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1. Introduction

A large number of studies have shown that chaotic phenomena are observed in many physical nonlinear systems
[1,2]. It was also reported that the chaotic occurred in many nonlinear control systems [3,4]. In recent years, synchro-
nization in chaotic dynamic system is a very interesting problem and has been widely studied [4–7]. Among many kinds
of synchronizations, the generalized synchronization is investigated in this paper. It means that there exists a given func-
tional relationship between the state vector x of the master and the state vector y of the slave y = G(x). There are many
control techniques to synchronize chaotic systems, such as linear error feedback control, adaptive control, active control
[6–21].

In this paper, a new chaos generalized synchronization strategy by GYC partial region stability theory is proposed [22,23].
By using the GYC partial region stability theory, the Lyapunov function is a simple linear homogeneous function of states and
the controllers are simpler and have less simulation error because they are in lower order than that of traditional controllers.

This paper is organized as follow. In Section 2, chaos generalized synchronization strategy by GCY partial region stability
theory is proposed. In Section 3, an inertial tachometer system and Mathieu-Van der Pol system are used as simulated
examples. In Section 4, conclusions are given.
. All rights reserved.
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2. Chaos generalized synchronization strategy by GYC partial region stability theory

2.1. GYC partial region stability theory

Consider the differential equations of disturbed motion of a nonautonomous system in the normal form
_xs ¼ Xsðt; x1; . . . ; xnÞ; ðs ¼ 1; . . . ;nÞ ð1Þ
where the function Xs is defined on the intersection of the partial region X (shown in Fig. 1) and
X
s

x2
s 6 H ð2Þ
and t > t0, where t0 and H are certain positive constants. Xs which vanishes when the variables xs are all zero, is a real valued
function of t, x1, . . . ,xn. It is assumed that Xs is smooth enough to ensure the existence, uniqueness of the solution of the initial
value problem. When Xs does not contain t explicitly, the system is autonomous.

Obviously, xs = 0 (s = 1, . . . ,n) is a solution of Eq. (1). We are interested to the asymptotical stability of this zero solution on
partial region X (including the boundary) of the neighborhood of the origin which in general may consist of several subre-
gions (Fig. 1).

Definition 1. For any given number e > 0, if there exists a d > 0, such that on the closed given partial region X when
X
s

x2
s0 6 d; ðs ¼ 1; . . . ;nÞ ð3Þ
for all t P t0, the inequality
X
s

x2
s < e; ðs ¼ 1; . . . ;nÞ ð4Þ
is satisfied for the solutions of Eq. (1) on X, then the disturbed motion xs = 0 (s = 1, . . . ,n) is stable on the partial region X.
Definition 2. If the undisturbed motion is stable on the partial region X, and there exists a d0 > 0, so that on the given partial
region X when
X

s

x2
s0 6 d0; ðs ¼ 1; . . . ; nÞ ð5Þ
The equality
lim
t!1

X
s

x2
s

 !
¼ 0 ð6Þ
is satisfied for the solutions of Eq. (1) on X, then the undisturbed motion xs = 0 (s = 1, . . . ,n) is asymptotically stable on the
partial region X.

The intersection of X and region defined by Eq. (5) is called the region of attraction.
Definition of Functions V(t,x1, . . . ,xn):
Let us consider the functions V(t,x1, . . . ,xn) given on the intersection X1 of the partial region X and the region
X

s

x2
s 6 h; ðs ¼ 1; . . . ;nÞ ð7Þ
subregion 2

subregion 3

subregion 1

1Ω

Ω1Ω

Ω

1Ω
Ω
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Fig. 1. Partial regions X and X1.
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for t P t0 > 0, where t0 and h are positive constants. We suppose that the functions are single-valued and have continuous
partial derivatives and become zero when x1 = � � � = xn = 0.

