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In this paper, we propose a dominance-based fuzzy rough set approach for the decision

analysis of a preference-ordered uncertain or possibilistic data table, which is comprised

of a finite set of objects described by a finite set of criteria. The domains of the criteria

may have ordinal properties that express preference scales. In the proposed approach, we

first compute the degree of dominance between any two objects based on their imprecise

evaluations with respect to each criterion. This results in a valued dominance relation on

the universe. Then, we define the degree of adherence to the dominance principle by every

pair of objects and the degree of consistency of each object. The consistency degrees of all

objects are aggregated to derive the quality of the classification, which we use to define the

reducts of a data table. In addition, the upward and downward unions of decision classes

are fuzzy subsets of the universe. Thus, the lower and upper approximations of the decision

classes based on the valued dominance relation are fuzzy rough sets. By using the lower

approximations of the decision classes, we can derive two types of decision rules that can

be applied to new decision cases.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The theory of knowledge has long been an important topic inmany academic disciplines, such as philosophy, psychology,

economics, and artificial intelligence, whereas the storage and retrieval of data is themain concern of information science. In

modernexperimental science, knowledge is usually acquired fromobserveddata,which is a valuable resource for researchers

anddecision-makers. In this respect, reasoning about data is a primary task in science.With the aid of computers, thedata can

be transformed into symbolic knowledge automatically. Thus, intelligent data analysis has received a great deal of attention

in recent years. Rough set theory proposed in [27] provides a theoretical foundation for reasoning about data.

When rough set theory is applied to multi-criteria decision analysis (MCDA), it is crucial to deal with preference-ordered

attribute domains and decision classes [8,9,12–15,18]. The original rough set theory cannot handle inconsistencies arising

from violations of the dominance principle due to its use of the indiscernibility relation. Therefore, in the above-mentioned

works, the indiscernibility relation is replaced by a dominance relation to solve the multi-criteria sorting problem; and the

data table is replaced by a pairwise comparison table to solve multi-criteria choice and ranking problems. The approach is

called the dominance-based rough set approach (DRSA). For MCDA problems, DRSA can induce a set of decision rules from

sample decisions provided by decision-makers. The induced rules form a comprehensive preference model and can provide

recommendations about a new decision-making environment.

A strong assumption about data tables is that each object takes exactly one value with respect to an attribute. However,

in practice, we may only have incomplete information about the values of an object’s attributes. Thus, more general data

∗ Corresponding author.

E-mail addresses: dffan@npu.edu.tw (T.-F. Fan), liaucj@iis.sinica.edu.tw (C.-J. Liau), dliu@iim.nctu.edu.tw (D.-R. Liu).

0888-613X/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2011.01.009

http://dx.doi.org/10.1016/j.ijar.2011.01.009
http://www.sciencedirect.com/science/journal/0888613X
www.elsevier.com/locate/ijar
http://dx.doi.org/10.1016/j.ijar.2011.01.009


1284 T.-F. Fan et al. / International Journal on Approximate Reasoning 52 (2011) 1283–1297

tables are needed to represent incomplete information. For example, set-valued and interval-valued data tables have been

introduced to represent incomplete information [20–22,24,34]; and DRSA has been extended to deal with missing values

in MCDA problems [13]. Since a data table with missing values is a special case of uncertain or possibilistic data tables, we

propose further extending DRSA to the decision analysis of these two kinds of data tables. This paper contains a theoretical

investigation of such an extension based on the valued dominance principle.

While efficient rule induction algorithms are important for KDD applications, we believe that a clear interpretation of

uncertain data and unambiguous specification of the inducedmodel are prerequisites for further computational implemen-

tations. Therefore, we focus on the declarative aspects instead of the procedural aspects of themethod. In otherwords, rather

than provide an efficient implementation of the proposedmethod, we show the kinds of rules that can be induced given our

interpretation of the uncertain data, and how the rules can be applied to new decision environments.

The proposedmethod first computes the degree of dominance between any two objects based on their imprecise evalua-

tionswith respect to each criterion. This results in a valued dominance relation on the universe. Then,we define the degree of

adherence to the dominance principle by every pair of objects and the degree of consistency of each object. The consistency

degrees of all objects are aggregated to derive the quality of the classification, which we use to define the reducts of decision

tables. In addition, the upward and downward unions of decision classes are fuzzy subsets of the universe. Therefore, lower

and upper approximations of the decision classes based on the valued dominance relation are fuzzy rough sets. By using

the lower approximations of the decision classes, we can derive two types of decision rules that can be applied in new

decision-making environments.

The remainder of this paper is organized as follows: In Section 2, we review the dominance-based rough set approach.

In Section 3, we present a general framework of the dominance-based fuzzy rough set approach(DFRSA). Then, we reify the

framework todealwithuncertaindata tables andpossibilistic data tables in Sections4 and5, respectively. In Section6,wedis-

cuss our approaches and provide an extensive comparison with related works. Section 7 contains some concluding remarks.

2. Review of rough set theory and DRSA

The basic construct of rough set theory is an approximation space, which is defined as a pair (U, R), where U is a finite

universe and R ⊆ U ×U is an equivalence relation on U. We write an equivalence class of R as [x]R if it contains the element

x. For any subset X of the universe, the lower approximation and upper approximation of X are denoted by RX and RX ,

respectively, and defined as follows:

RX = {x ∈ U | [x]R ⊆ X}, (1)

RX = {x ∈ U | [x]R ∩ X �= ∅}. (2)

Although an approximation space is an abstract framework used to represent classification knowledge, it can easily be

derived from a concrete data table (DT). In [28], a data table1 is defined as a tuple T = (U, A, {Vi | i ∈ A}, {fi | i ∈ A}),
where U is a nonempty finite set, called the universe; A is a nonempty finite set of primitive attributes; for each i ∈ A, Vi

is the domain of values of i; and for each i ∈ A, fi : U → Vi is a total function. An attribute in A is usually denoted by the

lower-case letters i or a. In decision analysis (and throughout this paper), we assume the set of attributes is partitioned into

{d} ∪ (A − {d}), where d is called the decision attribute, and the remaining attributes in C = A − {d} are called condition

attributes. Given a subset of attributes B, we can define an equivalence relation, called the indiscernibility relation, as follows:

ind(B) = {(x, y) | x, y ∈ U, fi(x) = fi(y)∀i ∈ B}. (3)

Consequently, for each B ⊆ A, (U, ind(B)) is an approximation space.

ForMCDAproblems, each object in a data table can be seen as a sample decision, and each condition attribute is a criterion

for that decision. Since a criterion’s domain of values is usually ordered according to the decision-maker’s preferences, we

define a preference-ordered data table (PODT) as a tuple T = (U, A, {(Vi, 
i) | i ∈ A}, {fi | i ∈ A}), where (U, A, {Vi |
i ∈ A}, {fi | i ∈ A}) is a classical data table; and for each i ∈ A, 
i⊆ Vi × Vi is a binary relation over Vi. The relation 
i is

called a weak preference relation or outranking on Vi, and represents a preference over the set of objects with respect to the

criterion i [31].

