct a large scale real-time evaluation on web ser-
vices with a scalable test environment. Recently, several cloud
testing services have also been proposed by scholars in aca-
demic circles. Zhu and Zhang [17] proposed a framework
of collaborative testing in which test tasks were completed
through the collaboration of various test services that were
registered, discovered, and invoked at runtime. In order to
improve the quality and performance of web application load
testing, Shojaee et al. [18] proposed a method by using the
existing facilities in the cloud. The pool of computing
resources without initial cost, the unlimited data storage,
and the cloud computing managerial procedures were inte-
grated to improve load testing flexibility, time, and opera-
tional costs. Yan et al. [19] also selected web services as test
targets and developed a load testing platform that enabled
the load testing process to be as close as possible to real run-
ning scenarios. In their design, the number of concurrent
requests and the geographical distribution of a test agent
were customizable. However, their Taa$S platform was devel-
oped based on the cloud platform as a service (PaaS), and
consequently, the flexibility of the test scenarios and test cli-
ent customization could not be guaranteed. To increase the
flexibility of test client customization and test scenarios, Lo
et al. [20] proposed an IaaS-based cloud service testing
framework that could adequately adapt to different general
test targets and guarantee flexibility for the test environment.
The user was able to customize test scenarios involving cli-
ents, network topologies, and test scripts.

Although the elastic test could be guaranteed in cloud
testing services mentioned above, the geographical test sup-
port remains a problem. The available location of VM is
restricted owing to the distribution of data centers owned
by the IaaS provider (e.g., Amazon). On the other hand, the
test flow may possibly be influenced by the actual behavior
and policy of a cloud service provider. VMs may be migrated
while the test is ongoing according to the resource manage-
ment policy of the cloud service provider. To solve the prob-
lems, we propose a novel web service testing system in this
paper by deploying the testing service to numerous web
browsers distributed all over the world with crowdsourcing.
In this way, the proposed system can not only really support
the geographical test but also carry out a large-scale load test-
ing, which is hard to be accomplished in single-node testing
and cloud testing. Moreover, a reliable testing model can be
guaranteed to simulate real user web browsing behaviors
with the help of web browsers scattered all around the world.

3. System Design

This section presents an overview and the detailed concept of
the proposed automatic crowdsourcing-based testing system
CTS. The main purpose of this study is to propose a referen-
tial platform for web service providers to test and specify crit-
ical resource problem in their cloud service. The conceptual
architecture of CTS and the proposed test modes are illus-
trated in Sections 3.1 and 3.2, respectively.

3.1. Conceptual Architecture. Figure 1 shows the conceptual
architecture of the proposed automatic web service testing
system CTS. It contains the following four roles:

(1) Tested Service. The tested service is basically the tar-
get web service that needs to be tested

(2) Tester. The tester is either a web developer who wants
to find out the problems on the developing website or
a supervisor who desires to understand the perfor-
mance of the web service. In the conceptual architec-
ture, the tester is one of the client-side components
based on a browser in CTS which is responsible for
specifying all configurations related to the test and
communicating with the testing platform, such as
submitting test requests and retrieving test results.
In addition, the tester is capable of monitoring the
process while the test is running. CTS provides a con-
cise web interface which makes the tester set up all
parameters in an easy way and launch the test rap-
idly. Besides, the tester can easily acquire the test
result from the detailed result page for the purpose
of website evaluation

(3) Test Node. The test node is composed of the end users
who volunteered to join the test by crowdsourcing.
Basically, the end users just need to login to CTS as
test nodes, the test will then proceed by CTS auto-
matically. In the conceptual architecture, the test
node is also one of the client-side components based
on a browser in CTS which is the actual executor of
the test plan. The test node is responsible for commu-
nicating with the testing platform such as accepting
the test task and sending back the test results. As
the test node receives a test task, it will generate work-
load to the tested service according to the assigned
test mode. Then, it will collect the responded metrics
from the target service and forward the test results to
the testing platform

(4

~

Testing Platform. The testing platform is the server-
side component which is in charge of managing all
information and connections from client-side com-
ponents: i.e., the tester and test node. Once the testing
platform receives the test request from the tester, it
first parses that request and wraps all test require-
ments into a test plan. Then, it collects the available
number of test nodes and deploys the corresponding
test nodes for testing according to the test plan. In

4
2. Submit
6. Retrieve Testing
platform
Browser 3. Deploy
o Tester 5. Report | Login
_\(ﬂ/ﬁ/
Browser Browser

4. Testing

Tested
service

F1GURE 1: Conceptual architecture of CTS.

addition, the testing platform is also in charge of stor-
ing all test results from test nodes into the database

3.2. Test Modes. In the proposed CTS system, the tester and
test nodes of the client side need to login to the testing plat-
form, and the server side is responsible for accepting test
requests, deploying test tasks, gathering test results, and stor-
ing test results back to the database. In order to make CTS
reliable and completely enough, two test modes are proposed
on the client side for testing, i.e., the blanket mode and emu-
lation mode. The proposed test modes not only enable testers
to design their own test with their testing requirement effi-
ciently but also strengthen the ability of the test node so as
to perform a thorough test on the target service. The follow-
ing sections describe the two proposed test modes.

3.2.1. Blanket Mode. The purpose of this mode is to automat-
ically perform at least one single test on all resources located
in the same domain of the target tested server. By using this
mode, the tester is able to find out errors existing behind
the web server and understand the detailed status of the
web server. In the blanket mode, the tester should first set
up the configuration of the test request, including the provi-
sion of the entry URL of the tested service, the test depth of
this testing, and the number of leaf resources required to be
tested at each level. After that, the testing platform will create
a test plan for this specific test request and selects eligible test
nodes. Then, the testing platform will deploy test tasks to the
corresponding test nodes and wait for each test result from
different test nodes.

