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Marotto extended Li–Yorke’s theorem on chaos from one-dimension to multi-dimension
through introducing the notion of snapback repeller in 1978. Due to a technical flaw, he
redefined snapback repeller in 2005 to validate this theorem. This presentation provides
two methodologies to facilitate the application of Marotto’s theorem. The first one is to
estimate the radius of repelling neighborhood for a repelling fixed point. This estimation
is of essential and practical significance as combined with numerical computations of
snapback points. Secondly, we propose a sequential graphic-iteration scheme to construct
homoclinic orbit for a repeller. This construction allows us to track the homoclinic orbit.
Applications of the present methodologies with numerical computation to a chaotic neural
network and a predator–prey model are demonstrated.
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1. Introduction

Exploring and detecting chaotic behaviors have been major tasks in dynamical system theory. These investigations often
involve numerical computations. However, due to the instability of orbits in chaotic dynamical systems, effective finding
of chaos requires skillful computation techniques. In addition, in solving the application problems, it is often demanded to
allocate the chaotic regime (parameter ranges). Therefore, combining analytic theory with valid numerical computation illu-
minates the development of these investigations. Among the limited analytic theories, Marotto extended Li–Yorke’s theorem
on chaos from one-dimension to multi-dimension through introducing the notion of snapback repeller.

Let us describe the notion of snapback repellers and Marotto’s theorem. We consider a C1 map F : R
n → R

n . Denote by
Br(x) the closed ball in R

n with center at x and radius r > 0 under certain norm on R
n . A fixed point z of F is repelling if all

eigenvalues of DF(z) exceed one in magnitude. If there exist a norm ‖·‖ on R
n and s > 1 such that ‖F (x)− F (y)‖ > s ·‖x−y‖,

for all x,y ∈ Br(z), where Br(z) is defined under this norm, then Br(z) is called a repelling neighborhood of z. It is known
that if z is a repelling fixed point of F , then there exist a norm and r > 0 so that Br(z) is a repelling neighborhood of z [16].
However, this property does not necessarily hold for the Euclidean norm in general. In addition, if z is a fixed point and
Br(z) is a closed ball centered at z, under some norm, such that∣∣λ(x)

∣∣ > 1, for all eigenvalues λ(x) of DF(x), for all x ∈ Br(z), (1.1)

then Br(z) need not be a repelling neighborhood of z. This is due to that the norm constructed for such a property depends
on the matrix DF(x) which varies at different points x, as the Mean Value Theorem in multi-dimension is applied.

Recently, Marotto modified the definition of snapback repeller to validate the theorem [14], due to a technical flaw in
the original derivation. The revised definition of snapback repeller is stated as follows. Let us denote xk = F k(x0) for k ∈ N

and point x0 ∈ R
n .
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Definition 1.1. Let x be a repelling fixed point of F . Suppose that there exist a point x0 �= x in a repelling neighborhood of
x and an integer � > 1, such that x� = x and det(DF(xk)) �= 0 for 1 � k � �. Then x is called a snapback repeller of F .

The point x0 in the definition is called a snapback point of F . Under this definition, the following theorem by Marotto
holds [13,14].

Marotto’s theorem. If F possesses a snapback repeller, then F is chaotic in the following sense: There exist (i) a positive integer N,
such that F has a point of period p, for each integer p � N, (ii) a scrambled set of F , i.e., an uncountable set S containing no periodic
points of F , such that

(a) F (S) ⊂ S,
(b) lim supk→∞ ‖F k(x) − F k(y)‖ > 0, for all x,y ∈ S, with x �= y,
(c) lim supk→∞ ‖F k(x) − F k(y)‖ > 0, for all x ∈ S and periodic point y of F ,

(iii) an uncountable subset S0 of S, such that lim infk→∞ ‖F k(x) − F k(y)‖ = 0, for every x,y ∈ S0 .

Marotto’s theorem is significant in extending the analytic theory of chaos from one-dimension to multi-dimension. It
is also effective in applications, for example, in finding the chaotic regimes (parameter ranges) for dynamical systems.
The theorem is valid under the new definition, as that the convergence of preimages of a repeller back to the repeller
is guaranteed. However, methodologies for examining the condition of the theorem are demanded for application. Indeed,
confirming that some preimage of a repelling fixed point lies in the repelling neighborhood of this fixed point is a nontrivial
task; in addition, the existence of snapback repellers and homoclinic orbits are difficult to observe numerically for multi-
dimensional maps, due to the unstable structure of these orbits. Focusing on practical applications, we thus propose two
directions to confirm that a repelling fixed point is a snapback repeller for multi-dimensional maps. The first one is to
find the repelling neighborhood U of the repeller x and a preimage point x0 of x lying in U , i.e., with F �(x0) = x, x0 ∈ U
and x0 �= x, for some � > 1. Therefore, deriving an estimation of the repelling neighborhood for a repeller becomes the key
part in utilizing this theorem. Moreover, a computable norm is needed for practical application. The second direction is to
construct the preimages {x−k}∞k=1 of x, such that F (x−k) = x−k+1, k � 2, F (x−1) = x, limk→∞ F (x−k) = x. We call such an
orbit {x−k}∞k=1 a (degenerate) homoclinic orbit for the repeller x. The existence of such a homoclinic orbit guarantees the
existence of a snapback point in the repelling neighborhood of repeller x. Marotto’s theorem thus holds without knowing
the repelling region of the fixed point.

This presentation aims at deriving two methodologies to establish the existence of snapback repellers:

(i) estimations for the radius of repelling neighborhood of a repelling fixed point, under the Euclidean norm,
(ii) a sequential graphic-iteration scheme to construct the homoclinic orbit for a repelling fixed point.

