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Abstract: Localized impurities doped in the semiconductor substrate of nanostructure devices play an
essential role in understanding and resolving transport and variability issues in device characteristics.
Modeling discrete impurities under the framework of device simulations is, therefore, an urgent need
for reliable prediction of device performance via device simulations. In the present paper, we discuss
the details of the physics associated with localized impurities in nanostructure devices, which are
inherent, yet nontrivial, to any device simulation schemes: The physical interpretation and the role
of electrostatic Coulomb potential in device simulations are clarified. We then show that a naive
introduction of localized impurities into the Poisson equation leads to a logical inconsistency within
the framework of the drift-diffusion simulations. We describe a systematic methodology for how to
treat the Coulomb potential consistently with both the Poisson and current-continuity (transport)
equations. The methodology is extended to the case of nanostructure devices so that the effects of the
interface between different materials are taken into account.

Keywords: random dopant; drift-diffusion; variability; device simulation; nanodevice; screening;
Coulomb interaction

1. Introduction

Although device miniaturization by following the traditional scaling rule has already ended,
the pursuit of the scaling merit of Si-based electron devices is now directed toward utilizing
three-dimensional gate-surrounding structures of the channel substrate and/or replacing the channel
material by a new material such as Ge or compound semiconductors. Even atomic layers such as MoS;
are also suggested as an alternative channel material [1]. Because of increasing complexity inherent to
such advanced devices, the role of device simulation is getting more and more important [2]. In order to
predict device characteristics accurately, it is essential to model physical phenomena based on the basic
principles of physics. Local potential fluctuations induced by localized impurities, interface or line
edge roughness, localized defects, etc., are just a few examples of such problems. Localized and, thus,
discrete impurities doped in the device substrate induce surface potential fluctuations at the gate-oxide
interface, which leads to threshold voltage fluctuations. This is called the random dopant fluctuations
(RDFs) and a dominant factor that prevents further miniaturization of the present Si-based electron
devices [3]. Intensive studies on the variability associated with discrete impurities have been, therefore,
carried out in the past few decades [4-17]. The approaches employed in these studies scatter from the
conventional drift-diffusion (DD) method to the Monte Carlo (MC) or the nonequilibrium Green'’s
functions (NEGF) methods [18-23]. Most simulations are, however, somewhat empirical; discrete
impurities are introduced into the Poisson equation as point charges or by simply replacing the atoms
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of the substrate with charged ions, and the variability in device characteristics has been evaluated by
brute-force means.

We would like to stress that the physical modeling of such potential fluctuations under the
framework of device simulations is not trivial. An introduction of localized impurities into the device
simulations implies a transition from the conventional continuous (long-wavelength limit) picture,
which is a primary assumption of all device simulations mentioned above, to the discontinuous
(discrete) picture. In other words, a naive introduction of point charges or similar ones into the Poisson
equation may lead to a logical inconsistency with self-consistently-coupled transport equations [7-9,24].
Nevertheless, almost no attention has been paid to the physical aspects of such discrete impurities,
except the present authors’ group. In the present paper, we thoroughly discuss the fundamental aspects
of device modeling of randomly-doped discrete impurities within nanoscale device structures where
the interface, as well as discreteness of impurities is of crucial importance. Although the physical
issues are common to any kind of device simulations in which the Poisson equation is self-consistently
coupled with the transport equations, we restrict our discussion here to the DD simulation scheme.
A detailed analysis of the other simulation schemes along this line will be reported elsewhere.

The present paper is organized as follows. In Section 2, theoretical foundations imposed on
the DD device simulations are discussed with emphasis on the length-scale involved in the scheme.
In Section 3, the physics behind discrete impurities in the bulk is discussed, and a discrete impurity
model appropriate for nanostructures where the interface effect between two different materials on the
potential is inevitable is proposed. Finally, conclusions are drawn in Section 4.