The workflow of the test node in the blanket mode is
shown in Figure 2. Once the test node receives the test task,
it will confirm the content of test configuration. Then, the test
node begins to generate the test flow starting from the entry
URL set by the tester. At each level, the test node will parse
the URL and crawl the response body of each tested resource
at the same level to find more available resources (R) that
belong to the domain of the tested web server. If there are

Complexity

available resources, the test node will randomly select a given
number of leaf resources that are set by the tester in config-
uration as target resources (T). The test node will put the
selected resources into another test task and continue to do
the same testing scenario at the next level. The testing work-
flow will be iteratively conducted until no more resources
can be found at some levels or the current level number
(N) reaches the depth (D) assigned by the tester. For every
tested resource, the test node will send test results back to
the server side of CTS, such as performance metrics, time-
stamp, status code, and country code indicating where the
test node is located.

3.2.2. Emulation Mode. The design of the emulation mode
lies on the idea of making the testing scenario act like the
way how real user browses the website. By using this mode,
the test node generates the test flow by simulating user
behavior so that the tester is able to examine the status of
the target server within a real-world situation. In addition,
we propose two extra types in this mode based on two prop-
erties of user behavior on web browsing: hop and time. Hop
means the action of transferring from one web page to
another web page. Time indicates the duration time a user
spends on browsing a specific website. Therefore, the hop
emulation mode will simulate the real user behavior accord-
ing to how many hops the user will do while browsing a spe-
cific website. The time emulation mode will simulate the real
user behavior according to how many times the user will
spend while browsing a specific website.

At the very beginning, the tester should also set up the
configuration of the test request, including the provision of
the entry URL of the tested service, the number of hops while
selecting the emulation type as hop, or the duration time
when the emulation type is time. After that, the testing plat-
form will create a test plan for this specific test request and
select eligible test nodes. Then, the testing platform will
deploy test tasks to the corresponding test nodes and wait
for each test result from different test nodes.

The workflow of the test node in the emulation mode is
similar to that in the blanket mode. However, for the
resource-selecting stage, the test node will only select one
resource at each level to test in this mode. In addition, it
needs to wait for 11 seconds to start the next test flow. The
operation is simulated in accordance with a research of user
browsing behavior in web page based on eye tracking [21].
The research indicated that a user in average would take 11
seconds in one web page before switching to another web
page. Finally, the condition of finishing the entire test
depends on what kind of emulation type is used. For the
hop emulation mode, the testing process will be terminated
when the number of finished test flows is equal to the number
of hops set by the tester. For the time emulation mode, the
entire test will not be stopped until the process lasts for the
duration time set by the tester.

4. System Implementation

The overall software architecture of the proposed system is
shown in Figure 3, designed with two major modules: server

Complexity

Select
target resources Yes R

Parse URL

h

Generate
test flow

R: Available resources
T: Test tasks
D: Depth

Response |I
data

N: Level number
Target

F1GURrE 2: The workflow of the test node in the blanket mode.

Event controller

Server side

Node manager

Test manager

Client controller
m
Test handler

Client side

FIGURE 3: The software architecture of the proposed system.

side and client side. The service-side module plays the roles
of the data collector and service provider, which is also in
charge of session management and information exchange
with the client side; the client-side module is responsible for
the representation of the user interface, the communication
with the service side, and the test management in different
test modes. The implementation of the server-side module
uses Node.js [22] to build the core components, including

an event controller, test manager, node manager, HTTP
server, and database server. The client-side module is com-
posed of a client controller, resource parser, and test handler,
which is implemented by JavaScript and HTMLS5.

4.1. Server-Side Module. Node.js is used to accomplish the
functionality of the server-side module, since it is lightweight
and efficient in setting up the back-end environment using a

great number of embedded modules and third-party mod-
ules. In addition, Node.js takes advantage of an event-
driven and nonblocking I/O model, which makes it efficient
dealing with all kinds of connection issues. Some core com-
ponents of the service-side module are described in detail
as follows:

(1) Event Controller. For a service-oriented system, it is
essential to deal with a variety of requests from end
users. In order to resolve the communication
between the server side and client side, we make use
of a third-party WebSocket module [23] to manage
all connections from end users. Aside from common
events related to connection, we also define our own
events to handle many kinds of exclusive events trig-
gered by the client side or signaled by the server side.
Some of these events are related to job assignment,
and some of them are used to help the node manager
and test manager execute service commands or pro-
cess different kinds of notification. The event control-
ler will take the corresponding action in accordance
with the specific event name immediately as long
as it confirms any event from the tester or test node.
For example, an event named “test request” will
trigger the test manager to prepare for deploying test
task, an event called “node_info” will transfer the
information about the test node to the node manager
to update the node list, and a “test_result_query”
event sent from the tester will look for a particular
test result in the database according to the given
test ID

(2) Node Manager. The node manager is responsible for
managing test nodes and testers. Each node that is
placed on standby for job assignment will be saved
into a list. Some information about each kind of
nodes will be kept by this module, including ID, oper-
ating system, browser type, geographical location,
and estimated bandwidth. In addition to node infor-
mation management, the node manager is in charge
of selecting available test nodes in accordance with
the requirement of test request and providing the
information of the selected test nodes to the test man-
ager. As long as the test task is ready and the request
of provision of proper test nodes is published from
the test manager, the node manager will first check
the number of current nodes to guarantee the cor-
rectness. Then, the node manager will choose the cor-
responding test nodes from node list under the policy
of balance between node utilization and load balance
of each node

