
Computers & Operations Research 39 (2012) 1206–1212
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m

bmtlin@
1 Te
journal homepage: www.elsevier.com/locate/caor
Resource-constrained flowshop scheduling with separate resource
recycling operations
T.C.E. Cheng a,1, B.M.T. Lin b,�, H.L. Huang b

a Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
b Institute of Information Management, Department of Information and Finance Management, National Chiao Tung University, Hsinchu 300, Taiwan
a r t i c l e i n f o

Available online 7 August 2010

Keywords:

Relocation problem

Resource constraint

Flowshop scheduling

Recycling operations

Complexity
48/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cor.2010.07.015

esponding author. Tel.: +886 3513 1472; fax

ail addresses: LGTcheng@polyu.edu.hk (T.C.E.

mail.nctu.edu.tw, bmtlin@iim.nctu.edu.tw (B

l: +852 2766 5215; fax: +852 2364 5245.
a b s t r a c t

This paper considers the relocation problem arising from public re-development projects cast as a

two-machine flowshop scheduling problem. In such a project, some buildings need to be torn down and

re-constructed. The two processes of tearing down and re-constructing each building are often viewed

as a single operation. However, under certain circumstances, the re-construction process, i.e., the

resource recycling process, can be viewed as a separate operation. In this paper we regard these two

processes as separate on the assumption that they are handled by different working crews. We

formulate the problem as a resource-constrained two-machine flowshop scheduling problem with

the objective of finding a feasible re-development sequence that minimizes the makespan. We provide

problem formulations, discuss the complexity results, and present polynomial algorithms for various

special cases of the problem.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Scheduling is a decision-making process concerning the allocation
of limited resources to activities over time so as to optimize one or
more objective functions. The most commonly considered resources
are machines that are deployed to perform (process) the activities
(tasks or jobs). When resource-constrained scheduling is considered,
extra resources such as money, personnel, energy, etc., are required
for the machines to process their assigned tasks. Resource constraints
have been considered in scheduling problems [1–3]. A sequence of
the tasks is called feasible if all constraints, especially the resource
constraints, are satisfied and all operations are completed. In this
paper we consider a variant of the relocation problem that can be
converted into a two-machine flowshop scheduling problem with
generalized resource constraints.

The relocation problem was first proposed and formulated
by Kaplan and his colleagues [4–7] for a public house
re-development project in Boston [8]. It was a successful
operations research application in the public sector. In the basic
setting of the relocation problem, there is a set of buildings to be
re-constructed. Each building is specified by two capacity-related
parameters: the number of current tenants and the number of
tenants that can be accommodated after re-development. When a
ll rights reserved.

: +886 3572 3792.

Cheng),

.M.T. Lin).
building is under re-development, the evacuated tenants must be
temporarily housed. The tenants are not required to reside at the
same site after re-development. Given an initial budget of
temporary housing, the authority has to determine a re-develop-
ment sequence of the buildings such that all tenants can be
successfully housed during the re-development process.

In the scheduling literature resources can be classified by type
and category. For the relocation problem, all jobs need a single
type of resource that is discrete and non-renewable. The original
capacity of a building specifies the amount of the resource
required to start a job (i.e., temporary housing to accommodate
the evacuated tenants) and the new capacity after re-develop-
ment is the amount of the resource returned by the job upon its
completion. The resource constraints involved in the relocation
problem differ from the commonly adopted resource constraints
in that the amount of the resource a job returns upon its
completion is not necessarily equal to the amount of the resource
the job acquired for its processing.

The basic relocation problem is concerned with the existence
of a feasible re-development sequence. The optimization counter-
part of the problem is to determine the minimum initial budget
that guarantees the existence of a feasible sequence. Kaplan and
Amir [6] showed that the optimization problem is mathematically
equivalent to the two-machine flowshop scheduling problem to
minimize the makespan [9]. The financial planning problem [10]
can be regarded as a special case of the relocation problem. More
applications and discussion could be found in Amir and Kaplan [5]
and Cheng and Lin [11]. Kononov and Lin [12] investigated the
relocation problem on identical parallel machines. They settled

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.07.015
mailto:LGTcheng@polyu.edu.hk
mailto:bmtlin@mail.nctu.edu.tw
mailto:bmtlin@iim.nctu.edu.tw
dx.doi.org/10.1016/j.cor.2010.07.015
dx.doi.org/10.1016/j.cor.2010.07.015


T.C.E. Cheng et al. / Computers & Operations Research 39 (2012) 1206–1212 1207
the computational complexity of the problem and proposed
approximation algorithms with analyses of their performance
ratios. Lin and Liu [13] incorporated generalized due dates into
the relocation problem to maximize the total rewards. They
proposed a branch-and-bound algorithm equipped with two
dominance rules and two lower bounds. Kononov and Lin [14]
proved the strong NP-hardness of the problem to minimize the
total weighted completion time and introduced an equivalence
property for the unit-weighted case and the unit processing time
case. Sevastyanov et al. [15] considered the relocation problem to
minimize the makespan subject to release dates. In addition to the
complexity analyses of several problem settings, they proposed a
multi-parametric dynamic programming algorithm to deal with
the case with a fixed number of distinct release dates. The running
time of the dynamic program is pseudo-polynomial, which is tight
because the case with two distinct due dates is NP-hard.