2. Theoretical Foundations of Drift-Diffusion Device Simulations

The physical origin of RDFs in Si-MOSFETs has been properly recognized from the early stage
of the investigations [7-9]; it is the long-range part of the Coulomb potential of doped impurities
in the device substrate whose fluctuations lead to the variability of device characteristics. Since
the potential fluctuations result from the discreteness of impurities, it is inevitable to introduce the
discrete nature of impurities into the Poisson equation. Since the impurity density is described by
a continuous and smooth function in the conventional scheme, this is not an easy task. If a point
charge is introduced into the Poisson equation, the resulting Coulomb potential becomes so steep
that carriers with opposite charge are trapped by the attractive potential (It should be noted that
trapping and detrapping processes of carriers by ionized impurities are caused through the bound
states created by the impurity Coulomb potential. These bound states, sometimes disguised in the DD
simulations by the effective quantum potential by the density gradient method, are totally different
from the free traveling states of carriers discussed here. This point should not be confused, as often
seen in the literature, with the present issue.), and the doping density in the substrate is effectively
lowered, which leads to an artificial threshold voltage shift [8,9]. Furthermore, as we shall discuss in
Section 2.1, the short-range part of the Coulomb potential of impurities is double-counted because the
conventional mobility model employed in DD simulations is dependent on impurity density, and thus,
impurity scattering induced by the short-range (screened) Coulomb potential is already taken into
account through the mobility model in the current-continuity equation [7-9,24,25]. A key to resolve
this problem lies in the fact that we must treat the length-scales presumed in both the Poisson and the
transport (current-continuity) equations in a consistent way.

2.1. Meaning of the Long-Wavelength Limit in Drift-Diffusion Simulations

The DD simulation scheme consists of the following Poisson equation,

V[V (rt)] = —e{p(rt)—n(rt)+ N (r) = N; (1)}, @



Materials 2018, 11, 2559 3o0f12

and the current-continuity equation for electrons,

on (x,t)
ot

—%V-]n (1,6) = Gu (1,£) — Ru (1,1). %)

Here, ¢ is the electric potential, e (> 0) is the magnitude of the electron charge, n and p are electron
and hole densities, ¢; is the dielectric constant, N; and N, are ionized donor and acceptor densities,
and G, and R;, are generation and recombination rates per unit time. The current density of electrons
is given by the sum of drift and diffusion current densities,

Ju (r,t) =en(x,t) pn (V¢ (r,t)) —eD, (—Vn (r,t)). ®)

where i, and D, are the mobility and diffusion constants of electrons, respectively. In addition, similar
equations for holes are coupled with the above equations to determine the hole density. Notice that
the current-continuity equation plays the role of the transport equation under the framework of the
DD device simulations in the sense that the current-continuity equation determines carrier density
(the Boltzmann transport equation and the Keldysh equation play the role of transport equations in
the MC and NEGF device simulation schemes, respectively).

The Poisson equation given by Equation (1) holds true at any length-scale. Namely, if the charge
density on the right-hand side is expressed in terms of the delta-functions (point charges), then the
potential profile contains all wavelengths with no bounds. However, the potential usually assumed in
Equation (1) is the one under the “long-wavelength limit” in the conventional device simulations so
that the charge density of Equation (1) is expressed by a smooth continuous function (jelly impurity).
This requirement is consistent with the current continuity Equation (3); the first term p, (—V¢)
represents not the thermal velocity, but the drift velocity, which results from the collective (averaged)
motion of electrons, and the second term yields the diffusion current, which results from the gradient
of a smooth continuous electron density. Therefore, the DD simulation scheme is indeed consistent
with respect to the length-scale as far as all physical variables are expressed with those under the
long-wavelength limit.

The mathematical meaning of the “long-wavelength limit” is interpreted as follows. Let us
consider the microscopic impurity density Ny;cr, expressed by the delta functions such that:

Nimp Nimp 1

Nimp ik-(r—R;
Nuiero (1) = Y 6 (r=R;) = + Y 5 Y ekR, )
micro = 1 AV = AV =

where Njy,;, is the number of impurities included in a small volume AV around the position r and R; is
the position of the i impurity. Then, the macroscopic (jelly) impurity density N (r), i.e., the density
under the long-wavelength limit, is given by averaging Ny, (r) over the small volume AV,

_ 1 N;
N(I‘) = W /AV d3ericr0 (I‘) = A”‘V;P (5)

This implies that the long-wavelength limit of impurity density is equivalent to taking account of
only the zero-Fourier component of the microscopic impurity density given by Equation (4). In other
words, when impurity density is expressed as a smooth continuous function of position, the impurity
density is considered to be locally flat, so that the electrostatic potential induced by the impurities is
also locally flat because the number of impurities included in the region AV is virtually regarded as
constant. This situation is schematically shown in Figure 1.
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Figure 1. Schematic drawing of the spatial configuration of discrete impurities (above) and
the corresponding macroscopic impurity density under the long-wavelength limit (below).
The macroscopic density assumes that the number of impurities included in the neighborhood is
virtually constant and the electrostatic potential is also virtually flat.