(3) Test Manager. The test manager has the functionality
of dealing with any request related to the test. A test
task object will be created and be pushed into a test
list when an event for test request is triggered. All
parameters in the test configuration will be stored
in the test task. The test manager is an indispensable
component as it not only manages all test tasks
requested from different testers but also deploys all

Complexity

test tasks to the corresponding test nodes. Once the
event controller receives one test request from a tes-
ter, the test configuration form within the test request
will be transferred to the test manager at once. Then,
the test manager will command the test nodes to exe-
cute their test flows according to the designated test
mode after acquiring available instances of the test
node from the node manager. When test task is in
progress, the test manager is in charge of monitoring
the progress of the test task and collecting all test
results sent back from different test nodes

(4) Http Server. We make use of the express module
provided by package manager of Node.js to imple-
ment the host of our platform. Express provides a
thin layer of fundamental web application features,
which makes it easy to handle common routines of
web application such as reaction to POST and
GET, basic authentication, and cookie manipulation.
In addition, the simple syntax of Express eases the
complexity of implementation. The Http module is
responsible for building the web environment and
plays the role of the service provider. It provides
an interface to make end users be able to get access
to the testing platform and authenticates valid users
from all over the world

(5) Database Server. For the storage of all kinds of data,
we choose MongoDB [24] as the database of our
platform. MongoDB is a document-oriented data-
base and also classified as a NoSQL database. By
the use of JSON-like documents with the so-called
BSON format, it makes data operation more efficient
and easier. The database server is implemented
under the support of the Node.js module that is able
to connect to the MongoDB server and take actions
like the traditional database such as insert, update,
delete, and query on the database server. We create
three documents for the purpose of storing all infor-
mation about the online test node, content of the
test, and test result. The tester is capable of retrieving
test results with the help of the database module at
any time

4.2. Client-Side Module. The client-side module is a web
application which provides an interface for both the tester
and test node to join and become one member of our plat-
form. Developers can login as testers to make tests on target
tested servers. For test nodes, end users from all over the
world are welcome to attend our testing platform and con-
tribute their spare computing resources to help carry out
valuable and meaningful test tasks. The following compo-
nents are mostly implemented with the modern web technol-
ogy such as CSS for static layout, JavaScript for handling the
dynamic functionality of the test, and HTML5 for charging of
both static and dynamic features.

(1) Client Controller. This component is divided into two
parts: control of web interface and message exchange
with the server side. For interface control part, we use

Complexity

HTMLS5 and CSS to construct the interface. The tes-
ter can clearly understand how to operate the func-
tional tabs, either leading to the tester doing the
configuration and submission of the test request or
providing the tester the dashboard of the test result.
The dynamic operation and interactive representa-
tion rely on the technique of JavaScript and jQuery.
For message exchange part, this module is used to
communicate with the server side by the WebSocket
protocol [25]. Both the tester side and test node side
need to initialize the client instance and connect
to the event controller first. After connecting to the
event controller, the client controller will keep wait-
ing for messages from the event controller and for-
warding test data to it

(2

~

Resource Parser. The resource parser is responsible
for parsing the response body of the tested resource
to obtain more resources located in the target server
and then generate another test task for the next level.
We implement a web crawler on this component.
The following description splits the implementation
into four steps:

(a

Nad

First, the component will continue to analyze each
response text sent from separate tested resources in
order to parse more hyperlinks until the test handler
finishes the certain test task

(b) The resource parser will do URL normalization on
those hyperlinks found in the first step, which is the
process of transforming a relative URL into an abso-
lute URL. Then, it stars to select resources which are
located in the domain of the target server from the
normalized URLs

(c

~—

In this stage, the duplicated resources as well as those
having been tested will be eliminated from the list.
Additionally, the target resources in the current task
will be recorded for the purpose of future dedupli-
cated process

(d) In the final step, the target resources among candi-
date resources will be decided and then put into
another test task for the next test process

G

~—

Test Handler. The test handler is responsible for gen-
erating the test flow by sending HTTP request to the
target server. The module is implemented by the use
of Web Worker [26] specified within HTMLS5, and it
is executed in the background without disturbing the
normal operation of the browser. For the test flow
part, we make use of a Web API called Xmlhttpre-
quest [27] to send each http request in the mecha-
nism of cross-origin resource sharing (CORS) [28].
When each test flow is started, the test handler will
compute the performance measurements for each
tested resource before the response arrived. Besides,
the status code of each request is available in the
response header. The code with 200 means that the
target resource can be accessed successfully. Status

for timeout can also be measured with timeout time
set to 30 seconds. The test flow is done as the
response text finally arrived, and then the test han-
dler will forward the response text to the resource
parser, wrap all the retrieved data, including time-
stamp, status code, and performance result, into the
test result for the target resource, and send the test
result back to the server side

5. Experimental Results and Discussions

In this section, we perform three experiments for the purpose
of validating the functionality and evaluating the usability of
our automatic crowdsourcing-based testing system CTS. The
experiments are carried out under the proposed test modes:
blanket mode and emulation mode. Through these experi-
ments, we aim to identify the difference between test modes
and make test results independently. The test results contain
status of coverage, performance measurement, geographical
measurement, and error report. The performance measure-
ments include three measurements, e.g., latency, response
time, and processing time. Latency means the time period
from the starting time of request to the arriving time of
response. Response time means the round trip time (RTT)
between the test node and target server. Processing time is
obtained by subtraction from latency, and response rime
stands for the accessing time of the responded results. In
the experiments, 30 volunteers from 10 countries are invited
to participate in CTS as test nodes. The target service for test-
ing is the Museum Service provided by the National Chiao
Tung University Library [29]. In the experiment, the tests
are conducted with different configurations for different
modes. The detailed results of the experiments for the blan-
ket mode, emulation mode with hop, and emulation mode
with time are presented in Section 5.1, 5.2, and 5.3, respec-
tively. Section 5.4 will discuss the usability of CTS in two test
modes according to the results of three experiments.