For (i), we shall formulate a first-order estimate as well as a second-order estimate. The latter one is especially useful
for quadratic maps. The estimation is of essential and practical significance as combined with numerical computations of
snapback points. For (ii), the approach more or less bears a sense of employing (1.1), with certain manipulation, to conclude
the existence of snapback repeller. This construction allows us to track homoclinic orbit. In some applications, a combination
of (i) with (ii) accomplishes the use of Marotto’s theorem. These two methodologies can then be combined with numerical
computations and the technique of interval computing which controls rigorous computation precision, to conclude chaotic
dynamics for the systems.

There have been a number of efforts in modifying the original definition of snapback repeller [5,10]. A different definition
based on the existence for a sequence of preimages of the repeller was adopted in [11]. Our second methodology provides
a way to construct such a backward orbit. Persistence of snapback repeller and positive entropy for perturbations of maps
with snapback repeller have been discussed in [11,12]. Previous works based on the application of Marotto’s theorem in
the literature may require reconsideration under the valid definition; for example, [1–4,6,7,15,17]. The goal of this study is
to provide some methodologies for valid applications of Marotto’s theorem. In particular, we shall apply our approaches to
confirm the existence of snapback repellers, under the new definition, for a chaotic neural network [2–4,6] and a predator–
prey model [15].

The rest of this presentation is organized as follows. In Section 2, we derive two estimations for the radius of repelling
neighborhood of a repelling fixed point, under the Euclidean norm. The sequential graphic-iteration scheme is formulated
in Section 3. In Section 4, we apply the sequential graphic-iteration scheme to construct the homoclinic orbit in a chaotic
neural network. In Section 5, we provide two numerical examples to illustrate the uses of the present methodologies.

2. Repelling neighborhood

In this section, we develop two approaches to estimate the radius of repelling neighborhood for a repelling fixed point.
The first one is a first-order estimate and the second one is a second-order estimate. The Euclidean norm is adopted
throughout this section.
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Let us quote the following lemma from [10]. Note that if an n × n matrix A is real, then AT A is symmetric and positive
semi-definite.

Lemma 2.1. (See [10].) Let z be a fixed point of F which is continuously differentiable in closed ball Br(z). If

λ > 1, for all eigenvalues λ of
(
DF(z)

)T
DF(z), (2.1)

then there exist s > 1 and r′ ∈ (0, r] such that ‖F (x)− F (y)‖2 > s · ‖x−y‖2 , for all x,y ∈ Br′ (z), and all eigenvalues of (DF(x))T DF(x)

exceed one for all x ∈ Br′ (z).

Condition (2.1) was employed in [10] in an attempt to revise the original definition of snapback repeller to validate
Marotto’s theorem. On the one hand, using (2.1) as a definition is more restrictive, as commented by Marotto [14], due to
that a repelling fixed point has the potential to be a snapback repeller, without satisfying the eigenvalue condition (2.1).
On the other hand, the formulation in [10] does provide an estimate for the radius of repelling neighborhood of a repelling
fixed point, although such an estimate was not elaborated in [10].

Let us present this derivation and estimate. It follows from the fundamental theorem of calculus that F (y) − F (x) =∫ 1
0 DF(x + s(y − x)) · (y − x)ds, and

∥∥F (y) − F (x)
∥∥

2 �
∥∥DF(z)(y − x)

∥∥
2 −

1∫
0

∥∥DF
(
x + s(y − x)

) − DF(z)
∥∥

2 ds · ‖y − x‖2.

Notably, ‖DF(z)(y − x)‖2 = √
(y − x)T (DF(z))T DF(z)(y − x) � s1 · ‖y − x‖2, where

s1 :=
√

minimal eigenvalue of
(
DF(z)

)T
DF(z). (2.2)

Consider the n × n matrix B(w, z) := DF(w) − DF(z), and set

ηr := max
w∈Br(z)

∥∥B(w, z)
∥∥

2

= max
w∈Br(z)

√
maximal eigenvalue of

(
B(w, z)

)T
B(w, z). (2.3)

Hence, we can estimate ‖F (y) − F (x)‖2 through s1 and ηr .

Proposition 2.2. Consider a continuously differentiable map F with fixed point z. Let s1 and ηr be as defined in (2.2) and (2.3). If there
exists an r > 0 such that s1 − ηr > 1, then Br(z) is a repelling neighborhood for z, under the Euclidean norm.

Next, let us present the second estimate which is based on the first and second derivatives of F . This formulation is
especially advantageous for quadratic maps as their second derivatives are constants.

Since the eigenvalues of (DF(x))T DF(x) are all non-negative. Let σi(x) and βi j(x) be defined as

σi(x) :=
√

eigenvalues of
(
DF(x)

)T
DF(x),

βi j(x) := eigenvalues of Hessian matrix H Fi (x) = [
∂k∂l F i(x)

]
k×l,

where i, j = 1,2, . . . ,n. Let αr and βr be defined as

αr := min
x∈Br(z)

min
1�i�n

{
σi(x)

}
, (2.4)

βr := max
1�i�n

max
x∈Br(z)

max
1� j�n

∣∣βi j(x)
∣∣. (2.5)

Proposition 2.3. Consider a C2 map F = (F1, . . . , Fn) with fixed point z. Let αr and βr be as defined in (2.4) and (2.5). If there exists
an r > 0, such that

αr − r
√

nβr > 1, (2.6)

then Br(z) is a repelling neighborhood of z, under the Euclidean norm.
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Proof. As F is C2, we have F (y) − F (x) = DF(x)(y − x) + ∫ 1
0 (1 − τ )D2 F (x + τ (y − x))(y − x)(y − x)dτ , for any x,y ∈ Br(z);

hence,

∥∥F (y) − F (x)
∥∥

2 �
∥∥DF(x)(y − x)

∥∥
2 −

∥∥∥∥∥
1∫

0

(1 − τ )D2 F
(
x + τ (y − x)

)
(y − x)(y − x)dτ

∥∥∥∥∥
2

.