The question arises why non-zero Fourier components of discrete impurity density (equivalently,
of electrostatic potential induced by each discrete impurity) could be ignored in the Poisson
Equation (1). The answer lies in the fact that the mobility employed in Equation (3) is usually
modeled as a function of impurity density in DD simulations, as already mentioned above. Since
the mobility is determined by scattering, the impurity density dependence of mobility implies that
non-zero Fourier components of each impurity potential are regarded as scattering potential and
included in the conventional mobility model in Equation (3). This is the reason why non-zero Fourier
components of the discrete impurity density and, thus, of the impurity potential are eliminated in the
Poisson equation. Otherwise, these Fourier components would be double-counted.

2.2. Incomplete Screening of the Long-Range Part of the Coulomb Potential

We would like to stress, however, that all non-zero Fourier components of the Coulomb potential
of each impurity are not actually treated as scattering potential. Impurity-limited mobility u or
scattering time T appearing in the formula of mobility, y = et/m* (m*: effective mass), is, in most
cases, calculated with the screened Yukawa potential. In other words, it is the short-range part of the
Coulomb potential with the wavelength shorter than the screening length A, that is treated as the
scattering potential. The non-zero Fourier components with the wavelength larger than A., which
is hereafter denoted as the long-range part of the Coulomb potential, is assumed to be completely
canceled by the induced charges of screening carriers and, thus, ignored in both the Poisson equation
and the current-continuity equations.

It should be noted that the above scenario holds true if the carrier density is nearly equal
to or above the average impurity density. The device is, however, operated under the extreme
nonequilibrium conditions, and the charge neutrality is also broken in the subthreshold regimes
near the gate interface where carrier density is very small. As a result, ionized impurities are not
completely screened by carriers, and some portion of the long-range part of the Coulomb potential is left
unscreened and appears as potential fluctuations (on the other hand, the impurities are “over-"screened
in the inversion regimes by carriers whose density could be larger than the impurity density. In this
case, however, carriers do not see the charge of impurities once the carrier density exceeds the impurity
density, and thus, such “over-screening” does not induce any long-range potential fluctuations.). This
unscreened portion of the potential always exists, no matter how large the device is. The reason why
such potential fluctuations are not observable in large devices is because the variability of device
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characteristics associated with potential fluctuations is self-averaged due to large number of impurities
in the substrate [26,27]. As the device shrinks, self-averaging is no longer strong enough to suppress
the fluctuations and the variability in device properties such that RDF becomes significant. Therefore,
the physical origin of RDF is indeed the long-range part of the Coulomb potential resulting from
incomplete screening, as conjectured in the previous studies [7-9].

Furthermore, we should notice that as the volume of the channel substrate is small and/or
complicated such as fin or surrounding-gate (nanowire) structures, the boundary (interface) greatly
affects the spatial distribution of induced charges for screening in the semiconductor substrate. In other
words, the effect of interfaces needs to be taken into account properly to extract the long-range part of
the Coulomb potential.

3. Discrete Impurity Models for Drift-Diffusion Simulation

Following the arguments in Section 2, we need to somehow introduce the long-range part of the
Coulomb potential associated with incomplete screening of discrete impurities. A critical issue is how
we could include such potential fluctuations within the framework of the DD simulations. The hint
is provided by recalling the role of the long-range part of the Coulomb potential. The most obvious
example is plasma wave excitations in electron gas; electrons tend to screen the external (or extra)
potential disturbance, yet because of the inertia of electrons, electron density spatially exceeds or gets
under the proper value of the density, and this leads to plasma oscillations. This phenomena exactly
corresponds to the dynamical version of the complete and incomplete screening situations described
in Section 2.2. Since the plasma oscillation results from the collective motions of electrons, it is natural
to include the long-range part of the Coulomb potential as the self-consistent Hartree potential in the
Poisson equation, not as scattering in the mobility model of the current-continuity equation. Along
with this idea, we have previously proposed a discrete impurity model for DD simulations [7], in which
the charge density of each impurity in the Poisson equation is spread over the screening length so that
the short-range part of the Coulomb potential is eliminated from the self-consistent Hartree potential
(Technically, this may look similar to the cloud-in-cell method used in the MC simulations. However,
the concept behind this process is very different. In the cloud-in-cell method, the size of charged
particle is dependent on the mesh employed in the simulations, whereas the size of charged particle is
fixed in the present method with the screening length and, thus, independent of the mesh.).