5.1. Blanket Mode. The first experiment is carried out under
the blanket mode. In test configuration, the test node number
is set to 20, and the values of depth and leaf resource number
are both assigned as 30. The main web page of the target ser-
vice is used to be the entry URL of the entire experiment.
Table 1 shows the test result of the blanket mode in terms
of hit ratio. During the testing, the total number of resources
being found on the target server is 1343, and 1337 resources
of which are tested. The hit ratio is 99.55%, which almost
covers the whole domain of the target server.

Table 2 gives the statistics of three average performance
measurements. In overall measurement, the average latency
is 188.81 ms with minimum and maximum values of 2ms
and 9761 ms. As for the response time, maximum is up to
31,063ms and minimum is 3ms. In average, it requires
3189.12ms to finish a test task. The situation of processing
time is quite the same as the response time. It takes 3 seconds
approximately to load the content of resource.

Figures 4-6 show the average geographical measure-
ments of the blanket mode results from 10 countries in terms
of latency, response time, and processing time, respectively.

8

TaBLE 1: Test result of the blanket mode (coverage).
Number of tested resources 1337
Total number of found resources 1343

Hit ratio (%) 99.55%

TaBLe 2: Test result of the blanket mode (performance
measurements).

Min (ms) Max (ms) Average (ms)
Latency 2 9761 188.81
Response time 3 31,063 3189.12
Processing time 1 30,907 3000.31

From Figure 4, results from Taiwan perform the best in
latency with 18.31 ms among all countries, while those from
Sweden result in the highest latency with 630.19 ms. Besides,
countries from Asia extensively excel in latency compared to
countries in other continents. Figure 5 shows the regional
evaluation of response time. We can see that most countries
tend to take at least 1 second on accessing one resource. In
particular, the performance of United States and Korea did
not coincide with the performance on latency. The response
time is 5871.55ms and 4287.67 ms for United States and
Korea, respectively, which are longer than the required time
for other countries. However, performances of Singapore
(270.19 ms) and Taiwan (48.25 ms) overwhelm those of other
regions. Figure 6 gives the overview of the average processing
time according to different countries. As for average process-
ing time, it is nearly the same as the condition of response
time. The highest one is 5644.21 ms in United States, and
Taiwan still performs the best with 29.94 ms.

Figure 7 shows the distribution of test nodes and timeout
requests. The reason leading to the difference between the
regions depends on the number of test nodes in one region
and the level that every test node actually reaches. In this
experiment, the country where most tests are launched is
United States (2306), and the test nodes generating the least
tests are from Sweden (139). As for the test timeout, there
are 531 timeout cases that come from 7 countries. Korea
(130) and United States (339) are countries where much
timeout occurs. The cause of timeout might result from
several circumstances such as distance, size of the resource,
and bandwidth.

Table 3 lists the examples of errors and exception results
that exist in the target server, including not found, access for-
bidden, and redirection issue. The redirection issue means
that it is disallowed to do redirection on a browser while
sending request based on the security issue. In this experi-
ment, we find out that there are 5 resources which are
unavailable, 1 error caused by access forbidden and 11 excep-
tions due to redirection issue.

5.2. Emulation Mode with Hop. The second experiment is
carried out under the emulation mode with the emulation
type as hop. We select 20 test nodes to simulate real user

Complexity

Latency
630.19

700
600
500
400
300
200
100

Milliseconds

W Us B MO M BR
™ B KR B AU

H SG JP

B SE DE

FIGURE 4: Geographical measurements of the blanket mode
(latency).

Response time

éggg 5871.55
g 5000
8 4000
Q
£ 3000
Z 2000
1000
0
m US ® MO ® BR
™ B KR m AU
® SG P
B SE DE

FiGure 5: Geographical measurements of the blanket mode
(response time).

Response time

6000 pven
] 5000 - f ey alioo T
§ 4000 {--cf e 330664 T C
8 3000 - | |- e
= 02000 10 MR - 1480.05 ,9,7i1,8,1§9,8-,2, o
= 1000 - Josa” 108id 0 . ! B N B
0 A
™ B KR B AU
m SG TP
B SE DE

FIGURE 6: Geographical measurements of blanket mode (processing
time).

behaviors on exploring web content based on switching times
between web pages. The number of hops is set as 18, which is
configured based on a research of user behavior on web
browsing by Leslie et al. [30]. Their research indicates that
the average number of web pages viewed on a specific website
by users is 18. Therefore, the result of our experiment would
be more close to the real situation.

Table 4 shows the test result of the emulation mode with
hop in terms of hit ratio. During the testing, the total num-
ber of resources being found on the target server is 238, and
101 resources of which are tested. The hit ratio is 42%.
Table 5 gives the statistics of the three average performance

Complexity

Request distribution

139 T 2306

Country Test number Number of timeout
1 SE 139 0
2 SG 182 0
3 AU 270 14
4 BR 359 4
5 DE 438 27
6 MO 503 10
7 ™ 841 0
8 KR 1,128 130
9 TP 1,507 7
10 us 2,306 339

FIGURE 7: Test result of the blanket mode (request distribution).

TaBLE 3: Test result of the blanket mode (errors and exceptions).