To deal with inconsistencies arising from violations of the dominance principle, the indiscernibility relation is replaced

by a dominance relation in DRSA. Let P be a subset of criteria. Then, we can define the P-dominance relation DP ⊆ U × U as

follows:

(x, y) ∈ DP ⇔ fi(x) 
i fi(y)∀i ∈ P. (4)

When (x, y) ∈ DP , we say that x P-dominates y, and that y is P-dominated by x. We usually use the infix notation xDPy

to denote (x, y) ∈ DP . Given the dominance relation DP , the P-dominating set and P-dominated set of x are defined as

1 Also called knowledge representation systems, information systems, or attribute-value systems.
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D
+
P (x) = {y ∈ U | yDPx} and D

−
P (x) = {y ∈ U | xDPy}, respectively. In addition, for each t ∈ Vd, we define the decision

class Clt as {x ∈ U | fd(x) = t}. Then, the upward and downward unions of classes are defined as Cl
≥
t = ⋃

s≥t Cls and

Cl
≤
t = ⋃

s≤t Cls, respectively. We can then define the P-lower and P-upper approximations of Cl
≥
t and Cl

≤
t by using the

P-dominating sets and P-dominated sets instead of the equivalence classes.

3. Dominance-based fuzzy rough set approach

In [10,16], fuzzy set extensions of the DRSA are proposed to refine the concept of dominance. In this section, we present a

framework called the dominance-based fuzzy rough set approach(DFRSA), which is a slightlymodified version of the extension

in [16]. In the framework, the universe is endowed with a valued preference relation Di : U × U → [0, 1] for each criterion i

and each decision class is a fuzzy subset ofU. Thus, aDFRSA frame is a tuple F = (U, A, {Di | i ∈ A}, {Cl≥t , Cl
≤
t | 1 ≤ t ≤ n}),

whereU is the universe,A is the set of criteria, eachDi (i ∈ A) is a valued preference relation onU, and Cl
≥
t and Cl

≤
t (1 ≤ t ≤ n

for some n > 1) are fuzzy subsets of U.

For any subset of criteria P, we can aggregate the valued preference relations Di(i ∈ P) into P-dominance relations. Let

⊗, ⊕ and → denote, respectively, a t-norm operation, an s-norm operation and an implication operation on [0, 1]. Then,
the valued P dominance relation DP : U × U → [0, 1] is defined as

DP(x, y) = ⊗
i∈P

Di(x, y). (5)

Since the dominance relation is a valued relation, the satisfaction of the dominance principle is a matter of degree. Thus,

the degree of adherence of (x, y) to the dominance principle with respect to a subset of condition criteria P is defined as

δP(x, y) = DP(x, y) → Dd(x, y), (6)

and the degree of P-consistency of x is defined as

δP(x) = ⊗
y∈U

(δP(x, y) ⊗ δP(y, x)). (7)

Let Fbe a DFRSA frame. Then, the quality of the classification of Fbased on the set of criteria P is defined as

γP(F) =
∑

x∈U δP(x)

|U| . (8)

Note that γP(F) is monotonic with respect to P, i.e., γQ (F) ≤ γP(F) if Q ⊆ P. Thus, we can define every minimal subset

P ⊆ C such that γP(F) = γC(F) as a reduct of C, where C = A−{d} is the set of all condition criteria. In addition, the degree

of P-consistency is monotonic with respect to P, so a reduct is also a minimal subset P ⊆ C such that δP(x) = δC(x) for

all x ∈ U. However, because δP(x) is less sensitive to individual changes in δP(x, y), we cannot guarantee that a reduct will

preserve the degree of adherence to the dominance principle for each pair of objects. To resolve this difficulty, we adopt the

following alternative definition of the quality of the classification:

ηP(F) =
∑

x,y∈U δP(x, y)

|U|2 . (9)

The reducts can also be defined in terms of the above equation.

Since our dominance relation is a valued relation and the decision classes are fuzzy sets, the lower and upper approxi-

mations of the classes are defined in the same way as those for fuzzy rough sets 2 [4,29,26,23,25,33]. More specifically, the

P-lower and P-upper approximations of Cl
≥
t and Cl

≤
t for each 1 ≤ t ≤ n are defined as fuzzy subsets of U with the following

membership functions:

P(Cl≥t )(x) = ⊗
y∈U

(DP(y, x) → Cl≥t (y)), (10)

P(Cl≥t )(x) = ⊕
y∈U

(DP(x, y) ⊗ Cl≥t (y)), (11)

P(Cl≤t )(x) = ⊗
y∈U

(DP(x, y) → Cl≤t (y)), (12)

P(Cl≤t )(x) = ⊕
y∈U

(DP(y, x) ⊗ Cl≤t (y)). (13)

2 Although the [0, 1]-valued dominance relation is not restricted to being a fuzzy relation, the formal definition of the lower and upper approximations is the

same as that for fuzzy rough sets.
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Let P denote a reduct of a DFRSA frame and let 1 ≤ t ≤ n. Then, for each object x, where P(Cl
≥
t )(x) > 0 (or above some

pre-determined threshold), we can derive the first type of fuzzy rule:

P(Cl≥t )(x) : ∧
i∈P

(≥i, fi(x)) −→ (≥d, t); (14)

and for each object x, where P(Cl
≤
t )(x) > 0 (or above some pre-determined threshold), we can derive the second type of

fuzzy rule:

P(Cl≤t )(x) : ∧
i∈P

(≤i, fi(x)) −→ (≤d, t), (15)

where P(Cl
≥
t )(x) and P(Cl

≤
t )(x) are the respective degrees of truth of the rules.

The DFRSA frame is simply an abstract framework. The valued preference relation is a primitive notion in the framework

and the upward and downward unions of decision classes are not connected with the valued dominance relation D{d} in

an explicit way. By contrast, in the application of DRSA to MCDA, the dominance relations and the upward and downward

unions of decision classes are both derived from the evaluations and class assignments of sample decisions in a PODT. Thus,

we are interested in reifying the DFRSA frame for specific MCDA problems. In particular, a DFRSA frame can be derived

from sample decisions with imprecise evaluations and assignments. In the next two sections, we consider two concrete

instances of the DFRSA frame derived through the reification process, where the valued preference relation is derived from

the imprecise evaluations in a probabilistic way and a possibilistic way.

4. Preference-ordered uncertain data tables

Although a PODT can represent multi-criteria decision cases effectively, it inherits the restriction of the classical DT in

that uncertain information cannot be represented. An uncertain data table is a generalization of a DT, so the values of some

or all of its attributes are imprecise [20–22]. An analogous generalization can be applied to a PODT to define preference-

ordered uncertain data tables (POUDT). Formally, a POUDT is a tuple T = (U, A, {(Vi, 
i) | i ∈ A}, {fi | i ∈ A}), where

U, A, {(Vi, 
i) | i ∈ A} are defined as above; and for each i ∈ A, fi : U → 2Vi − {∅}. The intuition about a POUDT is that

the evaluation of criterion i for an object x belongs to fi(x), although the evaluation is not known exactly. When fi(x) is a

singleton, we say that the evaluation is precise. If all evaluations of T are precise, then T is said to be precise.