The first study on the relocation problem with the resource
recycling issue incorporated is due to Lin and Huang [16]. In
previous studies of resource-constrained scheduling, once a job
is completed, the resource it returns is immediately available,
i.e., resource recycling is assumed to be included in the job
processing time. It is very similar to the situations where we
assume that the setup time and removal time of a job are
embedded in the processing time of the job. Under certain
circumstances, the resource recycling process of a job can be
viewed as a separate operation that can be performed concur-
rently with the normal processing of the other jobs. For the
relocation problem, the re-development of a building consists of
two stages, namely demolishing and re-construction of the
building. For the basic relocation problem, the two stages are
considered as an aggregate job. In this paper we treat the resource
recycling process as a separate operation that has to be processed
by a dedicated machine. Although the model considered in this
paper stems from the relocation problem, it is applicable to
situations where there are separate resource recycling operations.

Given a certain amount of the resource, our problem is to
determine a feasible schedule that minimizes the makespan. We
denote the studied problem by F2jrpjCmax using the three-field
notation for scheduling problems [17]. The first field indicates that
the machine configuration is a two-machine flowshop, where the
first machine is for processing the jobs (demolishing the buildings)
and the second machine is dedicated to the resource recycling
operations (erecting new buildings). The second field highlights that
the job characteristics are due to the context of the relocation
problem. Lin and Huang [16] first proposed this problem setting and
presented NP-hardness proofs, a branch-and-bound algorithm, and
an approximation algorithm. This paper continues this line of study
by focusing on the theoretical nature of the problem. One unique
nature of the problem is due to the existence of two flowshops that
interact in a kind of orthogonal manner. We will elaborate on this
nature in the next section.

This paper is organized as follows: We present the problem
formulation and introduce several preliminary observations in
Section 2. While most previous studies assumed permutation
schedules, we discuss the issue of non-permutation schedules in
Section 3. We examine in Section 4 the complexity status of
several special cases and present a complexity hierarchy of the
problem. Finally, we conclude the paper and suggest some topics
for future research in Section 5.
2. Problem formulation and preliminary properties

In this section we first introduce the notation that will be used
throughout the paper. We then present a formal problem
statement and discussions of several preliminary properties. An
integer programming model follows.

Notation:
J ¼ fJ1,J2, . . . ,Jng
 the set of jobs to be processed;

pi
 processing time of job Ji on machine M1;

qi
 processing time of job Ji on machine M2;

ai
 resource requirement of job Ji;
bi
 amount of the resource returned by job Ji;
di ¼ bi�ai
 contribution of job Ji;
s¼ ðs1,s2, . . . ,snÞ
 a particular sequence of the jobs (assumed
for the case of permutation schedules);
S
 a particular schedule that assigns a starting
time to each of the 2n operations;
V
 initial resource level;

vt
 resource level at time tZ0;

ZðsÞ,ZðSÞ
 makespan of feasible schedule s and S,

respectively;

sm,i(S)
 starting time of job Ji on machine Mm in

schedule S, m¼1,2;

Cm,i(S)
 completion time of job Ji on machine Mm in

schedule S, m¼1,2.
We formally state the problem as follows: From time zero
onwards, a set of jobs J ¼ fJ1,J2, . . . ,Jng is available to be processed
in a two-stage flowshop consisting of machines M1 and M2. Initially,
the common resource pool contains V units of a single type of
resource. Job JiAJ can start processing only if machine M1 is not
occupied and the resource level in the pool is not less than ai. Once
job Ji starts processing, it immediately consumes ai units of the
resource from the resource pool and takes pi units of time on M1.
After the machine-one operation is completed, qi units of time is
required to complete its resource recycling operation on M2. Upon
the completion of job Ji on machine M2, it returns bi units of the
resource to the resource pool. No preemption on either machine is
permitted. The goal is to minimize the makespan, i.e., to find a
feasible schedule that completes all jobs in the shortest time.

2.1. Preliminary properties

We first present some known results on the basic relocation
problem to facilitate discussion. In the basic relocation problem, the
jobs are to be processed on a single machine and each job Ji is
associated with two parameters ai and bi. The minimum initial
resource level guaranteeing the existence of a feasible sequence for
the jobs of J is called the minimum resource requirement of set J . It
is clear that no temporal parameters are involved. In fact, such a
feasibility issue is linked to the classical two-machine flowshop
scheduling problem to minimize the makespan. Given job set J in
the basic relocation problem, we define job set Ĵ ¼ fĴ1, Ĵ2, . . . , Ĵ ng for
the classical two-machine flowshop scheduling problem by letting
ai and bi of job Ji as the processing times of job Ĵ i on the stage-one
and stage-two machines, respectively. The following lemma
establishes the equivalence between the relocation problem and
the two-machine flowshop scheduling problem.

Lemma 1 (Kaplan and Amir [6]). The minimum resource require-

ment of job set J for the basic relocation problem is equivalent to the

minimum total idle time on machine M2 for the two-machine

flowshop scheduling of job set Ĵ .