Path Description
1 /cht/history.htm Not found
) /cht/hnk/ﬁle:///D|/AppServ/www/web/ Access forbidden
index.htm
3 /cht/campus/mov-1.htm Redirection issue

TaBLE 4: Test result of the emulation mode with hop (coverage).

Number of tested resources 101
Total number of found resources 238
Hit ratio (%) 42%

TaBLE 5: Test result of the emulation mode with hop (performance
measurements).

Min (ms) Max (ms) Average (ms)
Latency 6 9833 620.49
Response time 7 10,430 936.34
Processing time 0 5375 315.84

measurements in the emulation mode with hop. For overall
measurement, the average latency is 620.49 ms with mini-
mum and maximum values of 6ms and 9833 ms, respec-
tively. As for the response time, the average is 936.34 ms.
The maximum value is 10,430 ms and the minimum value
is 7ms, which are not as high as that in the experiment of
the blanket mode. For processing time, all test nodes are able
to receive the response text within 6 seconds and take
315.84 ms in average.

Latency
1244.83 1253.64
izl
]
=
Q
153
2
=
= US H MO H BR
™ H KR H AU
m SG JP
B SE DE

FIGURE 8: Geographical measurements of the emulation mode with
hop (latency).

Response time

2500 1992.22
2000 1616.39- - - - . . -

1590.61
1500 - s
1000
500

Milliseconds

= us m MO M BR
™ B KR H AU

m SG JP

B SE DE

F1GURE 9: Geographical measurements of the emulation mode with
hop (response time).

Figures 8-10 show the average geographical measure-
ments of the results from the emulation mode with hop from
10 countries. Figure 8 shows that assessments from Taiwan
(187.19ms) and Macao (274.89 ms) are better than those
from other countries. The highest latency is in both Sweden
(1244.83 ms) and Australia (1253.64 ms). There is an upward
trend in latency among all regions compared to the results
in first experiment. Figure 9 displays the geographical

10

Processing time

1037.44

Milliseconds

F1GURE 10: Geographical measurements of the emulation mode with
hop (processing time).

measurements of the response time. The round trip time
obtained from Germany (1530.97 ms), Brazil (1616.39 ms),
and Australia (1590.61 ms) presents the same outcomes. The
highest one appears in Sweden (1992.22ms). The measure-
ments in others are mostly under 1 second. As for the average
processing time of different countries, Figure 10 shows that the
measurements from Asian countries such as Japan (65.69 ms),
Singapore (129.78 ms), and Korea (145.22 ms) are rather low
and the performance of Brazil (1037.44 ms) is the worst.

Figure 11 illustrates the distribution of test nodes and
timeout requests. In this experiment, the regions where the
least tests are launched are Sweden (18), Brazil (18), and
Macao (18), and the test nodes that perform the most tests
come from United States (72). As for the test timeout, there
is 0 timeout case which occurs in any country. This indicates
that the target server can retain a certain good quality to serve
end users under the circumstance in this experiment. In addi-
tion, there is only 1 access forbidden error found in this
experiment which is listed in Table 6.

5.3. Emulation Mode with Time. The last experiment is car-
ried out under the emulation mode with the emulation type
as time. Through this experiment, we generate the context
on the basis of the residence time which users spend on
browsing contents of some web servers. There are 20 test
nodes used to perform the script simulating behaviors like
real users. In the light of the result from a research done by
Leslie et al. [30], it showed that the average time spent brows-
ing one website was 9 minutes. Accordingly, we let run inter-
val be set as 9 minutes. In this way, the environment of the
experiment will get closer to the real situation.

Table 7 shows the test result of the emulation mode with
time in terms of hit ratio. During the testing, the total num-
ber of resources being found on the target server is 259, and
121 resources of which are tested. The hit ratio is 46.72%.
Table 8 gives the statistics of the three average performance
measurements in the emulation mode with time. Regarding
the whole measurement, the average latency is 611.46 ms with
minimum and maximum values of 7ms and 13,457 ms. As
for the response time, the max value is 15,340 ms and the
min value is 8ms. The average values of response time
and processing time are 942.18 ms and 330.72 ms, respec-
tively. Basically, the results are similar to those in the sec-
ond experiment.

Figures 12-14 show the average geographical measure-
ments of the results from the emulation mode with time from

Complexity

10 countries. From Figure 12, results from Taiwan and
Macao are the best in latency with 158.06 ms and 162.7 ms,
respectively, among all countries, while those from Sweden
lead to the highest latency with 1633.63 ms. In addition,
latency values of Germany (813.99 ms), Brazil (885.96 ms),
and Australia (799.42 ms) are about the same and are around
800 ms. Figure 13 shows the geographical measurements of
response time. We can see that the condition is quite the
same as latency. The results from Japan (571.07 ms), Korea
(808.61 ms), and Singapore (559.45ms) fall in the middle
place. However, Sweden (2550.68 ms) is still the region where
users get the worst experience. As for the average processing
time shown in Figure 14, evaluations from countries located
in Asia perform better than those from other countries. It
is worth nothing that Brazil (804.18 ms) turns to be at low
performance evidently for processing time. The best result
comes from Taiwan (43.15ms).

In this experiment, as shown in Figure 15, the region
where the most tests are launched is in United States (111),
and the test nodes which perform the least tests come from
Sweden (19). Actually, test distribution is even among most
regions. No timeout case takes place among all countries dur-
ing the experiment. The situation is the same as that in the
second experiment, which represents the stable service provi-
sion by the target server, and users are able to explore the
content smoothly. There are 4 errors that have been found
in this experiment which are listed in Table 9.