Since we do not have any further information about the evaluation, we employ the principle of indifference to assess

the degrees of belief in its possible values. (For a justification of the principle, see [19].) This motivates us to assign the

simplest non-informative prior, i.e., the uniform epistemic probability to the possible values of the evaluation. Therefore, we

assume that, for each criterion i, the Cartesian plane Vi × Vi is endowed with a uniform measure μi. Thus, for each subset

S ⊆ Vi ×Vi,μi(S) is a non-negative real number.When Vi is a finite set, we takeμi(S) as the cardinality of S; andwhen Vi is a

real interval, we takeμi(S) as the area of S. The assumptionmay bias our treatment of incomplete information, since it does

not necessarily reflect the proper epistemic status (i.e., partial ignorance) of the analyst who has the uncertain data [5,7].

However, the assumption is sometimes realistic when the data is sanitized via well-known privacy-preserving techniques,

as shown in Section 6.2.

4.1. Valued preference relation

In a POUDT, the objects may have imprecise evaluations with respect to the condition criteria and imprecise assignments

to decision classes. Thus, the preference relations between the objects cannot be determined with certainty. Instead, we can

derive a degree of preference between two objects with respect to each criterion i based on the associated measures μi.

Formally, the valued preference relation with respect to the criterion i is Di : U × U → [0, 1] such that for all x �= y,

Di(x, y) = μi({(v1, v2) | v1 
i v2, v1 ∈ fi(x), v2 ∈ fi(y)})
μi(fi(x) × fi(y))

, (16)

and Di(x, x) = 1 for any x ∈ U.

Example 1. Fig. 1 shows an example of computing the degree of preference, where the evaluation of x with respect to

criterion i, denoted by s(x), is in a continuous interval fi(x) = [lx, ux]. In this example, Di(x, y) is the ratio of the area of ABC

over the area of ABDE, i.e.,
ux−lx

2(uy−ly)
.

From the example, it is clear thatDi(x, y)+Di(y, x) = 1 holds for the continuous domain Vi if x �= y. This is a direct result

of probability calculus, since Di(x, y) is actually the probability of fi(x) 
i fi(y) under the uniformity assumption. However,

we note that, although DP(x, y) is equivalent to the conjunctive statement
∧

i∈P(fi(x) 
i fi(y)) in standard DRSA, the valued

dominance DP(x, y) in our framework is not necessarily equal to the probability of
∧

i∈P(fi(x) 
i fi(y)). In other words,
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Fig. 1. The degree of dominance of x over y.

we consider DP(x, y) as simply the aggregation of individual Di(x, y) for i ∈ P instead of the probability of the conjunctive

statement, even though each Di(x, y) is regarded as the probability of the individual statement.

4.2. Upward and downward unions of decision classes

In a POUDT, the assignment of a decision label to an objectmay be imprecise, so the decision classesmay be fuzzy subsets

of the universe. First, for each decision label t ∈ Vd, the decision class Clt : U → [0, 1] is defined by

Clt(x) =
⎧⎨
⎩

1
|fd(x)| , if t ∈ fd(x),

0, otherwise.
(17)

Second, the upward and downward unions of classes are defined by

Cl≥t (x) = |fd(x) ∩ {v ∈ Vd : v ≥ t}|
|fd(x)| (18)

and

Cl≤t (x) = |fd(x) ∩ {v ∈ Vd : v ≤ t}|
|fd(x)| (19)

respectively. Note that Cl
≥
t = ⋃

s≥t Cls and Cl
≤
t = ⋃

s≤t Cls only hold when we take the Łukasiewicz s-norm as the union

operation, i.e., only when (F ∪ G)(x) = F(x) ⊕ G(x), where a ⊕ b = min(1, a + b).

4.3. Decision-making process

For a new decision casewith (possibly imprecise) evaluations based on the condition criteria P, we can apply the decision

rules (14) and (15) to derive its decision label assignment. Specifically, let x be a new object such that, for each criterion

i ∈ P, fi(x) ⊆ Vi is given; and let α be a rule c : ∧
i∈P(≥i, si) −→ (≥d, t) in the form of (14). Then, according to the rule α,

we can derive that the degree of satisfaction of fd(x) 
d t, denoted by ε(α, fd(x) 
d t), is

c ⊗ ⊗
i∈P

μi({(v1, v2) | v1 
i v2, v1 ∈ fi(x), v2 ∈ si})
μi(fi(x) × si)

. (20)

Let R≥
t denote the set of all rules with the consequent (≥d, t

′) such that t′ ≥ t. Then, the final degree of fd(x) 
d t is

⊕
α∈R≥

t

ε(α, fd(x) 
d t′). (21)
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We can derive the degree of fd(x) �d t from the second type of rule in a similar manner. Then, the degree of fd(x) = t is the

t-norm conjunction of the degree of fd(x) �d t and the degree of fd(x) 
d t. In this way, we can apply the induced rules to

rank the possible decision assignments for the new case.

4.4. Properties

In [1], it is shown that the DRSA approach to multiple criteria classification with imprecise evaluations and assignments

preserves some well-known properties of rough approximations, such as rough inclusion, complementarity, the identity of

boundaries, and precisiation. In the following, we examine some of those properties in our approach.

Proposition 1 (Rough inclusion). Assume that the implication operation used in (10)–(13) satisfies the requirement that 1 →
a = a for all a ∈ [0, 1]. Then, for any t ∈ Vd and P ⊆ C, the following properties hold:

1. P(Cl
≥
t ) ⊆ Cl

≥
t ⊆ P(Cl

≥
t ),

2. P(Cl
≤
t ) ⊆ Cl

≤
t ⊆ P(Cl

≤
t ).

Proof. By the definitions of the lower and upper approximations, the left inclusion follows from the facts that Dp(x, x) = 1,

1 → a = a, and a ⊗ b ≤ a; and the right inclusion follows from the facts that Dp(x, x) = 1, 1 ⊗ a = a, and a ≤ a ⊕ b. �

To present the complementarity property, we need a negation function ¬ : [0, 1] → [0, 1]. In this paper, we assume

the negation function is defined by ¬a = 1− a for any a ∈ [0, 1]. Thus, the complement of a fuzzy subset S ⊆ U is defined

by the membership function (U − S)(x) = ¬S(x) = 1 − S(x) for all x ∈ U.

Proposition 2 (Complementarity). Assume that the t-norm and implication operations used in (10)–(13) satisfy the requirement

that ¬(a → b) = a ⊗ ¬b for all a, b ∈ [0, 1]. Then, for any P ⊆ C, the following properties hold for 1 ≤ t ≤ n − 1:

1. P(Cl
≤
t ) = U − P(Cl

≥
t+1),

2. P(Cl
≤
t ) = U − P(Cl

≥
t+1).

Proof. The properties depend on the following crucial fact, which can be derived easily from (18) and (19).

Cl≤t (x) = ¬Cl
≥
t+1(x) (22)

for x ∈ U and 1 ≤ t ≤ n − 1. �

The precisiation of data means any new information about objects in U that is added to the data tables. It can be a

new criterion or a piece of information that further refines the subsets of evaluations or assignments of an object. Rough

set approaches usually require that more precise information about objects does not reduce the lower approximations

of the decision classes. Thus, two types of precisiation properties are investigated in [1]. One is for the situation when

new attributes or criteria are added to the decision table; and the other is for when more specific information about the

evaluations and assignments of objects is added. The first type depends on the monotonicity of the t-norm, s-norm, and

implication operations. Recall that the t-norm and s-norm operations are non-decreasing in their respective arguments,

while the implication operation should be non-increasing in its left argument and non-decreasing in its right argument.