Definition 3. If there exists t0 > 0 and a sufficiently small h > 0, so that on partial region X1 and t P t0, V P 0 (or 60), then V
is a positive (or negative) semi-definite, in general semi-definite, function on the X1 and t P t0.
Definition 4. If there exists a positive (negative) definitive function W(x1, . . . ,xn) on X1, so that on the partial region X1 and
t P t0
V �W P 0 ðor � V �W P 0Þ ð8Þ
then V(t,x1, . . . ,xn) is a positive definite function on the partial region X1 and t P t0.
Definition 5. If V(t,x1, . . . ,xn) is neither definite nor semi-definite on X1 and t P t0, then V(t,x1, . . . ,xn) is an indefinite function
on partial region X1 and t P t0. That is, for any small h > 0 and any large t0 > 0, V(t,x1, . . . ,xn) can take either positive or neg-
ative value on the partial region X1 and t P t0.
Definition 6. Bounded function V
If there exist t0 > 0, h > 0, so that on the partial region X1, we have
jVðt; x1; . . . ; xnÞj < L ð9Þ
where L is a positive constant, then V is said to be bounded on X1.
Definition 7. Function with infinitesimal upper bound
If V is bounded, and for any k > 0, there exists l > 0, so that on X1 when

P
sx

2
s 6 l, and t P t0, we have
jVðt; x1; . . . ; xnÞj 6 k ð10Þ
then V admits an infinitesimal upper bound on X1.
Theorem of stability and of asymptotical stability on partial region

Theorem 1. If there can be found for the differential equations of the disturbed motion (Eq. (1) a definite function V(t,x1, . . . , xn) on
the partial region, and for which the derivative with respect to time based on these equations as given by the following:
dV
dt
¼ @V
@t
þ
Xn

s¼1

@V
@xs

Xs ð11Þ
is a semi-definite function on the partial region whose sense is opposite to that of V, or if it becomes zero identically, then the undis-
turbed motion is stable on the partial region.
Proof. Let us assume for the sake of definiteness that V is a positive definite function. Consequently, there exists a suffi-
ciently large number t0 and a sufficiently small number h < H, such that on the intersection X1 of partial region X and
X

s

x2
s 6 h; ðs ¼ 1; . . . ;nÞ ð12Þ
and t P t0, the following inequality is satisfied
Vðt; x1; . . . ; xnÞP Wðx1; . . . ; xnÞ; ð13Þ
where W is a certain positive definite function which does not depend on t. Besides that, Eq. (11) may assume only negative
or zero value in this region.

Let e be an arbitrarily small positive number. We shall suppose that in any case e < h. Let us consider the aggregation of all
possible values of the quantities x1 , . . . ,xn, which are on the intersection X2 of X1 and
X

s

x2
s ¼ e; ð14Þ
and let us designate by l > 0 the precise lower limit of the function W under this condition. By virtue of Eq. (8), we shall have
Vðt; x1; . . . ; xnÞP l for ðx1; . . . ; xnÞ on x2: ð15Þ
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We shall now consider the quantities xs as functions of time, which satisfy the differential equations of disturbed motion. We
shall assume that the initial values xs0 of these functions for t = t0 lie on the intersection X2 of X1 and the region
X

s

x2
s 6 d; ð16Þ
where d is so small that
Vðt0; x10; . . . ; xn0Þ < l ð17Þ
By virtue of the fact that V(t0,0, . . . ,0) = 0, such a selection of the number d is obviously possible. We shall suppose that in any
case the number d is smaller than e. Then the inequality
X

s

x2
s < e; ð18Þ
being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small t � t0, since the functions xs(t)
very continuously with time. We shall show that these inequalities will be satisfied for all values t > t0. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant t = T for which this inequality would
become an equality. In other words, we would have
X

s

x2
s ðTÞ ¼ e; ð19Þ
and consequently, on the basis of Eq. (15)
VðT; x1ðTÞ; . . . ; xnðTÞÞP l ð20Þ
On the other hand, since e < h, the inequality Eq. (7) is satisfied in the entire interval of time [t0,T], and consequently, in this
entire time interval _V 6 0. This yields
VðT; x1ðTÞ; . . . ; xnðTÞÞ 6 Vðt0; x10; . . . ; xn0Þ; ð21Þ
which contradicts Eq. (18) on the basis of Eq. (17). Thus, the inequality Eq. (4) must be satisfied for all values of t > t0, hence
follows that the motion is stable.