Step I. Estimate the first-order term ‖DF(x)(y − x)‖2.

There are two ways to derive this estimate; namely, through “Singular Value Decomposition” and “Polar Decomposition”
of matrices [8,9]. We present the first one. Indeed, DF(x) = U (x)Υ (x)(V (x))T , where U (x) and V (x) are unitary matrices,
and Υ (x) is the diagonal matrix with diagonal entries σi(x) = √

eigenvalues of (DF(x))T DF(x), i = 1, . . . ,n. For any w =
(w1, . . . , wn) ∈ R

n , since σi(x) � 0, for all i = 1, . . . ,n, we derive

min
1�i�n

{
σi(x)

} · ‖w‖2 �
∥∥Υ (x)w

∥∥
2 � max

1�i�n

{
σi(x)

} · ‖w‖2. (2.7)

From DF(x) = U (x)Υ (x)(V (x))T , ‖U (x)Υ (x)(V (x))T (y − x)‖2 = ‖Υ (x)(V (x))T (y − x)‖2 and (2.7), we obtain∥∥DF(x)(y − x)
∥∥

2 � min
1�i�n

{
σi(x)

} · ∥∥(
V (x)

)T
(y − x)

∥∥
2

� min
x∈Br(z)

min
1�i�n

{
σi(x)

} · ∥∥(
V (x)

)T
(y − x)

∥∥
2

= αr · ‖y − x‖2,

for any x,y ∈ Br(z).

Step II. Estimate the second-order term.

Notably, [D2 F (w)hk]T = [kT H F1(w)h, . . . ,kT H Fn (w)h], for w,h,k ∈ R
n , where H Fi is the Hessian matrix for Fi . It fol-

lows that

∥∥D2 F (w)(y − x)(y − x)
∥∥

2 =
(

n∑
i=1

∣∣(y − x)T H Fi (w)(y − x)
∣∣2

) 1
2

. (2.8)

On the other hand,∣∣(y − x)T H Fi (w)(y − x)
∣∣ �

(
max

1�i�n
max

w∈Br(z)
max

1� j�n

∣∣βi j(w)
∣∣) · ‖y − x‖2

2

� 2rβr · ‖y − x‖2,

for any w ∈ Br(z), x,y ∈ R
n , due to that Hessian matrix H Fi (w) is symmetric, and (−max1� j�n |βi j(w)|) · ‖y − x‖2 � (y −

x)T H Fi (w)(y − x) � (max1� j�n |βi j(w)|) · ‖y − x‖2, for each w ∈ Br(z), i = 1, . . . ,n, and

min
1�i�n

min
w∈Br(z)

{
− max

1� j�n

∣∣βi j(w)
∣∣} = − max

1�i�n
max

w∈Br(z)
max

1� j�n

∣∣βi j(w)
∣∣.

Hence, from (2.8), we drive ‖D2 F (w)(y − x)(y − x)‖2 � 2rβr
√

n · ‖y − x‖2, for any w = x + τ (y − x),x,y ∈ Br(z). Thereafter,
‖ ∫ 1

0 (1 − τ )D2 F (x + τ (y − x))(y − x)(y − x)dτ‖2 � rβr
√

n · ‖y − x‖2.
Finally, combining Steps I and II, we obtain ‖F (y) − F (x)‖2 � (αr − rβr

√
n) · ‖y − x‖2, for any x,y ∈ Br(z). This completes

the proof. �
3. Sequential graphic-iteration scheme

In this section, we present an approach to exploit the existence of snapback repeller, without estimating the repelling
neighborhood. In particular, we develop a scheme to construct homoclinic orbits for repelling fixed point x of F , i.e., we
show that there exists {x− j: j ∈ N} such that F (x−1) = x, F (x− j) = x− j+1, for j � 2, lim j→∞ F (x− j) = x. Notably, the
existence of such an orbit guarantees the existence of snapback point in the repelling neighborhood of x, and thus leads
to Marotto’s theorem. The present scheme utilizes the local structure of F and employs lower and upper bounds of F on
restricted regions sequentially. We shall illustrate the use of this scheme to a chaotic neural network in Section 4.

Consider a C1 map F : R
n → R

n with F = (F1, . . . , Fn). We assume that there exists a compact, connected and convex
region Ω ⊂ R

n on which F is one-to-one and has a fixed point x. For simplicity, we consider Ω = ∏n
i=1 Ωi := ∏n

i=1[ai,bi],
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with ai < bi . Notably, a sufficient condition for F to be one-to-one on Ω is∣∣∣∣∂ Fi

∂xi
(x)

∣∣∣∣ >

n∑
j=1, j �=i

∣∣∣∣∂ Fi

∂x j
(x)

∣∣∣∣, for all i = 1, . . . ,n, x ∈ Ω. (3.1)

Herein, we shall actually employ the condition∣∣∣∣∂ Fi

∂xi
(x)

∣∣∣∣ > 1 +
n∑

j=1, j �=i

∣∣∣∣∂ Fi

∂x j
(x)

∣∣∣∣, for all i = 1, . . . ,n, x ∈ Ω. (3.2)

Then, by Gerschgorin’s theorem, all eigenvalues λ(x) of DF(x) satisfy |λ(x)| > 1, for all x ∈ Ω .
Hence, under (3.2), x is a repelling fixed point of F . In addition, (3.2) implies (3.1). Under condition (3.2), we denote

A :=
{

i ∈ {1, . . . ,n}
∣∣∣ ∂ Fi

∂xi
(x) > 1 +

n∑
j=1, j �=i

∣∣∣∣∂ Fi

∂x j
(x)

∣∣∣∣, for all x ∈ Ω

}
,

B :=
{

i ∈ {1, . . . ,n}
∣∣∣ ∂ Fi

∂xi
(x) < −1 −

n∑
j=1, j �=i

∣∣∣∣∂ Fi

∂x j
(x)

∣∣∣∣, for all x ∈ Ω

}
.