Proposition 3 (Precisiation). For any R ⊆ P ⊆ C and t ∈ Vd, we have

1. R(Cl
≥
t ) ⊆ P(Cl

≥
t ) ⊆ P(Cl

≥
t ) ⊆ R(Cl

≥
t ),

2. R(Cl
≤
t ) ⊆ P(Cl

≤
t ) ⊆ P(Cl

≤
t ) ⊆ R(Cl

≤
t ).

Proof. According to the t-norm aggregation, DP(x, y) ≤ DR(x, y) for all x, y ∈ U. Then, the results follow from the

monotonicity of the t-norm operation with respect to both of its arguments and the anti-monotonicity of the implication

function with respect to its left argument. �

However, the second type of precisiation property does not hold for our fuzzy rough approximations. This is because,

according to (16), the degree of dominance between two objects does not change monotonically with the precision of their

evaluations or assignments. Furthermore, according to (18) and (19), the upward and downward unions of decision classes

may also change non-monotonically with the precision of the assignments to objects. We consider this reasonable because

thequalitative precisiationpropertymaynot capture thequantitative uncertainty encoded in our valueddominance relation.
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5. Preference-ordered possibilistic data tables

In a POUDT, the information function fi of a criterion i assigns a subset of possible values fi(x) to each object x ∈ U. As

mentioned earlier, the subset fi(x) can be interpreted as follows: the precise evaluation (or assignment) of x on criterion i is

not known precisely, although a range for the value is known and restricted to the subset fi(x). Moreover, since no further

information is specified, it is assumed that each value in the subset fi(x) is equally possible. In terms of possibility theory

[36], fi(x) is simply a special kind of possibility distribution, where the degrees of possibility are restricted to 0 or 1. Thus, it

is natural to extend the result in the previous section tomore general preference-ordered uncertain data tables, in which the

uncertainty of information is specified by general possibility distributions. To present our approach in this general setting,we

first define preference-ordered possibilistic data tables (POPDT). Recall that a possibility distribution on a domain V is simply

a functionπ : V → [0, 1]. Intuitively,π specifies the degree of possibility of each element in the domain V . Here, π(v) = 1

and π(v) = 0 mean that the element v is fully possible and totally impossible, respectively; while the intermediate values

in (0, 1)mean partial possibilities of v. We usually assume that a possibility distribution is normalized, i.e., supv∈V π(v) = 1.

Let π1 and π2 be two possibility distributions on V . Then, we say that π1 is at least as specific as π2, denoted by π1 ≤ π2,

if π1(v) ≤ π2(v) for each v ∈ V . Let us denote the set of all normalized possibility distributions on V by (V → [0, 1])+.

Then, a POPDT is a tuple T = (U, A, {(Vi, 
i) | i ∈ A}, {fi | i ∈ A}), where U, A, {(Vi, 
i) | i ∈ A} are defined as above, and

for each i ∈ A, fi : U → (Vi → [0, 1])+.

5.1. Fuzzy weak preference relations

In a POUDT, each value in a subset fi(x) is considered equally possible; therefore, we can use a uniform measure μi to

determine the probability of x being preferred to y based on the criterion i. However, since possibility information for each

possible value is available in a POPDT, we can use the extension principle in fuzzy set theory to compute the degree of

preference [35]. The extension principle extends an operation or a relation over a base domain to the class of all fuzzy sets

or possibility distributions over the domain. In our context, we use the extension principle to extend the preference relation


i on Vi to a valued preference relation between two possibility distributions on Vi. Consequently, the valued preference

relation between two objects with respect to the criterion i is determined by their respective possibility distributions over

the domain of the criterion. Thus, the valued preference relation is also called the fuzzy weak preference relation. Formally,

the fuzzy weak preference relation with respect to the criterion i is a fuzzy relation Di : U × U → [0, 1] such that

Di(x, y) = sup{fi(x)(v1) ⊗ fi(y)(v2) | v1 
i v2, v1, v2 ∈ Vi}. (23)

5.2. Upward and downward unions of classes

For a given POPDT, the decision classes are still fuzzy subsets of U, but their membership functions are derived from the

possibility distributions associated with the assignments of the objects. For each t ∈ Vd, the decision class Clt : U → [0, 1]
is defined by

Clt(x) = fd(x)(t); (24)

thus, the the upward and downward unions of classes are defined by

Cl≥t (x) = sup
v≥t

fd(x)(v) = Πx({v ≥ t}) (25)

and

Cl≤t (x) = sup
v≤t

fd(x)(v) = Πx({v ≤ t}) (26)

respectively, where Πx is the possibility measure corresponding to the possibility distribution fd(x).

5.3. Decision-making process

For a new decision case with evaluations based on the condition criteria P, we can apply the decision rules in (14) and

(15) to derive the case’s decision label assignment. Specifically, let x be a new object such that, for each criterion i ∈ P,

fi(x) ∈ (Vi → [0, 1])+ is given; and let α be a rule c : ∧
i∈P(≥i, πi) −→ (≥d, t). Then, according to the rule α, we can

derive that the degree of satisfaction of fd(x) 
d t, denoted by ε(α, fd(x) 
d t), is

c ⊗ ⊗
i∈P

⊕
v1
iv2

(fi(x)(v1) ⊗ πi(v2)). (27)
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Fig. 2. The possibility distributions on the domain of “score”.

Let R≥
t denote the set of all rules with the consequent (≥d, t

′) such that t′ ≥ t. Then, the final degree of fd(x) 
d t is

⊕
α∈R≥

t

ε(α, fd(x) 
d t′). (28)

We can derive the degree of fd(x) �d t from the second type of rule in a similar manner. Therefore, as in the case of a POUDT,

we can apply the induced rules to rank the possible decision assignments for the new case.

Mathematically, the evaluations and assignments in a POPDT are possibility distributions, so the antecedents of the rules

may also include any possibility distributions on the domain. However, in general, the set of all (normalized) possibility

distributions is infinite, even though the domain is finite. This may result in a very large set of rules. Moreover, most of the

possibility distributions may lack semantically meaningful interpretations for human users; hence, the induced rules may

be hard to use. To resolve the difficulty, the standard practice in fuzzy logic is to use a set of meaningful linguistic labels

whose interpretations are simply possibility distributions on the domain. Thus, the evaluations and assignments given in a

POPDT are restricted to the (usually finite) set of linguistic labels, so the set of atomic formulas in our rules only contains

(≥i, πi) or (≤i, πi), where πi is a linguistic label. For example, if the evaluated criterion is “score” and its domain is [0, 9],
then the set of linguistic labels may be {poor, fair, good, excellent}, and their corresponding interpretations are possibility

distributions, as shown in Fig. 2.

5.4. Properties

In this section, we investigate the properties mentioned in the preceding section for fuzzy rough approximations in a

POPDT. The rough inclusion property is exactly the same as above. However, since (22) no longer holds for the upward

and downward unions of decision classes defined by (25) and (26), the complementarity property is not the same as that

described above. Instead, we utilize the following fact to formulate an alternative complementarity property

max(Cl≤t (x), Cl
≥
t+1(x)) = 1 (29)

for x ∈ U and 1 ≤ t ≤ n − 1.