Therefore we can determine the minimum resource requirement
of a given job set in O(n log n) time using Johnson’s algorithm. Cheng
and Lin [11] further elaborated on the relation between the
two-machine flowshop scheduling problem and the relocation
problem, and highlighted the potential use of the notion of the



T.C.E. Cheng et al. / Computers & Operations Research 39 (2012) 1206–12121208
relocation problem in the study of two-machine flowshop schedul-
ing. The relocation problem provides a more intuitive interpretation
of Johnson’s algorithm for makespan minimization. To perform a set
of projects, it is beneficial to undertake the projects that make profits
ðdi ¼ bi�aiZ0Þ first and the remaining projects ðdi ¼ bi�aio0Þ
follow. The projects that make profits are arranged in non-
decreasing order of their investment requirement ðaiÞ. On the other
hand, the remaining projects follow in non-increasing order of their
returns ðbiÞ.

In this section we consider permutation schedules, i.e., the
processing sequences on both machines are identical. In a later
section we will consider the non-permutation case. To illustrate
the problem definition, we consider the following instance of
three jobs with an initial resource level V ¼ 5.
Fig. 1. T
Job
 pi
 qi
 ai
 bi
J1
 1
 1
 5
 2

J2
 2
 3
 2
 5

J3
 3
 2
 3
 1
Fig. 1 shows schedule S1, corresponding to sequence (1,2,3), and
schedule S2, corresponding to sequence (2,3,1). Given the
objective of makespan minimization, we apply Johnson’s
algorithm by considering pi and qi and obtain sequence (1,2,3).
As can be seen from the Gantt charts, S1 is inferior to S2. In fact,
the makespan of S1 is the worst.

A unique feature of F2jrpjCmax stems from the interaction
between two two-machine flowshops. The feasibility issue in the
basic relocation problem involves only resource constraints and is
equivalent to the idle time issue in the context of two-machine
flowshop scheduling. The second flowshop emerges from the
separation of the resource consumption (or job processing)
operation from the resource recycling operation of a job and the
serial-processing requirement of the coupled operations. We may
consider the F2jrpjCmax problem by reversing the roles of the two
flowshops. Assume that the processing times are faig and fbig and
the resource-related parameters are {pi} and {qi}. The project is
required to be completed by a deadline D¼ Vþ

Pn
i ¼ 1 bi. We want

to determine the minimum initial resource level required to
ensure the existence of a schedule that is feasible with respect to
the resource constraints and the deadline constraint. The
orthogonal type of interaction of the two flowshops makes
the problem hard to solve but may spur theoretical interest in
the structural properties of the problem.

Now we introduce the time symmetry property of F2jrpjCmax.
Given an instance I and a schedule S, we construct a mirror
wo examp
instance Iu as follows: Let pui ¼ qi, qui ¼ pi, aui ¼ bi, biu¼ ai, and
V u¼ Vþ

P
Ji AJ di. Denote the job set by J u¼ fJ1u,J2u, . . . ,Jnug. We look

at the Gantt chart of schedule S from the right hand side and
generate a mirror schedule Su of instance Iu by setting

s1,iðSuÞ ¼ ZðSÞ�C2,iðSÞ and C2,iðSuÞ ¼ ZðSÞ�s1,iðSÞ: ð1Þ

Assume that preemptions are not allowed in schedule S, i.e., if job
Jiu starts at s1,iðSuÞ (respectively, s2,iðSuÞ), then the processing of its
first (respectively, second) operation occupies the time
interval ½s1,iðSuÞ,s1,iðSuÞþpiuÞ (respectively, ½s2,iðSuÞ,s2,iðSuÞþqiuÞ). Later,
we will also address some results for the case without this
assumption. Without preemptions, (1) implies the following
equalities:

C1,iðSuÞ ¼ ZðSÞ�s2,iðSÞ and s2,iðSuÞ ¼ ZðSÞ�C1,iðSÞ: ð2Þ

Inspecting the Gannt charts, we know, by (1) and (2), that
instance Iu and schedule Su are mirror to instance I and schedule S,
and vice versa. Since schedule Su also satisfies the two-machine
flowshop scheduling constraints

s2,iðSuÞ�C1,iðSuÞ ¼ s2,iðSÞ�C1,iðSÞZ0, ð3Þ

it has the same makespan as schedule S, i.e., ZðSÞ ¼ ZðSuÞ. The
following lemma confirms the feasibility of schedule Su. The proof
is adapted from Kononov and Lin [12].

Lemma 2. Schedule Su is feasible with respect to the initial resource

level V u.