In the following derivation, we will apply Brouwer’s fixed point theorem to construct successive preimages of x lying in
the designated regions. Let us sketch the scheme in the following steps (I)–(VII). Let � � 2.

(I) Locating the (� − 1)-th preimage point x−�+1 of x, which lies outside of Ω: First, for i = 1, . . . ,n, we set

f̂ i,(1)(ξ) := sup
{

Fi
(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
: x′

j ∈ Ω j, j ∈ {1, . . . ,n}/{i}},
f̌ i,(1)(ξ) := inf

{
Fi

(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
: x′

j ∈ Ω j, j ∈ {1, . . . ,n}/{i}},
for ξ ∈ R

1. For each x′ = (x′
1, . . . , x′

n) ∈ Ω and i = 1, . . . ,n, we define

f̃x′,i,(1)(ξ) = Fi
(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
, for ξ ∈ R

1.

Then, for each x′ ∈ Ω ,

f̌ i,(1)(ξ) � f̃x′,i,(1)(ξ) � f̂ i,(1)(ξ), for all ξ ∈ R
1, i = 1, . . . ,n. (3.3)

Under (3.2), for each x′ ∈ Ω , f̌ ′
i,(1)

(ξ) = f̃ ′
x′,i,(1)

(ξ) = f̂ ′
i,(1)

(ξ) > 1, if i ∈ A, and f̌ ′
i,(1)

(ξ) = f̃ ′
x′,i,(1)

(ξ) = f̂ ′
i,(1)

(ξ) < −1, if i ∈ B,

for all ξ ∈ [ai,bi]. We denote by f̂ −1
i,(1)

(y), f̌ −1
i,(1)

(y), and f̃ −1
x′,i,(1)

(y) the preimages of y under f̂ i,(1) , f̌ i,(1) , and f̃x′,i,(1) lying
in Ωi , respectively. Hence, for each x′ ∈ Ω

f̂ −1
i,(1)

(y) � f̃ −1
x′,i,(1)

(y) � f̌ −1
i,(1)

(y), for y ∈ [
f̂ i,(1)(ai), f̌ i,(1)(bi)

]
, if i ∈ A, (3.4)

f̌ −1
i,(1)

(y) � f̃ −1
x′,i,(1)

(y) � f̂ −1
i,(1)

(y), for y ∈ [
f̂ i,(1)(bi), f̌ i,(1)(ai)

]
, if i ∈ B, (3.5)

and f̃ −1
x′,i,(1)

, f̂ −1
i,(1)

and f̌ −1
i,(1)

are increasing on [ f̂ i,(1)(ai), f̌ i,(1)(bi)], if i ∈ A, and decreasing on [ f̂ i,(1)(bi), f̌ i,(1)(ai)], if i ∈ B.

As we plan to construct an orbit, {x−k}∞k=1, such that x−�+1 /∈ Ω , and x−k ∈ int(Ω), for all k � �, we further assume that

x−�+1
i ∈ (

f̂ i,(1)(ai), f̌ i,(1)(bi)
) \ [ai,bi], if i ∈ A, (3.6)

x−�+1
i ∈ (

f̂ i,(1)(bi), f̌ i,(1)(ai)
) \ [ai,bi], if i ∈ B. (3.7)

Under conditions (3.6)–(3.7), x−�+1 /∈ Ω , and a further preimage x−� lying in the interior of Ω can be found. As there may
be other possibility for this step, we could also assume, instead of (3.6)–(3.7),

x−�+1 ∈ R
n \ Ω, x−� ∈ int(Ω). (3.8)

In some applications, this condition can be verified. Notably, when � � 3, if x−�+2 ∈ R
n \ Ω , then we allow x−�+1 ∈ ∂Ω in

conditions (3.6)–(3.7), or (3.8). With (3.6)–(3.7), we can find intervals [ai,(0),bi,(0)] ⊇ Ωi , such that

f̂ i,(1)(ai) < ai,(0) � x−�+1
i � bi,(0) < f̌ i,(1)(bi), for i ∈ A, (3.9)

f̂ i,(1)(bi) < ai,(0) � x−�+1
i � bi,(0) < f̌ i,(1)(ai), for i ∈ B, (3.10)

and take ai,(1) := f̂ −1
i,(1)

(ai,(0)), bi,(1) := f̌ −1
i,(1)

(bi,(0)), for i ∈ A, and bi,(1) := f̌ −1
i,(1)

(bi,(0)), ai,(1) := f̂ −1
i,(1)

(ai,(0)), if i ∈ B. Thus, by

(3.9), we have ai < f̂ −1 (ai,(0)) = ai,(1) and bi,(1) = f̌ −1 (bi,(0)) < bi , if i ∈ A. Hence, Ωi,(1) := [ai,(1),bi,(1)] ⊂ Ωi , for i ∈ A.
i,(1) i,(1)
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Fig. 1. (a) Configuration for case A in step (I). (b) Configuration for case B in step (I).

Similarly, we have Ωi,(1) := [bi,(1),ai,(1)] ⊂ Ωi , for i ∈ B, as depicted in Fig. 1. If condition (3.8), instead of (3.6)–(3.7), is
assumed, then suitable ai,(1) , bi,(1) can also be chosen. For convenience of expression and without loss of generality, we
assume � = 2 in the sequel.