Proposition 4 (Complementarity). Assume that the t-norm, s-norm, and implication operations applied in (10)–(13) satisfy the

following condition for any finite index set I and {ai, bi | i ∈ I} ⊆ [0, 1]:
⊕
i∈I

ai ⊕
⊗
i∈I

(ai → bi) = 1. (30)

Then, for any P ⊆ C, the following properties hold for 1 ≤ t ≤ n − 1:

1. P(Cl
≤
t ) ∪ P(Cl

≥
t+1) = U,

2. P(Cl
≤
t ) ∪ P(Cl

≥
t+1) = U.
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Proof. For a given x ∈ U and 1 ≤ t ≤ n − 1, let ay = DP(y, x), by = Cl
≥
t+1(y), and cy = Cl

≤
t (y). Then, max(by, cy) = 1 for

any y ∈ U. Let I = {y | by < 1}. Then, cy = 1 for y ∈ I. Thus, by (10) and (13), we have

P(Cl
≥
t+1)(x) = ⊗

y∈I

(ay → by),

P(Cl≤t )(x) = ⊕
y∈I

ay ⊕ ⊕
y∈U−I

(ay ⊗ cy).

Therefore,

P(Cl
≥
t+1)(x) ⊕ P(Cl≤t )(x) = 1 ⊕ ⊕

y∈U−I

(ay ⊗ cy) = 1

by assumption (30). Since this holds for any x ∈ U, we have P(Cl
≤
t ) ∪ P(Cl

≥
t+1) = U. The second equation can be proved in

an analogous manner. �

The first type of precisiation property still holds for the fuzzy rough approximations in a POPDT. However, in contrast

to the complete absence of the second type of precisiation property in a POUDT, we have the following result for a POPDT

because of the monotonic change in the degree of dominance with respect to the specificity of the possibility distributions.

Proposition 5 (The second type of precisiation). Let T = (U, A, {(Vi, 
i) | i ∈ A}, {fi | i ∈ A}) and T ′ = (U, A, {(Vi, 
i) |
i ∈ A}, {f ′i | i ∈ A}) be two POPDTs, where A = C ∪ {d} such that fd = f ′d and fi(x) ≤ f ′i (x) for all i ∈ C and x ∈ U. In other

words, the evaluations of objects in T are at least as specific as those in T ′. Then, for any P ⊆ C and t ∈ Vd, we have

1. P′(Cl≥t ) ⊆ P(Cl
≥
t ) ⊆ P(Cl

≥
t ) ⊆ P′(Cl≥t ),

2. P′(Cl≤t ) ⊆ P(Cl
≤
t ) ⊆ P(Cl

≤
t ) ⊆ P′(Cl≤t ),

where the P′-approximations indicate the approximations based on the fuzzy dominance relations derived from T ′ with the same

set of criteria P.

Proof. Note that fd = f ′d implies that Cl
≥
t (resp. Cl

≤
t ) remains the same in both tables. Thus, we can consider the P-

approximations and P′-approximations of Cl
≥
t (resp. Cl

≤
t ) at the same time. By Eq. (23), Di(x, y) ≤ D′

i(x, y) for any x, y ∈ U

and i ∈ A due to the monotonicity of the t-norm and sup operations, so DP(x, y) ≤ D′
P(x, y) for any x, y ∈ U. Then, by Eqs.

(10)–(13), the left inclusion follows from the anti-monotonicity of the implication operatorwith respect to its first argument;

the right inclusion follows from the monotonicity of the t-norm; and the middle inclusion is simply the property of rough

inclusion (Proposition 1). �

6. Related works and discussion

A large number of works use rough set-based approaches to deal with different types of data for MCDA problems. The

works can be divided into six categories based on the techniques employed (DRSA or DFRSA) and the types of data dealt

with (precise, uncertain, or fuzzy data). Our studies of POUDTs and POPDTs belong to the categories of DFRSA for uncertain

data and DFRSA for fuzzy data, respectively. Thus, we compare our work with the representative works in the remaining

four categories.

6.1. DRSA for precise data

The first category comprises works on standard applications of DRSA to PODTs. Several representative works in this

category were cited in Section 1 and the basic concept of the approachwas reviewed in Section 2; therefore, we only include

it here as a baseline for comparison. Obviously, a POUDT and a POPDT are both generalizations of a PODT, and our approach

is reduced to the standard DRSA when the given data table is precise.

6.2. DRSA for uncertain data

Asmentioned inSection1, theconceptof incompleteormulti-valued information systemshasbeenconsidered inclassical

rough set approaches. In the context of DRSA, the problem of missing values was examined in [11]. Since an information

system with missing values is a special case of a POUDT, it is also desirable to extend DRSA to deal with more general

information systems that have “partially missing values”. This issue was addressed in Dembczynski et al.’s recent work

[1], which is representative of the second category. In [1], the imprecision of data is represented by an interval of possible

values. Thus, for each decision criterion i and sample decision x, fi(x) is represented as an interval [li(x), ui(x)], where
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li(x), ui(x) ∈ Vi and li(x) ≤ ui(x). Based on the interval-valued evaluations, three kinds of weak preference relations are

defined with respect to a criterion i:

• A possible weak preference (PWP) relation: x
iy iff ui(x) ≥ li(y).• A lower-end weak preference (LWP) relation: x 
l
i y iff li(x) ≥ li(y).• An upper-end weak preference (UWP) relation: x 
u

i y iff ui(x) ≥ ui(y).

For any x, y ∈ U and P ⊆ C, the generalized dominance principle in [1] is formulated as follows:

[xDPy ⇒ xDu
dy] ∧ [yDPx ⇒ yDl

dx], (31)

where DP,D
u
d , and Dl

d are the aggregated dominance relations of the respective weak preference relations.

Unlike interval-valued data, an uncertain value in a POUDT cannot be characterized simply by its lower and upper

bounds because it may be an arbitrary subset of the domain of values. This results in a semantic difference between the

weak preference relations over intervals and those over subsets of values. While PWP, LWP, and UWP are appropriate for

the comparison of two intervals, they cannot completely characterize the preferences between two subsets of values. In a

POUDT, two subsets of valuesmay have the same lower and upper bounds. Thus, instead of using three qualitative preference

relations that may be unable to distinguish between the two subsets, we use a quantitative relation to compare the degree

of preference between them.

An implication of such a semantic difference is that these two approaches may yield different sets of consistent objects,

even when they are only applied to interval-valued data. The following example illustrates the difference.

Example 2. Let us consider a single criterion i and the decision attribute d. Assume that x and y are two objects such

that fi(x) = [1, 3], fi(y) = [3, 5], fd(x) = [2, 2], and fd(y) = [3, 3]. Then, since xDiy and yDix hold simultaneously, but

fd(x) = fd(y) does not hold, x and y violate the generalized dominance principle in [1]. Thus, x and y are regarded as

{i}-inconsistent objects in [1]. However, according to DFRSA in this paper, Di(x, y) = 0,Dd(x, y) = 0,Di(y, x) = 1, and

Dd(y, x) = 1, so the degree of adherence of (x, y) to the dominance principle with respect to {i} is 1. This seems quite

reasonable since we are (almost) certain that y is preferred over x in criterion i, and that y is assigned to a better decision

class than x, although we do not know the i-evaluations of x and y exactly.