Proof. We show that the resource requirement is fulfilled at any
time point tA ½0,ZðSuÞ�. First of all, we examine the time point
t¼ ZðSuÞ, at which all jobs are completed. The resource level at ZðSuÞ

is given by

vZðSuÞðSuÞ ¼ V uþ
X

1r irn

ðbui�aiuÞ ¼ V u�
X

1r irn

ðbi�aiÞ ¼ V Z0:

If toZðSuÞ, then
P
fijs1,iðSuÞo tgaui is the total amount of resource

consumed and
P
fijC2,iðSuÞr tgbui is the total amount of resource

returned. Therefore, we have

vtðSuÞ ¼ V u�
X

fijs1,iðSuÞo tg

aui þ
X

fijC2,iðSuÞr tg

bui

¼ Vþ
X

1r irn

ðbi�aiÞ

 !
�

X
fijs1,iðSuÞo tg

biþ
X

fijC2,iðSuÞr tg

ai

¼ Vþ
X

fijs1,iðSuÞZ tg

bi�
X

fijC2,iðSuÞ4 tg

ai

¼ Vþ
X

fijs1,iðSuÞZ tg

ðbi�aiÞþ
X

fijs1,iðSuÞr trC2,iðSuÞg

ai:
le schedules.



T.C.E. Cheng et al. / Computers & Operations Research 39 (2012) 1206–1212 1209
By letting t¼ ZðSÞ�t and (1), we have

v ðSuÞ ¼ Vþ
X

ðb �a Þ�
X

a : ð4Þ
t

fijC2,iðSÞrtg
i i

fijs1,iðSÞrtrC2,iðSÞg

i

Let t0ot be the latest time point where some job completes or

finishes in schedule S. Eq. (4) leads to

vtðSuÞ ¼ Vþ
X

fijC2,iðSÞrt0g

ðbi�aiÞ�
X

fijs1,iðSÞrt0 oC2,iðSÞg

ai ¼ vt0
ðSÞZ0: ð5Þ

The last inequality follows from the fact that schedule S is

feasible with respect to V. The proof is complete. &

With the fact that ZðSÞ ¼ ZðSuÞ and Lemma 2, solution
algorithms and complexity results for instance I can be applied
to instance Iu, and vice versa, because the transformation between
the two instances takes only linear time.
2.2. Integer linear programming formulation

In the following we provide an integer linear program
formulation of the F2jrpjCmax problem using positional variables.
We use the binary variable uk

i to indicate if job Ji is scheduled in
position k or not. The auxiliary variable Cm,k denotes the
completion time of the k-th job on machine Mm for m¼1 or 2.
We use the binary variables y‘,k and bi,‘,k to handle the resource
availability relation between any two jobs. If y‘,k ¼ 1 for ‘ok, then
the ‘�th job completes on machine M2 before the k-th job starts
on machine M1. If bi,‘,k ¼ 1, then job Ji is scheduled in position ‘

and it is completed on M2 earlier than the k-th job starts
processing on M1. The variables y‘,k and bi,‘,k are related. We use
these variables to help identify whether the resource returned by
the ‘�th job could be used by the later k-th job. If the resource is
sufficient for processing the later k-th job, variable bi,‘,k does not
have to be 1. Similarly, it is possible to have y‘,k ¼ 0 even if ‘�th
job is completed before k-th job starts.

F2RP-Perm.

Minimize C2,n ð6Þ

subject to

C1,1 ¼
Xn

i ¼ 1

piu
i
1, ð7Þ

C1,k�C1,k�1�
Xn

i ¼ 1

piu
i
kZ0, 1okrn, ð8Þ

C2,k�C2,k�1�
Xn

i ¼ 1

qiu
i
kZ0, 1okrn, ð9Þ

C2,k�C1,k�
Xn

i ¼ 1

qiu
i
kZ0, 1okrn, ð10Þ

Xn

i ¼ 1

ui
k ¼ 1, 1rkrn, ð11Þ

Xn

k ¼ 1

ui
k ¼ 1, 1r irn, ð12Þ

V�
Xk

r ¼ 1

Xn

i ¼ 1

aiu
i
rþ

Xk�1

r ¼ 1

Xn

i ¼ 1

bibi,r,kZ0, 1rkrn, ð13Þ
ui
‘þy‘,k�2bi,‘,kZ0, 1r irn,1r‘okrn, ð14Þ

C1,k�C2,‘�
Xn

i ¼ 1

piu
i
kþð1�y‘,kÞMZ0, 1r‘okrn, ð15Þ

ui
kAf0,1g, 1r i,krn, ð16Þ

y‘,kAf0,1g, 1r‘okrn, ð17Þ

bi,‘,kAf0,1g, 1r irn,1r‘okrn, ð18Þ

Cm,kZ0, 1rkrn,m¼ 1,2: ð19Þ

The objective function (6) is to minimize the makespan,
i.e., the completion time of the job scheduled last. Constraints
(7)–(10) confine all jobs to the following restrictions of flowshop
scheduling: any job cannot start until its preceding job is
completed and the machine-two operation of any job cannot be
processed unless its machine-one operation is finished.
Constraints (11) and (12) specify the one-to-one correspondence
between jobs and positions, i.e., any position can accommodate at
most one job and any job can occupy only one position.
Constraints (13) require that the resource requirement of the
k-th job cannot be greater than the current resource level, which
is the initial resource level plus the resource returned by the jobs
already completed before it can start. Constraints (14) ensure that
if job Ji is scheduled in position ‘ and completes before the k-th
job starts, then bi,‘,k ¼ 1. Constraints (15) check whether the ‘�th
job completes before the k-th job starts. The remaining
constraints specify the ranges of the values of the variables.
3. Non-permutation scheduling