5.4. Discussions. The experimental results in different test
modes indicate that the proposed testing system CTS is
able to make a complete test on the target server. In this
section, we will discuss four abilities of the system and the
usability of proposed test modes according to the results of
three experiments.

5.4.1. Resource Evaluation. In accordance with the test results
in terms of hit ratio, the goal to evaluate each single resource
of the target server is truly achieved under both the blanket
mode and emulation mode. The tester can look over all the
tested resources with the assistance of visualized diagrams
provided by CTS one by one. The hit ratio is the key point
to verify the completeness of each result. The higher the hit
ratio, the larger the coverage of testing to the target service
would be. Figure 16 shows the comparison of the number
of tested resources and the hit ratio among three experi-
ments. Among the results, the experiment of the blanket
mode shows higher proportion of the tested resources to
the total found resources than that obtained by both experi-
ments of the emulation mode. The reason is that in the blan-
ket mode, more than one resource will be put into the test
task at each level, and only one resource will be evaluated
in the emulation mode. Therefore, if the tester aims to per-
form a comprehensive test, the blanket mode is the suitable
method to satisfy the requirement.

5.4.2. Performance Measurement. Figure 17 shows the com-
parison of test results of performance measurement under
the experiments. It can be found that the results of latency,
response time, and processing time appear to be the same

Complexity

11

Request distribution

L S— s

Country Test number Number of timeout
1 SE 18 0
2 BR 18 0
3 MO 18 0
4 DE 36 0
5 AU 36 0
6 SG 36 0
7 P 36 0
8 KR 36 0
9 ™W 54 0
10 Us 72 0

FIGURE 11: Test result of the emulation mode with hop (request distribution).

TaBLE 6: Test result of the emulation mode with hop (errors and
exceptions).

Path Description
1 /cht/link/file:///D|/AppServ/iwww/web/ Access
index.htm forbidden

TaBLE 7: Test result of the emulation mode with time (coverage).

Number of tested resources 121
Total number of found resources 259
Hit ratio (%) 46.72%

TaBLE 8: Test result of the emulation mode with time (performance
measurements).

Min (ms) Max (ms) Average (ms)
Latency 7 13,457 611.46
Response time 8 15,304 942.18
Processing time 0 2318 330.72

when tests are run in the emulation mode with types as hop
and time, which means that the proposed system can fulfill
the demand for a real state of affairs by simulating the real
user’s web browsing activities. For the result conducted
under the blanket mode, it leads to extremely long time
spending on processing the response data between test nodes
and the target server although the lower latency is given. The

Latency

1633.63

Milliseconds

F1GURE 12: Geographical measurements of the emulation mode with
time (latency).

Response time

» 3000 2550.68
o
5 2000
g
= 1000
=
0
m Us ® MO ¥ BR
™W B KR m AU
H SG JP
H SE DE

FIGURE 13: Geographical measurements of the emulation mode with
time (response time).

reason is that there is a large quantity of test flows generated
by test nodes at the same time. Moreover, most of them are
image and video files whose sizes are so big that the target
server needs to consume a lot of computing resources and

12
Processing time
" 1000 804.18
g 800 woll
S 600 -
PRSI R | 931
§ 2004 - B a5 1517 . o7 15286 g5
0 -
0N | MO B BR
™ B KR B AU
B SG Jp
B SE DE

FIGURE 14: Geographical measurements of the emulation mode with
time (processing time).

take more time on fetching those files in different disk sectors
and forwarding them back. In addition, the bandwidth speed
and distance between test nodes and the target server are also
the factors that might cause excessively high measurement.
The results of timeout also demonstrate that test nodes from
several countries are not able to successfully receive entire
response data in a certain period of time. As a result, it is suit-
able for the tester to give load testing or stress testing using
the blanket mode, while the emulation mode can be used to
understand the status in real-time situation.

5.4.3. Geographical Testing. With the high distribution and
powerful contribution of worldwide crowd, the tester could
collect a great amount of test data provided by test nodes
from several countries, which enables the testing platform
to analyze different performances based on the location of
the test node. Through the demonstration of geographical
measurement and request distribution, the experiments show
different results. The outcomes for some countries retain the
same among the experiments. However, the ranking of per-
formance might change dramatically for some countries.
This discrepancy resulted from two conditions: the first one
is the number of test nodes distributed over each country. If
there is unbalanced distribution of test nodes, the result
might be unreliable. As we can see, the request numbers for
United States and Japan are much more than those for other
countries like Sweden and Singapore in the first experiment.
Such case might lead to the opposite result due to unbalanced
request distribution. The other condition is due to different
numbers of resources each test node would obtain. The avail-
able resources tested would vary from test node to test node
at each level. Some test nodes might finish the entire test
early if no more resource can be found, and some would
run the complete process according to the test configuration.
These cases are more possible to happen in the blanket
mode since more than one resource would be put into the
test task randomly. Figure 18 shows the distribution of test
request and timeout in the blanket mode. It can be found
that there are 531 timeout cases that come from 7 countries
during the blanket mode, whereas no timeout case takes
place among all countries during the experiments of the
emulation mode. As a result, if the tester would like to per-
form the geographical test, the use of the emulation mode
might satisfy such requirement and is more suitable than
the use of the blanket mode.

Complexity

5.4.4. Error Detection. In addition to the ability of service
evaluation, the testing platform is also equipped with the
capability of identifying the errors hidden in the target ser-
vice. According to the experimental results, there are some
problems that indeed exist inside the tested service. Several
resources are not available due to broken link or incorrect
path name. Furthermore, the problematic expression of a
resource identifier, which is vulnerable to be exploited by
intended users, is also detected through the experiments.