The semantic difference also explains why the reclassification property holds for the model in [1], but it does not apply

to our induced rules. The property requires that the set of rules applied to the training samples should restore the original

assignments of consistent objects given by the decision-makers. In fact, the decision rules induced in [1] treat the lower

bound and the upper bound of the decision assignment as individual values in the same way as the standard DRSA. Thus,

the original bounds of the interval decision can be restored if the condition parts of the new object are the same as those

of the training sample. However, in our interpretation of uncertainty, the same interval evaluation does not mean the same

decision situation, so requiring that the same decision interval must be assigned is unreasonable.

Example 3. For ease of explanation, let us consider a single criterion decision problem. Let i be the criterion and let x be

a sample decision such that fi(x) = [1, 4] and fd(x) = {2}. Then, based on our interpretation, the real evaluation of the

case with respect to the criterion i lies somewhere between 1 and 4. Based on the principle of indifference, we can assume

that all values in the range [1, 4] are equally possible for the real evaluation. A cautious interpretation of the decision is

that an evaluation in that range will assign the sample to class 2. Thus, if we have a new object whose evaluation is 3, the

probability that it will be preferred over the sample object is 3
4
, so the certainty of it being assigned to at least class 2 should

also be 3
4
. Taking the same cautious approach, if we have a new object with the same imprecise evaluation [1, 4], it cannot

be assumed that the new object will have the same evaluation as the sample object. Hence, requiring that the new object

should be assigned to the same class as the sample object is unreasonable. Instead, the new object is only given a preferred

evaluation with the probability 1
2
, so we can only be half certain that it will be assigned to a class at least class 2.

The next example describes further application scenarios of the two approaches. The scenarios show that our theoretical

framework is potentially applicable to realistic privacy-preserving decision analysis.

Example 4. Let us consider a sample decision case xwith a single criterion i such that fi(x) = [1, 3] and fd(x) = {2}. For ease
of presentation, we assume that the domain of the criterion i is discrete, so actually fi(x) = {1, 2, 3}. The sample decision

may arise fromdifferent scenarios. In one scenario, the decisionmakerwas presentedwith an incomplete specification of the

criterion i for the case, i.e., {1, 2, 3}, andwas asked to judge the appropriate decision class of the case. He finally assigned it to

class 2. Thus, we have a sample decision with uncertain information. In another scenario, the decision maker was presented

with a precise specification of the criterion i of the case, say 3, and was asked to judge the appropriate decision class of

the case. He finally assigned it to class 2. However, due to the privacy concern (e.g., the criterion may represent the income

of the case), the sample decision was sanitized before it was released to the public. One of the most popular sanitization
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approaches in privacy protection is called generalization, i.e., the i-evaluation is replacedwith a subset of Vi [32]. Assume that

the precise sample decision is then sanitized by replacing its i-evaluation with {1, 2, 3}. Then, we have the same uncertain

sample decision as that obtained in the first scenario.

Although both of the scenarios generate the same sample decision, different decision rules should be induced from the

decision data. In the first scenario, the decision maker’s intention is that anyone with the i-evaluation falling in [1, 3] could
be assigned to class 2. The following two qualitative rules can reasonably be derived from such an intention:

fi(x) ≥ 1 −→ fd(x) ≥ 2,

fi(x) ≤ 3 −→ fd(x) ≤ 2.

Thus, the qualitative interpretation of the uncertain sample decision fits this kind of scenario well. Moreover, when the

system is presented with a new decision case y with fi(y) = [1, 3], it should assign y to at least class 2 since this is exactly

the same as the situation under which the sample decision wasmade. Therefore, the reclassification property is appropriate

for the scenario. 3

However, these two rules are not well-suited to the second scenario, since we do not know the original decision maker’s

situation exactly. It may be fi(x) = 1 ∧ fd(x) = 2, fi(x) = 2 ∧ fd(x) = 2, or fi(x) = 3 ∧ fd(x) = 2. For each of the above

situations, one of the following three (upward) rules can reasonably be derived:

(i) fi(x) ≥ 1 −→ fd(x) ≥ 2,

(ii) fi(x) ≥ 2 −→ fd(x) ≥ 2,

(iii) fi(x) ≥ 3 −→ fd(x) ≥ 2.

In the first situation, the induced rule is the same as that induced in the qualitative approach. However, in the other two

situations, we can only induce one of the weaker rules (ii) or (iii). Since do not know x’s real situation, we apply the principle

of indifference to the three situations and assume that the probability of each situation is 1
3
. Since rule (i) implies rule (ii),

which in turn implies rule (iii), rule (iii) can be derived in all three situations, so we can attach a certainty degree 1 to rule

(iii). Similarly, rule (ii) (resp. (i)) can be induced in two (resp. one) of the three situations, so its certainty degree is 2
3
(resp.

1
3
). The three rules are summarized as a rule of type (14) as follows:

1 : (≥i, [1, 3]) −→ (≥d 2).

Thus, our DFRSA could be applied to such scenario. Furthermore, when a sanitized case y with fi(y) = [1, 3] is input to

the system, the system must also consider the three possible situations fi(y) = 1, 2, or 3. Combining these situations with

the possible situations for the sample decision x, there are in total 9 situations; however, the system can only conclude that

fd(y) ≥ 2 in 6 of them. Thus, by using the above quantitative rule, the degree of certainty that y will be assigned to at least

class 2 is 2
3
, as calculated with (20). This explains why the reclassification property is not appropriate for applications based

on this scenario.

The above example highlights the fact that the same form of uncertain data could be interpreted and processed in

different ways. Qualitative rules can be induced from past decision cases made under uncertain environments. When the

induced decision-making model faces the same uncertain input as a previous consistent case, it should restore the original

assignment of the previous case. However, this kind of approach is not appropriate for sanitized previous decision cases in

precise environments. Since we are not sure about the original decision environments of these previous cases, we can only

be partially certain about the decision assignments. This is the reason that a quantitative framework, such as DFRSA, is used.

With a mild assumption of uniformity, DFRSA can quantify different possibilities of the decision assignments. When such a

quantitative rule is applied to a new case of sanitized input,we cannot guarantee that the decision environment is exactly the

same as that of a previous case, even though the cases have the same sanitized evaluations. Thus, the original assignment of

the previous case cannot be fully restored. This explainswhy the reclassification property fails in such applications. However,

the failure of the property does not render the inducedmodel useless. In fact, as shown in Section 5.3, our quantitative rules

can be used to rank the possible decision assignments for the new case. This is also verified in the example. Although we

cannot restore the original assignment due to the uncertainty about the real situations, we can quantitatively assess the

possibility of the case being assigned to at least class 2 in a reasonable way.

The semantic difference between these two scenarios can be expressed more precisely in logical terms. Let Si ⊆ Vi and

Sd ⊆ Vd denote, respectively, a finite imprecise evaluation and a finite imprecise assignment of an uncertain decision sample.