Finally, we must point out that from the viewpoint of mathematics, the stability on partial region in general does not be
related logically to the stability on whole region. If an undisturbed solution is stable on a partial region, it may be either sta-
ble or unstable on the whole region and vice versa. From the viewpoint of dynamics, we were not interesting to the solution
starting from X2 and going out of X.

Theorem 2. If in satisfying the conditions of Theorem 1, the derivative _V is a definite function on the partial region with opposite
sign to that of V and the function V itself permits an infinitesimal upper limit, then the undisturbed motion is asymptotically stable
on the partial region.
Proof. Let us suppose that V is a positive definite function on the partial region and that consequently, _V is negative definite.
Thus on the intersection X1 of X and the region defined by Eq. (7) and t P t0 there will be satisfied not only the inequality Eq.
(8), but the following inequality as will:
_V 6 �W1ðx1; . . . ; xnÞ; ð22Þ
where W1 is a positive definite function on the partial region independent of t.
Let us consider the quantities xs as functions of time, which satisfy the differential equations of disturbed motion assum-

ing that the initial values xs0 = xs(t0) of these quantities satisfy the inequalities Eq. (16). Since the undisturbed motion is sta-
ble in any case, the magnitude d may be selected so small that for all values of t P t0 the quantities xs remain within X1. Then,
on the basis of Eq. (22) the derivative of function V(t,x1(t), . . . ,xn(t)) will be negative at all times and, consequently, this func-
tion will approach a certain limit, as t increases without limit, remaining larger than this limit at all times. We shall show
that this limit is equal to some positive quantity different from zero. Then for all values of t P t0 the following inequality
will be satisfied:
Vðt; x1ðtÞ; . . . ; xnðtÞÞ > a ð23Þ
where a > 0.
Since V permits an infinitesimal upper limit, it follows from this inequality that
X

s

x2
s ðtÞP k; ðs ¼ 1; . . . ;nÞ; ð24Þ
where k is a certain sufficiently small positive number. Indeed, if such a number k did not exist, that is, if the quantity
P

sxsðtÞ
were smaller than any preassigned number no matter how small, then the magnitude V(t,x1(t), . . . ,xn(t)), as follows from the
definition of an infinitesimal upper limit, would also be arbitrarily small, which contradicts (13).
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If for all values of t P t0 the inequality Eq. (24) is satisfied, then Eq. (22) shows that the following inequality will be sat-
isfied at all times:
_V 6 �l1; ð25Þ
where l1 is positive number different from zero which constitutes the precise lower limit of the function W1(t,x1(t), . . . ,xn(t))
under condition Eq. (24). Consequently, for all values of t P t0 we shall have:
Vðt; x1ðtÞ; . . . ; xnðtÞÞ ¼ Vðt0; x10; . . . ; xn0Þ þ
Z t

t0

dV
dt

dt 6 Vðt0; x10; . . . ; xn0Þ � l1ðt � t0Þ; ð26Þ
which is, obviously, in contradiction with Eq. (23). The contradiction thus obtained shows that the function V(t,x1(t), . . . ,xn(t))
approached zero as t increase without limit. Consequently, the same will be true for the function W(x1(t), . . . ,xn(t)) as well,
from which it follows directly that
lim
t!1

xsðtÞ ¼ 0; ðs ¼ 1; . . . ;nÞ ð27Þ
which proves the theorem.
2.2. Generalized chaos synchronization strategy

Consider the following unidirectional coupled chaotic systems
_x ¼ fðt;xÞ
_y ¼ hðt; yÞ þ u

ð28Þ
Where x = [x1,x2, . . . ,xn]T 2 Rn, y = [y1,y2, . . . ,yn]T 2 Rn denote the master state vector and slave state vector respectively, f and
h are nonlinear vector functions, and u = [u1,u2, . . . ,un]T 2 Rn is a control input vector.