Besides, the results illustrate some exceptions that occur
during the procedure of accessing resources. In the experi-
ments, most exceptions result from the redirection of a
resource identifier. Since we send HTTP request to the target
server with the support of cross-origin resource sharing
(CORS), there are some limitations and issues associated
with CORS. Most web browsers are not allowed to deal with
the redirection condition while using CORS request, and the
reason is all about security concern. Without any safe guar-
antee of unknown location of the resource indicated within
the response header, web browsers are required to cancel
the redirection from being exposed to any risk. In addition,
response headers without indication of access control would
also be taken as invalid request by the specification of CORS.
These network errors are classified into exception.

Figure 19 shows the comparison of results of found errors
and exceptions in different test modes. It can be found that
there are more errors detected using the blanket mode than
using the emulation mode. The reason is that more resources
are evaluated and a comprehensive test can be carried out
with the blanket mode. Therefore, testers can choose to use
the blanket mode if they look forward to complete error
detection results.

6. Conclusions

This paper proposed a novel distributed crowdsourcing-
based testing system CTS to ensure automatic testing for
the target web service. CTS constructs a reliable testing plat-
form by crowdsourcing, where testers are capable of deploy-
ing the web service test on worldwide web browsers. Two test
modes are proposed in CTS: the blanket mode is used to give
an extensive test on all resources kept in the target server and
the emulation mode is capable of providing human-like cir-
cumstance in order to make anthropomorphic testing in real
situation. In order to validate the functionality and usability
of CTS, several experiments are performed. The experimen-
tal results reveal that the proposed system is able to make a
complete test on the target server and both test modes could
deeply evaluate the target service. It also demonstrates that
CTS is a complete and reliable web service testing system,
which provides unique functions and satisfies different
requirements so as to perform availability testing, perfor-
mance testing, scalability testing, and geographical testing.
Inevitably, at present, the number of volunteers joining
our experiments is not enough to form a considerable scale
with the concept of a crowdsourcing model. Therefore, in
order to take advantage of global users’ capability and make
more effective tests, in the future, we have to raise more

Complexity 13

Request distribution

19 I, 111

Country Test number Number of timeout
1 SE 19 0
2 MO 20 0
3 JP 27 0
4 BR 51 0
5 SG 60 0
6 KR 64 0
7 DE 68 0
8 AU 74 0
9 ™ 86 0
10 us 111 0
FiGgure 15: Test result of the emulation mode with time (request distribution).
TaBLE 9: Test result of the emulation mode with time (errors and ;ggg 77777777777777777 300031
exceptions). 2500 4 < e
2000 4 - - - - - e e e e e e e e e e
ot 1500 4 < = - e
Path Description jp B s
X 500 4 . . 18881
/cht/history.htm Not found e . -
2 /cht/sitemap/history.htm Not found Latency Response time Processing time
3 /eng/share/peoplel4.jpg Not found o ekt (hop)
. ! cht/link/file:///D|/AppServ/www/web/ Access Emulation (ime)
index htm forbidden FiGURE 17: Comparison of performance between different test
modes.
1600 100.00%
14004 - - - R : 43 . F 90.00% 2400
1200 L 80.00% 200 RS
IR L 70.00% 2000 1 Bl - - - - s e e e
1000 1- - SR << L 60.00% oo W s
8001 - NN 46.72% - - | 50.00% Il
42% ® : 1400 4 1 -
6001 - - S - 40.00% T T
- 30.00% 1000 4 B0 - -l B 84T
4001 238 T 259”’_20.00% 800 - B IR T
503,
2001 I 10l gy L Liooow il S T BN R S
0 — . 0.00%
Blanket EmulaEon (hop) Emulation (time)

™ Number of tested resources
Number of total resources
e Hit ratio

M Test number
Number of timeout

Ficure 18: Comparison of the test number and timeout among

FIGURE 16: Comparison of coverage between different test modes. different regions in the blanket mode.

14

Number of errors
Blanket 17
Emulation (hop) 1
Emulation (time) 4

FiGure 19: Comparison of the number of found errors and
exceptions.

incentives to increase the popularity of our service and pro-
mote its powerful functionality to the public.

Data Availability

The data used to support the findings of this study are
included within the article.

Conlflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the fund from the National
Natural Science Foundation of China (Grant nos. 61702102
and 61702100) and Fujian Provincial Natural Science Foun-
dation of China (Grant no. 2018J05100) and in part by the
Ministry of Science and Technology (MOST) of Taiwan
(Grant 107-2623-E-009-006-D).

References

[1] F.Belgasmi, R. Glitho, and C. Fu, “Restful web services for ser-
vice provisioning in next-generation networks: a survey,” IEEE
Communications Magazine, vol. 49, no. 12, pp. 66-73, 2011.

[2] G. Kang, M. Tang, J. Liu, X. F. Liu, and B. Cao, “Diversifying
web service recommendation results via exploring service
usage history,” IEEE Transactions on Services Computing,
vol. 9, no. 4, pp. 566-579, 2016.

[3] S. Hussain, Z. Wang, L. K. Toure, and A. Diop, “Web service
testing tools: a comparative study,” International Journal of
Computer Science Issues, vol. 10, no. 1, pp. 641-647, 2013.

[4] Z. Pan, S. Liu, A. K. Sangaiah, and K. Muhammad, “Visual
attention feature (VAF): a novel strategy for visual tracking
based on cloud platform in intelligent surveillance systems,”
Journal of Parallel and Distributed Computing, vol. 120,
pp. 182-194, 2018.