3.1. Discrete Impurity in the Bulk Structure

We notice that the long-range part of the Coulomb potential is just the potential (except the sign
of charge polarity) generated by induced charges to screen ionized impurities. Since the self-consistent
potential ¢ is given by the sum of the external (impurity) potential ¢y and the induced potential d¢,
the long-range part of the impurity Coulomb potential ¢;, which results from the Poisson equation
under the framework of DD simulations, is obtained from:

@1 (1) = —0¢ (1) = — {¢sc (r) — Pext (1) } . (6)

Transforming it into the Fourier g-space and using the fact that ¢sc (q) = ¢ext (q) /€ (q) with the
(relative) static dielectric function ¢ (q), Equation (6) is expressed as:

o1 () = (1 - &)) fext (@) )

and the corresponding charge distribution p; (q) is given by:

1

01(q) = esq” (1 - g(q)> Pext (q) ®)
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where ¢ (q) is calculated by the self-consistent field (random phase) approximation [28] and given by:

e(q) —1+qu F(q). )

Here, g, is the inverse of the Debye screening length and given by g, = /7 (r) €2/ (eskpT) with
average carrier density 7 (r) at equilibrium (The interpretation of 7 (r) requires some care. From the
arguments in Section 2, it should be interpreted as the carrier density at equilibrium under the condition
that charge neutrality is preserved. Here, charge neutrality simply means that the (macroscopic) carrier
density is equal to the background (macroscopic) dopant density. Thus, 7 (r) should take the same
value as that at the flat-band condition even if actual carrier density is different in the depletion or
inversion regimes.), kp is the Boltzmann constant, and T is temperature. Assuming that the carrier
distribution function is approximated by the classical Boltzmann statistics, F (q) is given by:

Fl@) = 2R Re |7 (st

where m* is the effective mass of carriers in the semiconductor, 7 is the Planck constant divided by 27,
and Z («) is the plasma dispersion function defined by:

(10)

2

5—)0+ NG / —a—id (1)

Z(0) =
Since we are concerned with the long-range part of the potential, F (q) is, as usual, set to unity,

and the dielectric function could be approximated by the well-known Thomas-Fermi expression.
Consequently, the long-range part of the impurity potentials ¢; in both q- and r-spaces is given by:

e q:2
¢ (q) = Py ) (12)
and:
ger
(D)= o (1 — ) (13)

respectively. As expected, ¢ (r) is indeed the difference between the bare Coulomb potential and
the short-range Yukawa potential. The corresponding charge distributions p; in q- and r-spaces are
given by:

_, i 14
pl(q)*eq2_~_qcz ( )
and:
2 o= qcr
pi (r) = e% — (15)

respectively. Notice that it is this p; (r) that should replace the charge density expressed by a point
charge of discrete impurity in the Poisson equation. Then, we are able to extract the long-range portion
from the bare Coulomb potential. We would like to stress again that this long-range potential appears
as potential fluctuation when the charge neutrality condition in the substrate is broken so that the
screening by carriers is incomplete. In other words, the screening effect usually suppresses potential
fluctuation, and thereby, incomplete screening causes potential fluctuation.

It is very interesting to compare Equations (14) and (15) with those we have previously proposed
to extract the long-range portion of the impurity Coulomb potential [7-9,25]. Figure 2 shows the
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charge distributions (in both g- and r-spaces) and the (long-range) potentials of the three different
expressions; the Yukawa-like expression given by Equation (15), the long-range expression given in
[7-9], and the Gaussian expression in [25] employed as an alternative model to eliminate artificial
oscillations showing up in the charge density by the previous long-range model. Explicit formulas
of all three models are also shown in the inset of Figure 2. It is clear that the only difference among
the models is how the short-range part of the Coulomb potential is eliminated: the short-range part
is sharply cut at g, in the previous long-range model, whereas the present and Gaussian models
gradually eliminate the short-range part. As a result, the long-range potentials are slightly different

near the origin. Yet, all models properly approach the bare Coulomb potential as the distance from the
impurity becomes much greater than 1/¢.