The generalized synchronization can be accomplished when t ?1, the limit of the error vector e = [e1,e2, . . . ,en]T ap-
proaches zero:
lim
t!1

e ¼ 0 ð29Þ
where
e ¼ GðxÞ � y ð30Þ
G(x) is a given function of x.
By using the partial region stability theory, the Lyapunov function is linear homogeneous function of error states. The con-

trollers can be designed in lower order.
3. Chaos of an inertial tachometer system and new Mathieu-Van der Pol system

This section introduces an inertial tachometer system and Mathieu-Van der Pol system, respectively.
Fig. 2. Sketch of an inertial tachometer.
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3.1. An inertial tachometer system

The physical model of the inertial tachometer system is shown in Fig. 2. The mass of bent rod is neglected and the balls m1

and m2 are considered as two particles.
We can write the kinetic and potential energies of the system as follow:
T ¼ 1
2

m1ðl2 _u2 þ l2 _g2 sin2 uÞ þ 1
2

m2ðl2 _u2 þ l2 _g2 cos2 uÞ þ 1
2

J _g2

P ¼ �glðm1 cos uþm2 sinuÞ
ð31Þ
wherem1 and m2 the mass of balls and m1 > m2

J the moment of inertia of the shaft about vertical center axis
l the length of rod
u the angle between the shaft and the rod
_g constant angular velocity of the tachometer
g gravity acceleration

The Lagrangian is L = T �P, the corresponding Lagrange equations are
ðm1 þm2Þl2 €u� ðm1 �m2Þl2 _g2 sin u cos uþ glðm1 cos u�m2 cos uÞ ¼ �k _u ð32Þ
where k is damping coefficient in bent rod bearing.
We assume that the inertial tachometer is subjected to an external vertical vibration basement Asinx3 where x3 is state

variable, A is the amplitude of vibration. The vertical axis rotates with constant speed _g. The Lagrange equation now are gi-
ven in a noninertial vibrating reference frame, which is fixed with the basement. Due to the inertial force appearing in the
noninertial frame, the gravity acceleration in the noninertial frame becomes g + AX2sinXt. Let x1 ¼ u; x2 ¼
_u; x3 ¼ Xt; x4 ¼ _x3; X ¼ g, where g is a constant.

And the state equations can be written as:
_x1 ¼ x2; _x2 ¼ 1
m1þm2

ðm1 �m2Þg2 cos x1 sin x1 � 1
l ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ � k

l2
x2

h i
_x3 ¼ x4; _x4 ¼ �A sin x3

(
ð33Þ
where x1, x2, x3, x4 are state variables and m1, m2, A, g, l, k, g are parameters. This system exhibits chaos when the parameters
of system are m1 = 9, m2 = 1, A = 10.5, g = 1, l = 0.3, k = 0.5, g = 9.81 and the initial condition is (x1,x2,x3,x4) = (0,0,2,2). Its
phase portraits and time histories as shown in Figs. 3 and 4.

3.2. New Mathieu-Van der Pol system

Mathieu equation and van der Pol equation are two typical nonlinear non-autonomous systems:
_z1 ¼ z2; _z2 ¼ �ða1 þ b1 sin wtÞz1 � ða1 þ b1 sin wtÞz3
1 � c1z2 þ d1 sin wt ð34Þ

_z3 ¼ z4; _z4 ¼ �e1z3 þ f1 1� z2
3

� �
z4 þ g1 sin wt ð35Þ
Fig. 3. Phase portraits of an inertial tachometer.



Fig. 4. Time histories of the four states of an inertial tachometer.