(II) Finding the preimage x−2 of x−1 under F , which lies in
∏n

i=1 Ωi,(1): By (3.4)–(3.7), for each x′ ∈ ∏n
i=1 Ωi,(1) , there

exists ξi with

ξi ∈ [
f̂ −1

i,(1)

(
x−1

i

)
, f̌ −1

i,(1)

(
x−1

i

)] ⊆ [
f̂ −1

i,(1)
(ai,(0)), f̌ −1

i,(1)
(bi,(0))

] = Ωi,(1), if i ∈ A,

ξi ∈ [
f̌ −1

i,(1)

(
x−1

i

)
, f̂ −1

i,(1)

(
x−1

i

)] ⊆ [
f̌ −1

i,(1)
(bi,(0)), f̂ −1

i,(1)
(ai,(0))

] = Ωi,(1), if i ∈ B,

such that x−1
i = f̃x′,i,(1)(ξi) = Fi(x′

1, . . . , x′
i−1, ξi, x′

i+1, . . . , x′
n), i = 1, . . . ,n.

Next, we define a function H(1) = (H1,(1), . . . , Hn,(1)) : ∏n
i=1 Ωi,(1) → ∏n

i=1 Ωi,(1), by

Hi,(1)

(
x′

1, . . . , x′
n

) = ξi,(1), (3.11)

where ξi,(1) satisfies

x−1
i = f̃x′,i,(1)(ξi,(1)) = Fi

(
x′

1, . . . , x′
i−1, ξi,(1), x′

i+1, . . . , x′
n

)
, i = 1, . . . ,n. (3.12)

To show that mapping H(1) is C1, we consider the following map: G(1) = (G1,(1), . . . , Gn,(1)) : R
n × R

n → R
n , defined by

Gi,(1)

(
x′,x

) = x−1
i − Fi

(
x′

1, . . . , x′
i−1, xi, x′

i+1, . . . , x′
n

)
, i = 1, . . . ,n. (3.13)

Then, G(1)(x′, H(1)(x′)) = 0, and det ∂G(1)

∂x (x′,x) �= 0, for any x,x′ ∈ Ω , thanks to (3.2). Hence H(1) is C1 on Ω . Therefore, by

Brouwer’s fixed point theorem, H(1) has a fixed point x̃ = (x̃1, . . . , x̃n) ∈ ∏n
i=1 Ωi,(1) , i.e., x−1

i = Fi(x̃1, . . . , x̃n), with x̃i ∈ Ωi,(1) ,
i = 1, . . . ,n. Restated, this x̃ is a preimage of x−1 under F , which shall be denoted by x−2. Again, x−2 ∈ ∏n

i=1 Ωi,(1) ⊂∏n
i=1 Ωi = Ω .
(III) Constructing a sequence of nested regions {∏n

i=1 Ωi,(k)}∞k=1, Ωi,(k) ⊆ Ωi,(k−1): For k � 2, i = 1, . . . ,n, we set

f̂ i,(k)(ξ) := sup
{

Fi
(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
: x′

j ∈ Ω j,(k−1), j ∈ {1, . . . ,n}/{i}},
f̌ i,(k)(ξ) := inf

{
Fi

(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
: x′

j ∈ Ω j,(k−1), j ∈ {1, . . . ,n}/{i}},
for ξ ∈ R

1. In addition, for each x′ = (x′
1, . . . , x′

n) ∈ ∏n
i=1 Ωi,(k−1) , we define

f̃x′,i,(k)(ξ) = Fi
(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
, ξ ∈ R

1, i = 1, . . . ,n.

Then, for any x′ ∈ ∏n
i=1 Ωi,(k−1) , and ξ ∈ R

1

f̌ i,(1)(ξ) � f̌ i,(k)(ξ) � f̃x′,i,(k)(ξ) � f̂ i,(k)(ξ) � f̂ i,(1)(ξ), i = 1, . . . ,n.

Similar to step (I), for each x′ ∈ ∏n
i=1 Ωi,(k−1) , f̌ ′

i,(k)
= f̃ ′

x′,i,(k)
= f̂ ′

i,(k)
> 1, if i ∈ A, and f̌ ′

i,(k)
= f̃ ′

x′,i,(k)
= f̂ ′

i,(k)
< −1, if i ∈ B,

on [ai,bi].
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Fig. 2. (a) Configuration for case A in step (III). (b) Configuration for case B in step (III).

We further assume that f̂ i,(1) (resp. f̌ i,(1)) has fixed point x̂i,(1) (resp. x̌i,(1)) lying in Ωi . Accordingly, f̂ i,(k) (resp. f̌ i,(k))
also has fixed point x̂i,(k) (resp. x̌i,(k)) lying in Ωi , and

ai,(0) � ai � x̂i,(1) � x̂i,(k) � x̌i,(k) � x̌i,(1) � bi � bi,(0), if i ∈ A,

ai,(0) � ai � x̌i,(1) � x̌i,(k) � x̂i,(k) � x̂i,(1) � bi � bi,(0), if i ∈ B,

for all k � 2. We denote by f̂ −1
i,(k)

(y), f̌ −1
i,(k)

(y), and f̃ −1
x′,i,(k)

(y) the preimages of y under f̂ i,(k) , f̌ i,(k) , and f̃x′,i,(k) lying in Ωi ,

for all k � 2, respectively. Hence, for any x′ ∈ ∏n
i=1 Ωi,(k−1) ,

f̂ −1
i,(k)

(y) � f̃ −1
x′,i,(k)

(y) � f̌ −1
i,(k)

(y), for y ∈ [
f̂ i,(1)(ai), f̌ i,(1)(bi)

]
, if i ∈ A,

f̌ −1
i,(k)