15 T T 1 T T T T T
@ 1 o sl e (b)
. : 4 q.r ]
; ——Yukaw a-like 1 (a)—(ar)eos(ar) ]
06 [ Y w4 2sin(gr)-(g.r)cos(q.r) ]
_ ——long-range _ k p."(r) Cann (a.r) 1
o R [
=4 ——Gaussian 04 o 2 ot
long _ 9 £ A2
05 02 b meus(r) 64”J;e ]
O L
0 | L L | | L L
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ar
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". bare Coulomb a 1 (C) ]
) O 0
I‘l‘ ¢Iung (r): e q. 251(%’)
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Figure 2. Charge densities of the discrete impurity located at origin as a function of (a) normalized
wave-number g/4. and (b) normalized position g.r for three different discrete impurity models,
Yukawa-like (red), long-range (blue), and Gaussian (green). The charge densities in q-space and r-space
are, respectively, normalized by e and eq2 /47. (c) Long-range potential of the three discrete impurity

models as a function of normalized position q.7. The bare Coulomb potential is also shown with the
black dotted curve. The potential is normalized by eq. /4es.

It should be noted that all expressions of the charge distribution hold true only in bulk structures

because they assume that screening is not disturbed by the boundaries. This situation breaks down in
nanostructures, in which impurities are surrounded by an interface and/or boundary.

3.2. Discrete Impurity Including the Effects of Interface

We now extend the above discrete impurity model to the case where an impurity is located near
interface of two different materials so that the boundary could modulate the long-range part of the

impurity potential. In order to extract the long-range part of the Coulomb potential, we take a similar
methodology to the one we have employed in Section 3.1.

Let us consider two different materials with the relative permittivities &1 and €; that are separated
by an infinite plane interface. An ionized impurity is then embedded in the material with € at a
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distance a (>0) from the interface. The cylindrical coordinates whose origin coincides with the position
of the impurity are employed, as shown in Figure 3.

€ €
} P

Figure 3. Schematic drawing of the interface between the two different materials with &1 and e;.
A point-charge impurity is placed at the origin that is a distance a from the interface. The cylindrical
coordinates are employed for the calculations.

The external (impurity) potential ¢.y; that satisfies the boundary condition at the interface is
expressed as:

_ « —klz| —k(z+2a)
Pext (PIZ) = Ire /0 dk [e + e } Jo (kp) (16)
forz > —a and:
Goxt (0,2) = o | k@2 (ko) (17)

forz < —a. Here, « = (e1 — €2)/(e1 + €2), and Jp (x) is the zeroth order Bessel function. The Fourier
transform of ¢,y (p, z) is then given by:

e 1

; 1
- - —quatiga) = € ©
Gt (@) = o (1+ae )= SrALRRICUR (18)
Here, q = (9.,9z), where g, and g, are, respectively, wavenumbers normal to and along the
z-axis so that 4> = g% + ¢2.

The static dielectric function ¢ (q) under the self-consistent approximation becomes

2
e<q>:1+qq%{1+v<q>mq>. (19)

Noting that |7y (q)| = |ae™7:97%%| < 1and 0 < F (q) < 1, we employ the same approximation
as in the bulk case; ¢ (q) is approximated by the simple Thomas—Fermi expression. Hence, we can
write the charge distribution induced by the impurity (with opposite charge polarity) as:

2
(@ = e (1= s ) o (@) = e (1 (@) @)

Transforming it into the r-space, we obtain the charge distribution p; (p, z) by:

e l2Va2 a2 = (zta) ’“2”62_‘””} Jo(qrp). (21)

2 roo
_ %/ gL
,zZ) = e— dg| ——=——
(e ) = e [ s |

Notice that this expression is valid only in the region of z > —a.

Figure 4 shows the charge distributions given by Equation (21) along the z-axis (o = 0), which
are induced by the impurity at a distance a from the interface. The charge distributions of three
different distances from the interface are shown for two different oxides in z < —a; SiO; (e; = 3.9) and
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HfO; (g2 = 25). The semiconductor material in z > —a where the impurity resides is chosen to be Si
(g1 = 11.8). In Figure 4, the charge distributions given by the first and second terms of the integrand in
Equation (21) are also shown.