Fig. 5. Phase portraits of new Mathieu-Van der Pol system.
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Fig. 6. Time histories of the four states of new Mathieu-van der Pol system.
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Exchanging sinwt in Eq. (32) with z3 and sinwt in Eq. (33) with z1, we obtain the autonomous new Mathieu-Van der Pol
system:
_z1 ¼ z2; _z2 ¼ �ða1 þ b1z3Þz1 � ða1 þ b1z3Þz3
1 � c1z2 þ d1z3

_z3 ¼ z4; _z4 ¼ �e1z3 þ f1 1� z2
3

� �
z4 þ g1z1

(
ð36Þ
where a1, b1, c1, d1, e1, f1, g1, are uncertain parameter. This system exhibits chaos when the parameters of system are a1 = 10,
b1 = 3, c1 = 0.4, d1 = 70, e1 = 1, f1 = 5, g1 = 0.1 and the initial states of system are (z1,z,2,z3,z4) = (0.1,�0.5,0.1,�0.5), its phase
portraits and time histories are shown in Figs. 5 and 6.
4. Numerical simulations

The following example is two inertial tachometer systems with unidirectional coupling:
_x1 ¼ x2

_x2 ¼ 1
m1þm2

ðm1 �m2Þg2 cos x1 sin x1 � 1
l ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ � k

l2
x2

h i
_x3 ¼ x4

_x4 ¼ �A sin x3

8>>>>><
>>>>>:

ð37Þ

_y1 ¼ y2 þ u1

_y2 ¼ 1
m1þm2

ðm1 �m2Þg2 cos y1 sin y1 � 1
l ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ � k

l2
y2

h i
þ u2

_y3 ¼ y4 þ u3

_y4 ¼ �A sin y3 þ u4

8>>>>><
>>>>>:

ð38Þ
CASE I. The generalized synchronization error function is ei = xi � yi + 20 (i = 1,2,3,4)
Our goal is yi ¼ xi þ 20; i:e: lim
t!1

ei ¼ lim
t!1
ðxi � yi þ 20Þ ¼ 0; ði ¼ 1;2;3;4Þ ð39Þ
The addition of 20, makes that error dynamics always happens in first quadrant.
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The error dynamics becomes
_e1 ¼ _x1 � _y1 ¼ x2 � y2 � u1

_e2 ¼ _x2 � _y2 ¼
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
� u2 ð40Þ

_e3 ¼ _x3 � _y3 ¼ x4 � y4 � u3

_e4 ¼ _x4 � _y4 ¼ �A sin x3 þ A sin y3 � u4
Let initial states be (x1,x2,x3,x4) = (0,0,2,2), (y1,y2,y3,y4) = (2,2,0,0), we find the error dynamic always exist in first quadrant
showed in Fig. 7. By GYC partial region asymptotical stability theorem, one can choose a Lyapunov function in the form of a
positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4 ð41Þ

Its time derivative is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2 � y2 � u1Þ þ
1

m1 þm2

�
ðm1 �m2Þg2 cos x1 sin x1

�

� k

l2 x2 �
1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ

�
� 1

m1 þm2

�
ðm1 �m2Þg2 cos y1 sin y1

� 1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

�
� u2

�
þ ðx4 � y4 � u3Þ þ ð�A sin x3 þ A sin y3 � u4Þ ð42Þ
Choose
u1 ¼ x2 � y2 þ e1

u2 ¼
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
þ e2 ð43Þ

u3 ¼ x4 � y4 þ e3

u4 ¼ �A sin x3 þ A sin y3 þ e4
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0 ð44Þ
which is negative definite function in first quadrant. Error states versus time and time histories of states are shown in
Figs. 8 and 9.
Fig. 7. Phase portraits of four errors dynamics for Case I.



Fig. 8. Time histories of errors for Case I.

Fig. 9. Time histories of x1, x2, x3, x4, y1, y2, y3, y4 for Case I.
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CASE II. The generalized synchronization error function is,
ei ¼ xi � yi þ F sin wt þ 20; ði ¼ 1;2;3;4Þ



Fig. 10. Phase portraits of error dynamics for Case II.
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Our goal is yi = xi + F sin wt + 20, i.e. limt?1 ei = limt?1(xi � yi + F sin wt + 20) = 0, (i = 1,2,3,4)
The error dynamics becomes
_e1 ¼ _x1 � _y1 ¼ x2 � y2 � u1 þ Fw cos wt