(y) � f̃ −1
x′,i,(k)

(y) � f̂ −1
i,(k)

(y), for y ∈ [
f̂ i,(1)(bi), f̌ i,(1)(ai)

]
, if i ∈ B, (3.14)

and f̃ −1
x′,i,(k)

, f̂ −1
i,(k)

and f̌ −1
i,(k)

are all increasing on [ f̂ i,(1)(ai), f̌ i,(1)(bi)], for i ∈ A, and all decreasing on [ f̂ i,(1)(bi), f̌ i,(1)(ai)],
for i ∈ B. Thus, we set

Ω(k) :=
n∏

i=1

Ωi,(k), for k � 1,

where Ωi,(k) := [ai,(k),bi,(k)], for i ∈ A, Ωi,(k) := [bi,(k),ai,(k)], for k = odd, i ∈ B, Ωi,(k) := [ai,(k),bi,(k)], for k = even, i ∈ B,
where

ai,(k) := f̂ −1
i,(k)

(ai,(k−1)), bi,(k) := f̌ −1
i,(k)

(bi,(k−1)), for i ∈ A,

ai,(k) := f̂ −1
i,(k)

(ai,(k−1)), bi,(k) := f̌ −1
i,(k)

(bi,(k−1)), for k = odd, i ∈ B,

ai,(k) := f̌ −1
i,(k)

(ai,(k−1)), bi,(k) := f̂ −1
i,(k)

(bi,(k−1)), for k = even, i ∈ B,

as depicted in Fig. 2. Obviously, by induction, we have ai,(k) � bi,(k) , for all k � 0 if i ∈ A, and for even k if i ∈ B; in addition,
bi,(k) � ai,(k) , for odd k if i ∈ B. Moreover, with these settings, it can be shown that

Ωi,(k) ⊆ Ωi,(k−1) ⊂ Ωi, for k � 2, i = 1, . . . ,n. (3.15)

Subsequently, for all x′ ∈ Ω(k−1) , ξ ∈ R
1, i = 1, . . . ,n, k � 3,

f̌ i,(1)(ξ) � f̌ i,(k−1)(ξ) � f̌ i,(k)(ξ) � f̃x′,i,(k)(ξ) � f̂ i,(k)(ξ) � f̂ i,(k−1)(ξ) � f̂ i,(1)(ξ).

Now we prove (3.15), for i ∈ A. First, we have shown that the Ωi,(1) ⊂ Ωi in step (I). Next, for k = 2, observe that

ai,(0) � x̂i,(1) , bi,(0) � x̌i,(1) , ai,(1) � x̂i,(1) � x̂i,(2) , and bi,(1) � x̌i,(1) � x̌i,(2) . Accordingly, ai,(2) = f̂ −1
i,(2)

(ai,(1)) � ai,(1) , bi,(2) =
f̌ −1

i,(2)
(bi,(1)) � bi,(1) . Therefore, Ωi,(2) ⊆ Ωi,(1) , for all i ∈ A. Next, assume that the assertion holds for j, then (3.15)

with k = j + 1 follows from ai,( j) � x̂i,( j) � x̂i,( j+1) , and bi,( j) � x̌i,( j) � x̌i,( j+1) . Therefore ai,( j+1) = f̂ −1
i,( j+1)

(ai,( j)) � ai,( j) ,

bi,( j+1) = f̌ −1 (bi,( j)) � bi,( j) . Hence, Ωi,( j+1) ⊆ Ωi,( j) for all i ∈ A.
i,( j+1)
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(IV) Constructing successive preimages x−k of x under F , with x−k ∈ ∏n
i=1 Ωi,(k−1) , for k � 3: Herein, we only illustrate

the case of i ∈ A. Since x−k
i ∈ Ωi,(k−1) ⊆ Ωi , by (3.14), there exists ξi with

ξi ∈ [
f̂ −1

i,(k)

(
x−k

i

)
, f̌ −1

i,(k)

(
x−k

i

)] ⊆ [
f̂ −1

i,(k)
(ai,(k−1)), f̌ −1

i,(k)
(bi,(k−1))

] = Ωi,(k), for i ∈ A,

such that x−k
i = f̃x′,i,(k)(ξi) = Fi(x′

1, . . . , x′
i−1, ξi, x′

i+1, . . . , x′
n), i = 1, . . . ,n. Suppose x−k , k � 2 have been defined, we for-

mulate functions H(k) and G(k) through replacing Ωi,(1) , x−1
i , and ξi,(1) by Ωi,(k) , x−k

i , and ξi,(k) , respectively, in (3.11),
(3.12) and (3.13). Then, similar to step (II), by Brouwer’s fixed point theorem, there exists a preimage x−k−1 ∈ ∏n

i=1 Ωi,(k) ⊆∏n
i=1 Ωi,(k−1) of x−k .
We have thus constructed in (II)–(IV) a sequence of regions {∏n

i=1 Ωi,(k)}∞k=1, which satisfy Ωi,(k) ⊆ Ωi,(k−1) ⊂ Ωi , for all
k � 2, i = 1, . . . ,n, and an orbit {x−k}∞k=1, such that x−k ∈ ∏n

i=1 Ωi,(k−1) , for all k � 2.
(V) Confirming that x lies in Ω(k) , for every k: For any x′ = (x′

1, . . . , x′
n) ∈ Ω , since xi ∈ Ωi ⊆ [ai,(0),bi,(0)], by (3.3)–(3.5),

(3.9), (3.10), there exists some ξi ∈ Ωi,(1) , such that xi = f̃x′,i,(1)(ξi), for all i = 1, . . . ,n. Following the arguments as in (II),
we can find a first preimage x−1 of x, which lies in