SiO, (¢,=39)
5 : R R T 1
al (@) Jas) 1ost
of ]
= 3r polarization 06 -
< 15 ¢
22 04l
[=9 1L
1 05 1o02f
0 | 0 0
05 0 25 3 3
4 25 0.4
3f —ful  (d) I 2t o3l
----- bulk ‘5 ]
= 2F ~--polarization 7 021
9 '
o q1[ = 0.1 [
< qa=0.5 o5 b
0 H——— 0 0
1 0.5 : 0.1
05 0 05 1 15 2 25 3 105 0 05 1 15 2 25 3 3 2 1 0o 1 2 3
g,z qz gz

Figure 4. Charge distributions (denoted by “full” with red line) along the z-axis (o = 0) induced by the
impurity at the origin for two different dielectrics; SiO, with e = 3.9 (a—c) and HfO, with e; = 25 (d—f).
The distances from the interface are g.a = 0.5 (a,d), 1 (b,e), and 3 (c,f). The semiconductor material in
z > —ais assumed to be Si (¢; = 11.8). The charge distributions obtained from the first term (denoted
by “bulk” with the green line) and the second term (denoted by “polarization” with the blue line) in
the integrand of Equation (21) are also shown.

We notice that the first term in Equation (21) is identical to the charge distribution given by
Equation (15). Therefore, this term represents the charge distribution induced by the impurity itself and
should be interpreted similarly to the case of the bulk. The second term results from the polarization
charge at the interface at z = —a and appears only after the discreteness of impurity is taken into
account. Furthermore, depending on the magnitude of &, compared with ¢, the polarity of induced
polarization charge changes: It is positive for SiO;, whereas it is negative for HfO,. As a result,
the total charge distribution is more heavily affected near the interface. It should be pointed out that
Equation (21) is derived by ignoring the metal surface on top of the oxide layer. Strictly speaking,
this effect should be also taken into account if the oxide thickness is very small. This might be the case
of 5i0;,. However, the effect is negligible for the case of HfO; because of large permittivity (and large
thickness usually employed in reality).

In order to properly take into account the polarization at the interface of discrete impurity in DD
simulations, the following methodology is suggested. Since the first term in Equation (21) is identical
to Equation (15), an impurity charge should spread similarly to the case of the bulk in accordance
with Equation (15). It should be noted, however, that the charge distribution extending over the other
side of the material (z < —a in the present case) should fold back to the semiconductor side (z > —a).
Otherwise, the impurity density within the semiconductor substrate would not be conserved. This is
exactly the procedure we have taken in the previous models when an impurity is located near interface
so that some portion of its charge distribution spreads over the oxide. In addition, the correction
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charge distribution dp; associated with the polarization at the interface needs to be included. As a
result, the impurity charge density near the interface for DD simulations should be given by:
e (o, 2) = " (o, 2) + 1 (p, 2)

2 _qcm 2 S
:8@67“@0(/ dg ——1L Vit 0 o) (22)
= N T
bulk

where p;"* is evaluated over the entire region, namely the charge distribution extended beyond
the interface (z < —a) is folded back to the semiconductor substrate (z > —a) symmetrically with
respect to the interface, whereas Jp; is evaluated only in the semiconductor substrate (z > —a) (we are
currently applying for a patent on a more tractable method, which could be properly implemented
in the DD simulators, to extract the long-range potential of the discrete impurity near the interface).
Clearly, Equation (22) coincides with the discrete impurity model in the bulk as the impurity position
becomes very far from the interface (The present model is applicable to the region where impurities
are intentionally doped so that the macroscopic dopant density is well defined in the device substrate.
The case in which impurities are not intentionally doped is out of the scope of the present analysis.).

4. Conclusions

We have discussed the details of the physics associated with localized impurities in nanostructure
devices. The physical interpretation and the role of the electrostatic Coulomb potential of localized
impurities under the framework of device simulations have been clarified. We have shown that a naive
introduction of localized impurities into the Poisson equation leads to a logical inconsistency within
the scheme of the DD simulation. We have developed a systematic methodology for how to treat the
Coulomb potential consistently with both the Poisson and the current-continuity (transport) equations.
We have demonstrated that this method naturally leads to the concept of the long-range discrete
impurity model we have proposed before. The method has been extended to the case of nanostructure
devices in which the effects of the interface between different materials are taken into account.

Finally, we would like to point out that the present analysis is also closely related to the treatment
of the Coulomb potential in any device simulation schemes. The long-wavelength limit is usually the
common assumption in the Poisson equation of most device simulations, and thus, a similar careful
analysis on logical consistency between the Poisson and the transport equations is required. This issue
is under progress and will be reported elsewhere.
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