One of the main constraints characterizing a flowshop scheduling
problem is whether all machines have the same processing
sequence of the jobs. A schedule is called permutational if the job
sequences on all machines in the shop are the same. For the classical
two-machine flowshop problem F2JCmax, it suffices to consider only
permutation schedules [9]. However, the optimal schedule for the
m-machine flowshop problem, FmjjCmax, is not necessarily permuta-
tional, although the sequences on the first two machines or the last
two machines are the same. For the F2jrpjCmax problem studied by
Lin and Huang [16], permutation sequences were assumed. The
issue of whether there exists at least one permutation optimal
schedule for the F2jrpjCmax problem has not been investigated
before. In this section we discuss the properties of permutation and
non-permutation schedules.

Lemma 3. The optimal schedule for F2jrpjCmax is not necessarily

permutational.

Proof. Consider the following instance of four jobs with an initial
resource level V ¼ 6.
pi
 qi
 ai
 bi
J1
 0
 4
 3
 10

J2
 4
 5
 3
 10

J3
 1
 1
 9
 10

J4
 5
 0
 11
 10
Fig. 2 shows the optimal permutation and non-permutation

schedules. It is easy to verify that the optimal solution is

obtained by the non-permutation schedule for the given instance.

This example also shows that the optimal sequence may not



J2J3

J2J3

J4

J1

Permutation schedule with Cmax = 15.

J2

J1

J3

J3 J2

J4

Non-permutationschedulewith Cmax = 11.

Fig. 2. Gantt charts of permutation and non-permutation schedules. (a) Permuta-

tion schedule with Cmax¼15. (b) Non-permutation schedule with Cmax¼11.

T.C.E. Cheng et al. / Computers & Operations Research 39 (2012) 1206–12121210
necessarily be permutational even if all jobs return the same

amount of the resource. &

The instance given above to illustrate Lemma 3 for
non-permutation optimal schedules contains four jobs. It can be
verified that instances with two or three jobs always permit
permutational optimal schedules. Therefore, the four-job instance
given above constitutes the smallest instance for which optimal
schedules are not permutational.

Therefore, if we do not require schedules to be permutational,
an optimal schedule may have different job sequences on the two
machines. In the IP formulation (F2RP-Perm) in Section 2.2, we
only considered permutation schedules. Below, we propose
another formulation that considers non-permutation schedules.
Since the job sequences may not necessarily be the same on
both machines, we have to re-define the positional variables.
If job Ji is scheduled in position k on machine Mm, then ui

m,k ¼1;
0 otherwise.

F2RP-Non-Perm.

Minimize C2,n ð20Þ

subject to

C1,1 ¼
Xn

i ¼ 1

piu
i
1,1, ð21Þ

C1,k�C1,k�1�
Xn

i ¼ 1

piu
i
1,kZ0, 1okrn, ð22Þ

C2,k�C2,k�1�
Xn

i ¼ 1

qiu
i
2,kZ0, 1okrn, ð23Þ

C2,k�C1,j�qiþð1�ui
2,kÞMþð1�ui

1,jÞMZ0, 1r i,j,krn, ð24Þ

Xn

i ¼ 1

ui
m,k ¼ 1, 1rkrn,m¼ 1,2, ð25Þ

Xn

k ¼ 1

ui
m,k ¼ 1, 1r irn,m¼ 1,2, ð26Þ

V�
Xk

r ¼ 1

Xn

i ¼ 1

aiu
i
1,rþ

Xk�1

‘ ¼ 1

Xn

i ¼ 1

bibi,‘,kZ0, 1rkrn, ð27Þ

ui
2,‘þy‘,k�2bi,‘,kZ0, 1r irn,1r‘okrn, ð28Þ

C1,k�C2,‘�
Xn

i ¼ 1

piu
i
1,kþð1�y‘,kÞMZ0, 1r‘okrn, ð29Þ
ui
m,kAf0,1g, 1r i,krn,m¼ 1,2, ð30Þ

y‘,kAf0,1g, 1r‘okrn, ð31Þ

Cm,kZ0, 1rkrn,m¼ 1,2: ð32Þ

Most constraints in this formulation are similar to those for the
permutational case (F2RP-Perm). Constraints (21)–(24) define
the processing characteristics of the two-machine flowshop.
The difference between constraints (21)–(24) and (7)–(10) lies
in the necessity for new variables, ui

m,k, which are required
because the two operations of the same job might be scheduled in
different positions on the two machines. We use the new
variables to determine the completion times of a job on different
machines. Constraints (24) verify whether job Ji’s machine-two
operation starts after its machine-one operation by checking all
pairs of positions on different machines.

We have shown that permutation schedules do not always
provide optimal solutions in the general situation. Even when all
jobs return the same amount of the resource, as shown in the
instance of Lemma 3, the optimal schedule is not necessarily
permutational. For some special cases, however, permutation
schedules do provide the optimal solutions. The following lemma
gives a special case that admits permutation optimal schedules.