∏n
i=1 Ωi,(1) ⊆ Ω . Let us denote it by x−1,∗ . We repeat this process as

in steps (II), (IV), and construct successive preimages of x: {x−k,∗}∞k=1, with x−k,∗ ∈ ∏n
i=1 Ωi,(k) ⊆ ∏n

i=1 Ωi = Ω , for all k � 1.
Then each x−k,∗ is equal to x, since F is one-to-one on Ω . Hence, we conclude

x = x−k,∗ ∈
n∏

i=1

Ωi,(k), for all k � 1. (3.16)

(VI) Convergence of x−k to x, as k → ∞: According to the construction in steps (I)–(V), this convergence follows from
the condition

‖Ωi,(k)‖ → 0, as k → ∞, for all i = 1, . . . ,n. (3.17)

Therefore, as x−k ∈ ∏n
i=1 Ωi,(k−1) , for all k � 2, with (3.16) and (3.17), the orbit {x−k}∞k=1 is a homoclinic orbit for the

repelling fixed point x.
(VII) x is a snapback repeller: As x is a repelling fixed point, there exist a norm ‖ · ‖∗ and r > 0, such that B∗

r (x) :=
{x ∈ R

n | ‖x − x‖∗ � r} ⊆ Ω is a repelling neighborhood of x. Since x−k → x, as k → ∞, there must exist x−k0 ∈ {x−k}∞k=1,
such that x−k0 ∈ B∗

r (x), i.e., this x−k0 is a snapback point of x. Moreover, det(DF(x)) �= 0, and det(DF(x−k)) �= 0, for k � �,
according to (3.2). If, furthermore,

det
(
DF

(
x−k)) �= 0, for 1 � k � � − 1, (3.18)

then x is a snapback repeller and Marotto’s theorem holds. We summarize the above derivation.

Theorem 3.1. Assume that C1 map F : R
n → R

n satisfies (3.2) and has a repelling fixed point x in a compact, connected, convex region
Ω ⊂ R

n, f̂ i,(1) and f̌ i,(1) both have fixed points in Ωi , for all i = 1, . . . ,n, and (3.6), (3.7), or (3.8) hold. Then there exist a sequence of
nested regions {Ω(k)}∞k=1 with Ω(k+1) ⊆ Ω(k) ⊂ Ω , and preimages x−k−1 ∈ Ω(k) of x, k ∈ N. If, furthermore, ‖Ωi,(k)‖ → 0, as k → ∞,

for all i = 1, . . . ,n, then {x−k}∞k=1 is a homoclinic orbit for x. Moreover, if (3.18) holds, then x is a snapback repeller and F is chaotic in
the sense of Marotto’s theorem.

Remark. The conditions in Theorem 3.1 are formulated for DF and the associated one-dimensional maps (the upper and
lower maps), hence are easy to examine in applications.

4. Application to TCNN

In studying the chaotic behaviors of a transiently chaotic neural network (TCNN), the associated n-dimensional map
F = (F1, . . . , Fn), with

Fi(x) = αxi + wii gci (xi) +
n∑

j=1, j �=i

wij g0(x j) + di, i = 1, . . . ,n, (4.1)

has been investigated. Herein, for c ∈ R, ε > 0, gc(ξ) := (1 + e− ξ
ε )−1 − c, for ξ ∈ R. In particular, the existence of snapback

repellers for (4.1) has been analyzed in [2–4,6], under Marotto’s original definition. These arguments are therefore insuffi-
cient as discussed in Section 1. In this section, we shall apply the sequential graphic-iteration scheme developed in Section 3
to complete the justification for the existence of snapback repellers for (4.1).
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Fig. 3. (a) Configuration satisfying (PC-1-a). (b) Configuration satisfying (PC-2-a).

Let us recall the formulation in [6]. Consider first the single-neuron map: f (ξ) = αξ + wgc(ξ) + γ , for ξ ∈ R, where
α, w, c, γ ∈ R. The following two sets of conditions for parameters (ε,α, w, c, γ ), labelled by (PC-1-) and (PC-2-), were
adopted for the designated configurations of f ; firstly,

w > 0,

(
1 + α + γ

4ε

)
< 0, 4ε

(
−1 + α − γ

4ε

)
+ w > 0, (PC-1-a)

w < 0,

(
−1 + α − γ

4ε

)
> 0, 4ε

(
1 + α + γ

4ε

)
+ w < 0. (PC-2-a)

It was shown in Lemma 3.1 of [6] that under (PC-1-a), there exist p1, p2, p3, p4 with p1 > p2 > p4 > p3 such that
f ′(ξ) > 1 + (

γ
4ε ) for p4 < ξ < p2, f ′(ξ) < −1 − (

γ
4ε ) for ξ > p1 and ξ < p3, and under (PC-2-a), there exist p1, p2, p3, p4

with p2 > p1 > p3 > p4 such that f ′(ξ) < −1 − (
γ
4ε ) for p3 < ξ < p1, f ′(ξ) > 1 + (

γ
4ε ) for ξ > p2 and ξ < p4, cf. Fig. 3.