[5] C.Y.Chiang, C.P.Chang, H. Y. Chen, Y. L. Chen, S. M. Yuan,
and C. Wang, “ATP: a browser-based distributed testing
service platform,” in 2016 International Computer Symposium
(ICS), pp. 192-197, Chiayi, Taiwan, 2016.

[6] A.Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the world-wide web,” Communications of the
ACM, vol. 54, no. 4, pp. 86-96, 2011.

Complexity

[7] K. Wang, X. Qi, L. Shu, D. J. Deng, and J. J. P. C. Rodrigues,
“Toward trustworthy crowdsourcing in the social internet
of things,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 30-36, 2016.

[8] T.de Vreede, C. Nguyen, G.-J. de Vreede, I. Boughzala, O. Oh,
and R. Reiter-Palmon, “A theoretical model of user engage-
ment in crowdsourcing,” in International Conference on
Collaboration and Technology, pp. 94-109, Springer Berlin
Heidelberg, 2013.

[9] I. A. Junglas and R. T. Watson, “Location-based services,”
Communications of the ACM, vol. 51, no. 3, pp. 65-69, 2008.

[10] P. K. Kapur, H. Pham, U. Chanda, and V. Kumar, “Optimal
allocation of testing effort during testing and debugging
phases: a control theoretic approach,” International Journal
of Systems Science, vol. 44, no. 9, pp. 1639-1650, 2013.

[11] E. H. Halili, Apache Jmeter: A Practical Beginner’s Guide to
Automated Testing and Performance Measurement for Your
Websites, Packt Publishing Ltd, 2008.

[12] D. Mosberger and T. Jin, “Httperf—a tool for measuring web
server performance,” Acm Sigmetrics Performance Evaluation
Review, vol. 26, no. 3, pp. 31-37, 1998.

[13] L. Riungu-Kalliosaari, O. Taipale, K. Smolander, and
I. Richardson, “Adoption and use of cloud-based testing in
practice,” Software Quality Journal, vol. 24, no. 2, pp. 337-
364, 2016.

[14] H.]Jin, X. Yao, and Y. Chen, “Correlation-aware QoS modeling
and manufacturing cloud service composition,” Journal of
Intelligent Manufacturing, vol. 28, no. 8, pp. 1947-1960, 2017.

[15] SOASTA2018, http://www.soasta.com.
[16] LoadStorm2018, http://loadstorm.com/.

[17] H. Zhu and Y. Zhang, “Collaborative testing of web services,”
IEEE Transactions on Services Computing, vol. 5, no. 1,
pp. 116-130, 2012.

[18] A. Shojaee, N. Agheli, and B. Hosseini, “Cloud-based load test-
ing method for web services with VMs management,” in 2015
2nd International Conference on Knowledge-Based Engineering
and Innovation (KBEI), pp. 170-176, Tehran, Iran, 2016.

[19] M. Yan, H. Sun, X. Wang, and X. Liu, “Building a Taa$ plat-
form for web service load testing,” in 2012 IEEE International
Conference on Cluster Computing, pp. 576-579, Beijing, China,
2012.

[20] W.T.Lo,X.Liu, R. K. Sheu, S. M. Yuan, and C. Y. Chang, “An
architecture for cloud service testing and real time manage-
ment,” in 2015 IEEE 39th Annual Computer Software and
Applications Conference, pp. 598-603, Taichung, Taiwan,
2015.

[21] X. Zhang, S. M. Yuan, M. D. Chen, and X. Liu, “A complete
system for analysis of video lecture based on eye tracking,”
IEEE Access, vol. 6, pp. 49056-49066, 2018.

[22] C.Lin,Y.Bi, G. Han,]. Yang, H. Zhao, and Z. Liu, “Scheduling
for time-constrained big-file transfer over multiple paths in
cloud computing,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 1, pp. 25-40, 2018.

[23] L. Pinca, “The fastest RFC-6455 WebSocket implementation
for Node.js,” 2018, https://github.com/websockets/ws.

[24] M. Elhoseny, A. Abdelaziz, A. S. Salama, A. M. Riad,
K. Muhammad, and A. K. Sangaiah, “A hybrid model of inter-
net of things and cloud computing to manage big data in
health services applications,” Future Generation Computer
Systems, vol. 86, pp- 1383-1394, 2018.

http://www.soasta.com
http://loadstorm.com/
https://github.com/websockets/ws

Complexity

(25]

(26]

(27]

(28]

(29]
(30]

M. Heinrich and M. Gaedke, “WebSoDa: a tailored data
binding framework for web programmers leveraging the
WebSocket protocol and HTML5 Microdata,” in International
Conference on Web Engineering, pp. 387-390, Springer, Berlin,
Heidelberg, 2011.

J. Harjono, G. Ng, D. Kong, and J. Lo, “Building smarter web
applications with HTMLS5,” in Proceedings of the 2010 Confer-
ence of the Center for Advanced Studies on Collaborative
Research, pp. 402-403, Toronto, Ontario, Canada, USA, 2010.

K. A. Van and D. Jackson, “The xmlhttprequest object,”
in World Wide Web Consortium, Working Draft WD-
XMLHttpRequest-20070618, W3C, 2007.

K. A. Van, “Cross-origin resource sharing,” in W3C Working
Draft WD-cors-20100727, Betascript Publishing, 2010.

NCTU Museum, 2018, http://museum.lib.nctu.edu.tw/.

E. Leslie, A. L. Marshall, N. Owen, and A. Bauman, “Engage-
ment and retention of participants in a physical activity web-
site,” Preventive Medicine, vol. 40, no. 1, pp. 54-59, 2005.

15

http://museum.lib.nctu.edu.tw/

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