Lemma 4. If machine M1 is dominant, i.e., minfpigZmaxfqig, then it

suffices to consider permutation schedules only.

Proof. Consider an optimal non-permutation schedule S. Assume
that the jobs are re-numbered by their processing order on
machine M1. Let Ji be the job with the smallest index whose
machine-two operation does not start immediately after the
completion of its machine-one operation, C1,i. Since the recycling
process does not demand any resource, it could be started once its
machine-one operation is completed and machine M2 is available.
By assumption, machine M2 is idle while job Ji+ 1 is processed on
machine M1. We shift the recycling operation of job Ji backward to
start at the completion of its machine-one operation. Clearly, the
new schedule remains feasible. Moreover, since machine M1 is
dominant, C2,irC1,iþ1 must hold, implying that C2,i + 1 remains
unchanged. Repeating the same argument, we will obtain a
permutation optimal schedule. The proof is complete. &

By Lemmas 2 and 4, we can say that if machine M2 is
dominant, there exists an optimal schedule that is permutational.

Lemma 4a. If machine M2 is dominant, i.e., maxfpigrminfqig, then

it suffices to consider permutation schedules only.

4. Complexity results

Lin and Huang [16] showed that F2jrpjCmax without preemp-
tion is NP-hard in the strong sense even if only one parameter
is fixed. The complexity status of the preemptive case
ðF2jrp,pmtnjCmaxÞ and some special cases, such as more than one
parameter are assumed to be fixed, has not been settled. In this
section we provide the complexity results for F2jrp,pmtnjCmax and
various special cases of the F2jrpjCmax problem.
4.1. Hard cases

First we present a strong NP-hardness proof for the preemptive
case, F2jrp,pmtnjCmax, by a reduction from the 3-Partition problem,
which is known to be NP-complete in the strong sense [18].



T.C.E. Cheng et al. / Computers & Operations Research 39 (2012) 1206–1212 1211
3-Partition. Instance: A positive integer B, a set of 3m elements
fx1,x2, . . . ,x3mg such that B=4oxioB=2 for each index
iAN¼ f1,2, . . . ,3mg and

P3m
i ¼ 1 xi ¼mB.

Question: Can index set N be partitioned into m disjoint sets

N1,N2,y,Nm such that for each 1rkrm,
P

iANk
xi ¼ B?

Theorem 1. The decision version of the F2jrp,pmtnjCmax problem is

NP-complete in the strong sense even if all the jobs have the same

resource requirement.

Proof. The decision version of F2jrp,pmtnjCmax is
F2jrp,pmtn,CmaxrC j�, where C is the threshold parameter impos-
ing an upper bound on the schedule length. To establish the
membership of this decision problem in NP, we have to show that
the number of preemptions is bounded by a polynomial in the
length of the problem input and that if preemptions occur at non-
integer time points, the encoding of the length of each fractional part
of an operation in an optimal schedule is also bounded by a
polynomial in the length of the problem input. The two issues have
been addressed by [19] for much more general scheduling problems
with resource constraints and for a wide variety of objective
functions, including all the classical ones. Given a schedule of the
studied problem, the makespan can be calculated in polynomial
time. Hence this decision problem belongs to NP.

Given an instance of 3-Partition, we construct an instance of

F2jrp,pmtn,CmaxrC j� with an initial resource level V¼2B as

follows:

3m ordinary jobs Ji,1r ir3m: pi ¼ xi,qi ¼ 0, ai ¼ B; bi ¼ Bþxi.

m enforcer jobs Ji, 3mþ1r ir4m: pi ¼ 0,qi ¼ B,ai ¼ B,bi ¼ 0.

The threshold is C ¼mB. We claim that a partition exists for the

3-Partition problem if and only if there exists a feasible schedule

whose makespan is not greater than C .

Let subsets N1,N2,y, Nm constitute a partition of set N in

3-Partition. We first schedule an enforcer job, say J3m + 1, followed

by the three jobs, say J1, J2, J3, defined by the elements of set N1.

On machine M2, the processing of enforcer job J3m +1 is preempted

when job J1 completes on machine M1. The preemption prevents

job J2 from being blocked due to a shortage of resource. Similarly,

job J2 preempts the processing of job J3m + 1 on machine M2 to

facilitate the processing of job J3. When the four jobs are finished,

the resource level is again 2B. Repeating the procedure for

dispatching an enforcer job J3m +k followed by the three ordinary

jobs defined by the subset Nk, 1rkrm, we can develop a feasible

schedule with a makespan of mB.

To show the if-part of the claim, we assume that there is a feasible

schedule S with the makespan equal to mB. While the total machine

load of either machine is mB, the assumption implies that no idle

time is allowed on either machine. Since all enforcers are identical,

we assume that they are arranged in increasing order of their job

indices. To avoid any idle time on machine M2, enforcer job J3m+1

must be scheduled first. We consider the set of ordinary jobs

scheduled to start on machine M1 in the time interval ½0,C2,3mþ1ðSÞÞ.