_e2 ¼ _x2 � _y2 ¼
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �
� u2

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
þ Fw cos wt ð45Þ

_e3 ¼ _x3 � _y3 ¼ x4 � y4 � u3 þ Fw cos wt
_e4 ¼ _x4 � _y4 ¼ �A sin x3 þ A sin y3 � u4 þ Fw cos wt
Let initial states be (x1,x2,x3,x4) = (0,0,2,2), (y1,y2,y3,y4) = (2,2,0,0), and F = 5, w = 0.1, we find the error dynamic always ex-
ists in first quadrant as shown in Fig. 10. By GYC partial region asymptotical stability theorem, one can choose a Lyapunov
function in the form of a positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4 ð46Þ
Its time derivative is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2 � y2 � u1 þ Fw cos wtÞ

þ 1
m1 þm2

ðm1 �m2Þg2 cos x1 sin x1 �
k

l2 x2 �
1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ

� ��

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
� u2 þ Fw cos wt

�
þ ðx4 � y4 � u3 þ Fw cos wtÞ þ ð�A sin x3 þ A sin y3 � u4 þ Fw cos wtÞ ð47Þ
Choose
u1 ¼ x2 � y2 þ Fw cos wt þ e1

u2 ¼
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �
� 1

m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
þ Fw cos wt þ e2 ð48Þ

u3 ¼ x4 � y4 þ Fw cos wt þ e3

u4 ¼ �A sin x3 þ A sin y3 þ Fw cos wt þ e4
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0 ð49Þ



Fig. 11. Time histories of errors for Case II.

Fig. 12. Time histories of xi � yi + K and �FsinXt for Case II.
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which is negative definite function in first quadrant. Error states versus time and time histories of xi � yi + 20 and �F sinwt
are shown in Figs. 11 and 12.



Fig. 13. Phase portraits of error dynamics for Case III.

Fig. 14. Time histories of error for Case III.
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CASE III. The generalized synchronization error function is ei ¼ 1
2 x2

i � yi þ 20; ði ¼ 1;2;3;4Þ

Our goal is yi ¼ 1
2 x2

i þ 20, i.e. limt!1ei ¼ limt!1
1
2 x2

i � yi þ 20
� �

¼ 0; ði ¼ 1;2;3;4Þ.
The error dynamics becomes
_e1 ¼ x1 _x1 � _y1 ¼ x1x2 � y2 � u1

_e2 ¼ x2 _x2 � _y2 ¼ x2
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ

�

� k

l2
x2

�
� 1

m1 þm2
ðm1 �m2Þg2 cos y1 sin y1 �

1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
� u2 ð50Þ

_e3 ¼ x3 _x3 � _y3 ¼ x3x4 � y4 � u3

_e4 ¼ x4 _x4 � _y4 ¼ x4ð�A sin x3Þ þ A sin y3 � u4
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Let initial states be (x1,x2,x3,x4) = (0,0,2,2), (y1,y2,y3,y4) = (2,2,0,0) and, we find the error dynamics always exists in first
quadrant as shown in Fig. 13. By GYC partial region asymptotical stability theorem, one can choose a Lyapunov function
in the form of a positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4 ð51Þ
Its time derivative is

_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx1x2 � y2 � u1Þ

þ x2
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� ��

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
� u2

�
þ x3x4 � y4 � u3Þ þ ½x4ð�A sin x3Þ þ A sin y3 � u4�ð

ð52Þ
Choose
u1 ¼ x1x2 � y2 þ e1

u2 ¼ x2
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
þ e2 ð53Þ

u3 ¼ x3x4 � y4 þ e3

u4 ¼ x4ð�A sin x3Þ þ A sin y3 þ e4
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0 ð54Þ
which is negative definite function in first quadrant. Error states versus time and time histories of 1
2 x2

i þ 20 and yi are shown
in Fig. 14 and in Fig. 15.
Fig. 15. Time histories of 1
2 x2

i þ 20 and yi for Case III.
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CASE IV. The generalized synchronization error function is ei = xi � yi + zi + 50, where zi(i = 1,2,3,4) are chaotic states of new
Mathieu-Van der Pol system.