3 The example is over-simplified so that, for the first scenario, we can replace the sample decision with three precise decisions, namely, (fi(x) = 1, fd(x) = 2),

(fi(x) = 2, fd(x) = 2), (fi(x) = 3, fd(x) = 2), and apply the standard DRSA to their analysis. However, for continuous domains or sample decisions with

imprecise assignments, such a straightforward replacement may be not available.
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Then, the qualitative interpretation considers the uncertain decision case (Si, Sd) as a decision logic [28] rule:

⎛
⎝ ∨

v∈Si

(fi, v)

⎞
⎠ −→

⎛
⎝ ∨

w∈Sd

(fd,w)

⎞
⎠ ;

whereas our DFRSA interpretation considers it as the disjunction of several rules:

∨
v∈Si,w∈Sd

((fi, v) −→ (fd,w)).

Thus, when a premise
∨

v∈Si
(fi, v) is given, the former rule can be used to derive the conclusion

∨
w∈Sd

(fd,w) by modus

ponens, so the reclassification property holds. However, the conclusion is not derivable by the latter formula. This is why

the reclassification property fails in the latter interpretation of uncertain samples.

Finally, while we focus on comparing the model in [1] with our DFRSA for a POUDT, we note that a POUDT (and an

interval-valued data table) is a special kind of POPDT. Moreover, when the definition of a fuzzy weak preference in Eq. (23)

is applied to interval data tables, Di is reduced to the PWP relation in [1]. We have demonstrated the difference between

the PWP relation and the valued preference defined in Eq. (16). This also implies that our DFRSA for a POPDT is not a proper

generalization of our DFRSA for a POUDT, even though a POPDT is more general than a POUDT.

6.3. DRSA for fuzzy data

A less invasive use of fuzzy techniques when processing fuzzy data is provided by the model in [16], which belongs to

the category of DRSA for fuzzy data. Instead of using fuzzy connectives, the model basically applies DRSA to the analysis

of fuzzy data. The rationale is that the membership functions of fuzzy features are regarded as attributes with the domain

[0, 1]. Formally, a fuzzy information base is a triplet (U, A, {fi | i ∈ A}), where U is the universe, A is a finite set of features,

and fi : U → [0, 1] is the membership function of feature i. A fuzzy information base can easily be regarded as a PODT

if Vi = [0, 1] and 
i is the ordinary numerical ordering ≥ on [0, 1] for each feature i. Then, for any fuzzy subset X of the

universe, the standard DRSA can be applied to find the lower and upper approximations of the (strict) c-cuts of X . From those

approximations, the induced decision rules take the following form:

if x has feature i1 in degree at least h1, feature i2 in degree at least h2, · · · , and feature im in degree at least hm, then x

belongs to the subset X in degree at least c.

Since a PODT is a special case of both a POUDT and a POPDT, our approaches trivially reduce to themodel in [16] for fuzzy

information bases. However, in addition to the trivial translation of a fuzzy information base into a PODT, an alternative

(but quite natural) interpretation is to consider the membership function of a feature as a possibility distribution on {0, 1}.
This results in a somewhat less trivial translation of a fuzzy information base into a POPDT. In this translation, the POPDT

corresponding to the fuzzy information base (U, A, {fi | i ∈ A}) is (U, A, {(Vi, 
i) | i ∈ A}, {pi | i ∈ A} such that Vi = {0, 1},
1 �i 0 for i ∈ A , and pi(x)(1) = fi(x) and pi(x)(0) = 1 − fi(x) with necessary normalization for x ∈ U and i ∈ A.

Example 5. Let us consider a case where the t-norm and s-norm operations are min and max, respectively. Assume that

x, y ∈ U are two objects in a fuzzy information base such that fi(x) = r ≥ fi(y) = s for some feature i. Then, according to

the translation above and Eq. (23), we can obtain the following results on the fuzzy dominance relation Di:

(1) if r ≥ s ≥ 1
2
or s ≤ r ≤ 1

2
, then Di(x, y) = Di(y, x) = 1;

(2) if r > 1
2

> s, then Di(x, y) = 1 and Di(y, x) = max
(
1−r
r

, s
1−s

)
.

On the other hand, if we view the fuzzy information base as a PODT and take it as a special case of POPDT, then Di(x, y) = 1

and Di(y, x) = 0 if r > s and Di(x, y) = Di(y, x) = 1 if r = s.

The above example demonstrates the difference between the two translations of a fuzzy information base into a POPDT.

The phenomenon arises because of the well-known distinction between fuzziness and uncertainty [6]. In the translation

via a PODT, fi(x) = r is interpreted as “the possibility that x has feature i with degree r is 1, and the possibility that x has

feature i with degree other than r is 0”, which is equivalent to “x has feature i with degree r”. In other words, i is a fuzzy

feature and an object can have the feature partially. This is the fuzziness interpretation of a fuzzy information base. On the

other hand, the alternative translation is based on the uncertain interpretation of a fuzzy information base, whereby each

feature is considered crisp. Thus, an object may or may not have the feature, although we are uncertain about which one

is true. Consequently, fi(x) = r is interpreted as “the possibility that x has feature i is r, and the possibility that x does not

have feature i is 1 − r”. The two translations show that our treatment of a POPDT can accommodate both interpretations of

fuzzy information bases.
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6.4. DFRSA for PODTs

In contrast to the preceding category in which the classical technique is applied in the processing of fuzzy data, it is also

possible to use the fuzzy technique to deal with classical MCDA problems. The concept was elucidated in a recent work on

the fuzzy preference-based rough set approach [17]. The work presents a method for extracting fuzzy preference relations

from samples characterized by numerical criteria. Although the dominance relation in the standard DRSA can represent the

qualitative preference between objects, it does not utilize the quantitative difference between their numerical evaluations.

Since the quantitative difference can measure how much one object is better than another object, it is natural to derive a

fuzzy preference relation from such a measure. In [17], it is suggested that the Logsig sigmoid transformation of fi(x) − fi(y)
should be used as the degree of preference of x over y with respect to the numerical criterion i.

While the Logsig transformationmay be crucial for the approach in [17], other transformations also seem feasible. In fact,

the standard DRSA is simply the result of choosing a two-valued transformation δ : � → {0, 1} such that δ(v) = 1 if v ≥ 0

and δ(v) = 0 if v < 0. Since our treatment of a POUDT and a POPDT is a generalization of the standard DRSA, our approach

only considers the qualitative preference between the objects. Nevertheless, our approach can easily be generalized to

accommodate the quantitative difference between their numerical evaluations. Let τ : �×� → [0, 1] denote an arbitrary

transformation function. Then, for the POUDT, the degree of preference in Eq. (16) can be generalized as follows:

Di(x, y) = 1

μi(fi(x) × fi(y))
·
∫
(v1,v2)∈fi(x)×fi(y)

τ (v1, v2)dμi. (32)

Ontheotherhand,whentheevaluationsof theobjectsarepossibilitydistributionsonnumericaldomains,wecanregard them

as fuzzy numbers. Thus, for a POPDT, the degree of preference in Eq. (23) becomes a fuzzy number Di(x, y) = τ̂ (fi(x), fi(y)),
where τ̂ is the operation on fuzzy numbers derived from τ according to the extension principle. We defer the investigation

of the properties of these more generalized treatments to a future work.