Let N1 be the set of elements defining these ordinary jobs. IfP
iAN1

xi4B, then there must be some ordinary job completed on

machine M1 later than B, which is the completion time of the first

enforcer job J3m+1. That is, idle time occurs on machine M2. On the

other hand, if
P

iAN1
xioB, then the resource level at the completion

time of these ordinary jobs is Bþ
P

iAN1
xio2B. Then the second

enforcer job J3m+2 starts its processing and reduces the resource

level to ðBþ
P

iAN1
xiÞ�B, which is less than B. At this moment, none

of the unscheduled jobs, either ordinary or enforcer, can be

successfully started. Therefore
P

iAN1
xioB cannot be true. Equality
P
iAN1

xi ¼ B must hold. Following the same line of reasoning, we can

come up with sets N2, y, Nm with
P

iANk
xi ¼ B,2rkrm, satisfied.

A partition is identified for the 3-Partition problem and the proof is

complete. &

It can be seen that for the instance of the
F2jrp,pmtn,CmaxrC j� problem constructed for a given instance
of the 3-Partition problem, there is no optimal schedule without
preemption. Thus the Preemption Redundancy Property [19] does
not hold for this scheduling problem. Otherwise, if it did,
then the NP-completeness of this decision problem would
directly follow from its Preemption Redundancy Property and
from the NP-completeness of its non-preemptive counterpart
/F2jrp,CmaxrC j�S proved earlier by Lin and Huang [16].
Another note for the theorem is that all jobs in the instance
constructed in the proof have the same resource requirement
ai ¼ B. By Lemma 2, we have:

Corollary 1. The decision version of F2jrp,pmtnjCmax is NP-complete

in the strong sense even if all jobs return the same amount of

resource.

In the following we discuss some special cases where
preemption is not allowed. Lin and Huang [16] showed four
special cases of F2jrpjCmax to be NP-hard in the strong sense, i.e.,
(1) pi¼p for all i, (2) qi¼q for all i, (3) ai ¼ a for all i, and (4) bi ¼ b
for all i. That is, the problem remains hard to solve if one of the
four parameters is assumed to be fixed. In the following we show
that several further restricted cases remain NP-hard.

The following theorem addresses the case where all jobs are
almost identical except for the processing times of the stage-two
operations. In the following discussion we only outline how the
instances of our scheduling problems are constructed from
3-Partition and omit the detailed analysis.

Theorem 2. F2jrp,pi ¼ p,ai ¼ bi ¼ 1jCmax is strongly NP-hard.

Proof. An instance of F2jrp,pi ¼ p,ai ¼ bi ¼ 1,C j� with 4m jobs,
initial resource level V¼4, and threshold C ¼ ð4mþ1ÞB is given as
follows:

3m ordinary jobs Ji, 1r ir3m: pi ¼ B,qi ¼ xi,ai ¼ 1,bi ¼ 1;

m enforcer jobs Ji, 3mþ1r ir4m: pi ¼ B,qi ¼ 3B,ai ¼ 1,bi ¼ 1.

A schedule with a makespan of C corresponds to a partition as

required. &

The next result readily follows from the time symmetry
property.

Corollary 2. F2jrp,qi ¼ q,ai ¼ bi ¼ 1jCmax is strongly NP-hard.

The next theorem concerns the special case where each job
requires one unit of time for its stage-one operation and there are
only two distinct stage-two processing times among all jobs. This
restricted case remains strongly NP-hard.

Theorem 3. F2jrp,pi ¼ 1,qiAfq1,q2gjCmax is strongly NP-hard.

Proof. An instance of F2jrp,pi ¼ 1,qiAfq1,q2g,CmaxrC j� with an
initial resource level V ¼ 6B is given as follows:

3m ordinary jobs Ji, 1r ir3m: pi ¼ 1,qi ¼ 0,ai ¼ Bþxi,bi ¼ 4xi;

m enforcer jobs Ji, 3mþ1r ir4m: pi ¼ 1,qi ¼ 3,ai ¼ 2B,bi ¼ 2B.

A desired partition of 3-Partition exists if and only if there is a

feasible schedule whose makespan is not greater than C ¼ 4m. &

4.2. Solvable cases

In this section we study some polynomially solvable cases by
developing exact solution algorithms. In Theorem 2 and Corollary 2,



Fig. 3. Complexity hierarchy.

T.C.E. Cheng et al. / Computers & Operations Research 39 (2012) 1206–12121212
we showed that the problem remains strongly NP-hard even if all
jobs are common in the three parameter values ðpi,ai,biÞ or ðqi,ai,biÞ.
It is interesting to consider other special cases where all jobs have
common values of ðpi,qi,aiÞ or ðpi,qi,biÞ. In the following we show
that the two special cases can be solved in polynomial time.

Lemma 5. There exists an optimal schedule for

F2jrp,pi ¼ p,qi ¼ q,ai ¼ ajCmax in which the jobs are scheduled in

non-increasing order of bi.

Proof. By Lemma 4, there exists a permutation optimal schedule.
Let s¼ ðs1, . . . ,snÞ be an optimal sequence in which bsiþ 1

4bsi
.