The goal system for synchronization is new Mathieu-Van der Pol system and initial states is
(z1,z2,z3,z4) = (0.1,�0.5,0.1,�0.5), system parameters a1 = 10, b1 = 3, c1 = 0.4, d1 = 70, e1 = 1, f1 = 5, g1 = 0.1.
_z1 ¼ z2; _z2 ¼ �ða1 þ b1z3Þz1 � ða1 þ b1z3Þz3
1 � c1z2 þ d1z3

_z3 ¼ z4; _z4 ¼ �e1z3 þ f1 1� z2
3

� �
z4 þ g1z1

(
ð55Þ
We have limt?1e = limt?1 (x � y + z + 50) = 0
The error dynamics becomes
_e1 ¼ _x1 � _y1 þ _z1 ¼ x2 � y2 þ z2 � u1 _e2 ¼ _x2 � _y2 þ _z2

¼ 1
m1 þm2

ðm1 �m2Þg2 cos x1 sin x1 �
1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
� ða1 þ b1z3Þz1

� ðaþ bz3Þz3
1 � c1z2 þ d1z3 � u2 _e3

¼ _x3 � _y3 þ _z3 ¼ x4 � y4 þ z4 � u3 _e4 ¼ _x4 � _y4 þ _z4 ¼ �A sin x3 þ A sin y3 � e1z3 þ f1ð1� z2
3Þz4 þ g1z1 � u4 ð56Þ
Let initial states be (x1,x2,x3,x4) = (0,0,2,2), (y1,y2,y3,y4) = (2,2,0,0) and, we find the error dynamics always exists in first
quadrant as shown in Fig. 16. By GYC partial region asymptotical stability theorem, one can choose a Lyapunov function
in the form of a positive definite function in first quadrant:
V ¼ e1 þ e2 þ e3 þ e4 ð57Þ
Its time derivative is
_V ¼ _e1 þ _e2 þ _e3 þ _e4 ¼ ðx2 � y2 þ z2 � u1Þ

þ 1
m1 þm2

ðm1 �m2Þg2 cos x1 sin x1 �
k

l2 x2 �
1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ

� ��

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �

� a1 þ b1z3Þz1 � ðaþ bz3Þz3
1 � c1z2 þ d1z3 � u2

� �
þ ðx4 � y4 þ z4 � u3Þ þ �A sin x3 þ A sin y3 � e1z3½

þ f1 1� z2
3

� �
z4 þ g1z1 � u4

	
ð58Þ
Fig. 16. Phase portraits of error dynamics for Case IV.



Fig. 17. Time histories of errors for Case IV.

Fig. 18. Time histories of xi � yi + 50 and �zi for Case IV.
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Choose
u1 ¼ x2 � y2 þ z2 þ e1

u2 ¼
1

m1 þm2
ðm1 �m2Þg2 cos x1 sin x1 �

1
l
ðg þ Ag2 sin x3Þðm1 sin x1 �m2 cos x1Þ �

k

l2 x2

� �

� 1
m1 þm2

ðm1 �m2Þg2 cos y1 sin y1 �
1
l
ðg þ Ag2 sin y3Þðm1 sin y1 �m2 cos y1Þ �

k

l2 y2

� �
ð59Þ

� ða1 þ b1z3Þz1 � ðaþ bz3Þz3
1 � c1z2 þ d1z3 þ e2

u3 ¼ x4 � y4 þ z4 þ e3

u4 ¼ �A sin x3 þ A sin y3 � e1z3 þ f1ð1� z2
3Þz4 þ g1z1 þ e4
We obtain
_V ¼ �e1 � e2 � e3 � e4 < 0 ð60Þ
which is negative definite function in first quadrant. Error states versus time and time histories of xi � yi + 50 are shown in
Figs. 17 and 18.

5. Conclusions

In this paper, a new strategy to achieve chaos generalized synchronization by GYC partial region stability theory is pro-
posed. By using the GYC partial region stability theory, the Lyapunov function is a simple linear homogeneous function of
error states and the controllers are more simple and have less simulation error because they are in lower order than that
of traditional controllers. A inertial tachometer system and a new Mathieu-Van der Pol system are used as simulation exam-
ples which effectively confirm the scheme.
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