6.5. DFRSA for POUDTs and POPDTs

It seemsparadoxical that the secondprecisiationproperty (Proposition5) holds inDFRSA for a POPDT, but not for a POUDT,

since the former is more general than the latter. However, this is completely reasonable given our treatment of POUDTs and

POPDTs. We indicated in Section 6.2 that the definition of the fuzzy preference for a POPDT is not a generalization of the

valued preference for a POUDT. Let us take a closer look at the difference for the case of finite domains. We consider a single

criterion i with a finite preference-ordered domain Vi. The notations are the same as those in Proposition 5, but we assume

the data tables are POUDTs. Then, we can associate two possibility distributions on Vi with any fi(x) ⊆ Vi.

The first distribution, denoted by πα(x), corresponds to the characteristic (or membership) function of fi(x), i.e., πα(x)
(v)= 1 if v ∈ fi(x), and 0 otherwise. Thus, it is a {0, 1}-valued possibility distribution. Furthermore, πα(x) is normalized if

fi(x) is not empty. If we replace fi with πα in Eq. (23) and take the t-norm operation as the min, then Di(x, y) is reduced to

the PWP relation. Thus, Proposition 5 holds if we regard the approximations in terms of PWP relations. However, this is not

the same as our treatment of a POUDT based on the valued preference relation defined in (16).

The definition of the valued preference relation in (16) can be seen as a variant of that in (23) if we consider the second

possibility distribution associated with fi(x), denoted by πβ(x), which corresponds to the uniform probability function on

fi(x), i.e.,πβ(x)(v) = 1
|fi(x)| ifv ∈ fi(x), and0otherwise.Generally, it is notnormalized in the senseofpossibilitydistributions.

If we take the t-norm operation in Eq. (23) as · and replace sup and fi with + and πβ , respectively, then Di(x, y) is reduced

to the relation defined in (16). Thus, Proposition 5 only holds for our treatment of a POUDT if πβ(x)(v) ≤ π ′
β(x)(v) for all

x ∈ U and v ∈ Vi. However, since πβ(x) and π ′
β(x) are both probability distributions on Vi, the condition is only satisfied

when πβ(x) = π ′
β(x). Therefore, Proposition 5 does not hold for our treatment of POUDTs, except for the trivial case of

T = T ′.

6.6. Complexity analysis

As shownby the above comparison, themain advantage of ourwork is that it can dealwith very general types of uncertain

data. However, the generality incurs an additional computational overhead.Without considering possible optimizations, we

briefly compare the computational complexity of a naive implementation of our approaches with that of the standard DRSA.

The main difference between DFRSA and DRSA is that the preference relations in DRSA are primitive notions, whereas

we have to compute the degrees of preference Di(x, y) from the primitive relations based on (16) and (23). The computation

can be performed in O(|Vi|2) time for the criterion i if Vi is finite. For infinite Vi, we can sometimes compute Di(x, y) in

constant time, as in Example 1; however, in other cases, we may also need to employ symbolic computation techniques to

compute Di(x, y). In every case, it seems that the computation of Di(x, y) is quite time-consuming compared to the one-

step evaluation of x 
i y in DRSA. Since Di(x, y) is an essential component of the valued dominance relation DP and it is

used frequently, it seems that the computation of Di(x, y) would slow down our approaches significantly. However, we can

pre-compute Di(x, y) for all x, y ∈ U and i ∈ A and store them in O(|A| · |U|2) space. In the same way, we can pre-compute
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the membership functions of Cl
≥
t and Cl

≤
t for each t ∈ Vd; and their storage requires O(|U| · |Vd|) space. It is reasonable

to assume that |Vd| � |U|; thus, the total space requirement should be O(|A| · |U|2). Note that, in the original DRSA, we

also need O(|A| · |U|2) bits of space to store the preference relations if we use a bit-array to store their incidence matrix.

Since Di(x, y) ∈ [0, 1], we can use floating point numbers to represent the degrees of preference, which require a constant

number of bits (e.g., 32 or 64). Consequently, the space requirement of our approaches is in the same order as that of DRSA.

After the degrees of preference have been pre-computed, the time complexity of the remaining steps in our approach is in

the same order as that of the standard DRSA. The steps include the aggregation of valued preferences into valued dominance

relations and the computation of reducts and lower and upper approximations. Themain difference is that the Boolean logic

operations in DRSA are replaced by more complicated t-norm, s-norm, or implication operations in DFRSA.

Finally, we compare the sizes of the rule sets and the time required for the decision-making process based on our

approaches and DRSA. In DRSA, each object in each lower approximation can induce a decision rule, so the size of the

exhaustive rule set is
∑

t∈Vd
(|P(Cl≥t )| + |P(Cl≤t )|). Consequently, in the worst case, the decision-making process may require

the same number of steps to determine which rule is applicable. On the other hand, the size of the rule set induced by our

approaches is
∑

t∈Vd
(|P(Cl≥t )c| + |P(Cl≤t )c|) if c > 0 is our threshold for rule generation, where Sc denotes the c-cut of a

fuzzy subset S. The size seems to be in the same order as that of DRSA. However, our rule application process must apply

the whole set of rules in all cases. Of course, we can also implement a bound-and-cut technique to optimize the process.

Furthermore, the computation of the degree of satisfaction of a rule with respect to a given case would take the same time

as the computation of Di(x, y); however, this process is more time-consuming than simply testing if a rule is applicable in

standard DRSA.

7. Conclusion

This paper extends DRSA to a dominance-based fuzzy rough set approach (DFRSA), which can be applied to the reduction

of criteria and the induction of rules for decision analysis in a POUDT or POPDT. In contrast to other approaches that deal

with imprecise evaluations and assignments, DFRSA induces quantitative rules instead of qualitative rules. The proposed

approach may also be useful for sparse data sets, so we will explore possible applications of DFRSA to such data sets in a

future work [30]. 4

Since DFRSA is a general framework, we do not specify the t-norm operations used in the aggregation of consistency

degrees or the implication operations used in the definition of adherence to the dominance principle. Hence, we do not

present detailed algorithms for the computation of reducts. The computational aspects of DFRSA for specialized t-norm and

implication operations will also be addressed in a future work.

Accommodatinguncertainty indata incursanadditional computationaloverhead. Inparticular, theexhaustiveapplication

of rules seems quite time-consuming. A number of simplifications of the decision-making process have been proposed for

DRSA [2,3]. In a future work, we will investigate if these techniques can also be adapted to our framework.

Finally, the computational complexity of the naive implementation of DFRSA prevents us applying it to any real data at

this stage. Consequently, no empirical study or statistical analysis is included in the work. While the work would definitely

benefit from empirical validation, we reiterate that the focus of the work is to clarify the interpretations of uncertainty in

data and develop a framework based on the given interpretation. Our purpose is to determinewhat rules can be reasonably

induced from the data, instead of how they can be induced efficiently. Thus, the framework is primarily declarative instead

of procedural. However, although large-scale empirical validation of the proposed framework is still lacking, we have shown

how the induced models can be used to rank the possible assignments of new decision cases. Furthermore, the complex-

ity of the naive implementation does not exclude the possibility of more efficient implementations of the approach. The

performance improvement and empirical analysis of the framework will be addressed in a future work.
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