Then, evidently, swapping the two jobs in the sequence retains the
feasibility of the permutation schedule with the same length (and
thus optimal). Repeating the swapping argument, if necessary, we
can obtain a schedule with the sequence as required. &

Due to the time symmetry property, we have a similar result
for the case F2jrp,pi ¼ p,qi ¼ q,bi ¼ bjCmax.

Lemma 6. The F2jrp,pi ¼ p,qi ¼ q,bi ¼ bjCmax problem can be solved

in O(n log n) time by arranging the jobs in non-decreasing order of ai.

By Lemma 5, we can determine an optimal schedule for
F2jrp,pi ¼ p,qi ¼ q,ai ¼ ajCmax by sorting the values of bi in non-
decreasing order. Similarly, by Lemma 6, we can determine an
optimal schedule for F2jrp,pi ¼ p,qi ¼ q,bi ¼ bjCmax by sorting the
values of ai in non-increasing order. The following theorem thus
follows.

Theorem 4. For any instance of problem F2jrp,pi ¼ p,qi ¼ q,ai ¼ ajCmax

or problem F2jrp,pi ¼ p,qi ¼ q,bi ¼ bjCmax with n jobs, there exists an

optimal permutation schedule that could be found in O(n log n) time.

5. Conclusion

In this study we considered the relocation problem with separate
recycling operations. We examined several properties concerning
whether the optimal schedule is permutational or not. We presented
integer linear programming models for both the permutational and
non-permutational settings. We settled the complexity status of
several special cases of the problem, although some cases remain
unresolved. Summarizing the results presented in this paper, we
depict the complexity status of all studied cases of the problem in
Fig. 3. It is seen that the complexity of the case where the processing
times are fixed on both machines remains unknown. Furthermore, it
is hard to determine the complexity of the most simplified unit
execution time case F2jrp,pi ¼ qi ¼ 1jCmax. For further studies,
theoretical analysis of approximation algorithms for F2jrpjCmax will
be an interesting topic.
Acknowledgements

The authors are grateful to the reviewers for their professional
comments, which have improved the presentation of the paper.
This research was supported in part by The Hong Kong
Polytechnic University under Grant number G-U471. Lin was also
supported by the National Science Council of Taiwan under the
Grant NSC96-2416-H-009-012-MY2.
References

[1] Blazewicz J, Lenstra JK, Rinnooy Kan AHG. Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics
1989;5:11–34.

[2] Brucker P, Drexl A, Mohring R, Neumann K, Pesch E. Resource-constrained
project scheduling: notation, classification, models, and methods. European
Journal of Operational Research 1999;112(1):3–41.

[3] Hammer PL. Scheduling under resource constraints - deterministic models.
Annals of Operations Research 1986;7.

[4] Kaplan EH. Relocation models for public housing redevelopment programs.
Planning and Design 1986;13(1):5–19.

[5] Amir A, Kaplan EH. Relocation problems are hard. International Journal of
Computer Mathematics 1988;25:101–10.

[6] Kaplan EH, Amir A. A fast feasibility test for relocation problems. European
Journal of Operational Research 1988;35:201–5.

[7] Kaplan EH, Berman O. Orient heights housing projects. Interfaces
1988;18(6):14–22.

[8] PHRG. New Lives for Old Buildings: Revitalizing Public Housing Project 1986.
Public Housing Group, Department of Urban Studies and Planning, MIT,
Cambridge. MA.

[9] Johnson SM. Optimal two- and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly 1954;1:61–7.

[10] Xie JX. Polynomial algorithms for single machine scheduling problems with
financial constraints. Operations Research Letters 1997;21:39–42.

[11] Cheng TCE, Lin BMT. Johnson’s rule, composite jobs and the relocation
problem. European Journal of Operational Research 2009;192:1008–13.

[12] Kononov AVB, Lin MT. On the relocation problems with multiple identical
working crews. Discrete Optimization 2006;21(4):368–81.

[13] Lin BMT, Liu ST. Maximizing the reward in the relocation problem with
generalized due dates. International Journal of Production Economics
2008;115:55–63.

[14] Kononov AV, Lin BMT. Minimizing the total weighted completion time in the
relocation problem. Journal of Scheduling 2010;13(2):123–9.

[15] Sevastyanov SV, Lin BMT, Huang HL. Tight complexity analysis of the
relocation problem with arbitrary release dates, in submission.

[16] Lin BMT, Huang HL. On the relocation problem with a second working crew
for resource recycling. International Journal of Systems Science
2006;37(1):27–34.

[17] Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annal
of Discrete Mathematics 1979;5:87–326.

[18] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of
NP-completeness. San Francisco, CA: Freedman; 1979.

[19] Baptiste P, Carlier J, Kononov A, Queyranne M, Sevastyanov S, Sviridenko M.
Structural properties of preemptive schedules. Discrete Analysis and
Operations Research 2009;16(1):3–36. [in Russian].


	Resource-constrained flowshop scheduling with separate resource recycling operations
	Introduction
	Problem formulation and preliminary properties
	Preliminary properties
	Integer linear programming formulation

	Non-permutation scheduling
	Complexity results
	Hard cases
	Solvable cases

	Conclusion
	Acknowledgements
	References