Accordingly, R can be partitioned by these points, namely,

Ω̃ l := {ξ ∈ R | ξ � p3}, Ω̃m := {ξ ∈ R | p4 � ξ � p2}, Ω̃r := {ξ ∈ R | ξ � p1}, (4.2)

Ω̃ l := {ξ ∈ R | ξ � p4}, Ω̃m := {ξ ∈ R | p3 � ξ � p1}, Ω̃r := {ξ ∈ R | ξ � p2}, (4.3)

corresponding to conditions (PC-1-a) and (PC-2-a), respectively. Herein, “l”, “m”, and “r” mean “left”, “middle”, and “right”
respectively. For fixed α, w , 0 < c < 1, and γ > 0, we define f̂ (ξ) = αξ + wgc(ξ) + γ , f̌ (ξ) = αξ + wgc(ξ) − γ , fh(ξ) =
αξ + wgc(ξ) + h, for −γ � h � γ . Further parameter conditions for the existence of fixed points for fh were formulated as
follows:

gc(p1) >
1 − α

w
p1 + γ

w
, gc(p3) <

1 − α

w
p3 − γ

w
, (PC-1-b)

gc(p2) >
1 − α

w
p2 − γ

w
, gc(p4) <

1 − α

w
p4 + γ

w
. (PC-2-b)

Let f̂ −1,l(η), f̂ −1,m(η), f̂ −1,r(η) represent the preimages of η lying in Ω̃ l , Ω̃m, Ω̃r respectively, under f̂ ; x̂l , x̂m, x̂r represent
the fixed points of f̂ lying in Ω̃ l , Ω̃m, Ω̃r respectively. Similar notations are designed for f̌ .

The following conditions allow us to find the preimages of fixed points of fh in designated regions:

f̌ −1,l(x̌m)
> max

{
f̂ (p3), f̂ (p4)

}
, (PC-1-c(i))

f̂ −1,r(x̂m)
< min

{
f̌ (p1), f̌ (p2)

}
, (PC-1-c(ii))

f̂ −1,m(
x̂l) < min

{
f̌ (p3), f̌ (p4)

}
, (PC-2-c(i))

f̌ −1,m(
x̌r) > max

{
f̂ (p1), f̂ (p2)

}
, (PC-2-c(ii))

f̂ −1,m(
f̂ −1,l(x̌m))

< p1, f̌ −1,m(
f̂ −1,m(

f̂ −1,l(x̌m)))
> p3, (PC-2-c(iii))

f̌ −1,m(
f̌ −1,r(x̂m))

> p3, f̂ −1,m(
f̌ −1,m(

f̌ −1,r(x̂m)))
< p1. (PC-2-c(iv))
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Now, we come back to the n-dimensional map F . The following upper and lower maps for each component Fi in (4.1) were
employed in [6]: f̂ i(ξ) = αξ + wii gci (ξ) + γi and f̌ i(ξ) = αξ + wii gci (ξ) − γi , for ξ ∈ R

1, where γi is a number greater than∑n
j=1, j �=i |wij| + |di |, for each i. Indeed, for every i = 1, . . . ,n, f̌ i(x′

i) � Fi(x′) � f̂ i(x′
i), for all x′ = (x′

1, . . . , x′
n) ∈ R

n .
In this presentation, we adopt the following refined upper and lower maps for each component Fi :

f̂ i,(0)(ξ) := sup
{

Fi
(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
: x′

j ∈ R
1, j ∈ {1, . . . ,n}/{i}}

= αξ + wii gci (ξ) + B̂ i,(0) + di, ξ ∈ R
1, (4.4)

f̌ i,(0)(ξ) := inf
{

Fi
(
x′

1, . . . , x′
i−1, ξ, x′

i+1, . . . , x′
n

)
: x′

j ∈ R
1, j ∈ {1, . . . ,n}/{i}}

= αξ + wii gci (ξ) + B̌ i,(0) + di, ξ ∈ R
1, (4.5)

where B̂ i,(0) := ∑n
j=1, j �=i supξ∈R{wij g0(ξ)}, and B̌ i,(0) := ∑n

j=1, j �=i infξ∈R{wij g0(ξ)}. Notably, conditions (PC-1-c) and
(PC-2-c) will be considered for the upper and lower maps (4.4), (4.5) for each i-component. Indeed, for every i = 1, . . . ,n,
we have f̌ i(x′

i) � f̌ i,(0)(x′
i) � Fi(x′) � f̂ i,(0)(x′

i) � f̂ i(x′
i), for all x′ = (x′

1, . . . , x′
n) ∈ R

n .
We assume that for each i, parameters (ε,α, wii, ci, γi) satisfy either condition (PC-1-a) or (PC-2-a). Then R

n can be
partitioned by 4n points p1,i , p2,i , p3,i , p4,i , according to the above setting. For ∗ ∈ {l,m, r}, let f̂ −1,∗

i,(0)
(y) (resp. f̌ −1,∗

i,(0)
(y))

denote the preimage of y lying in region Ω̃∗
i under f̂ i,(0) (resp. f̌ i,(0)), and x̂∗

i,(0)
(resp. x̌∗

i,(0)
) is the fixed point of f̂ i,(0)

(resp. f̌ i,(0)) in region Ω̃∗
i , where the definition of Ω̃∗

i is similar to Ω̃∗ in (4.2), (4.3), for each component i. We then define
the regions:

Ω j1··· jn := Ω
j1

1 × · · · × Ω
jn

n , ji ∈ {l,m, r}, i = 1, . . . ,n,

Ω l
i := [

f̌ −1,l
i,(0)

(
x̌m

i,(0)

)
, p3,i

]
, Ωm

i := [p4,i, p2,i], Ωr
i := [

p1,i, f̂ −1,r
i,(0)

(
x̂m

i,(0)

)]
,

Ω l
i := [

x̂l
i,(0), p4,i

]
, Ωm

i := [p3,i, p1,i], Ωr
i := [

p2,i, x̌r
i,(0)

]
,

corresponding to (PC-1-a) and (PC-2-a) respectively.
In particular, if i is the index that parameters (ε,α, wii, ci, γi) satisfy condition (PC-1-a) (resp. (PC-2-a)), then

(∂ Fi/∂xi)(x) > 1 + ∑n
j=1, j �=i | ∂ Fi

∂x j
(x)| (resp. < −1 − ∑n

j=1, j �=i | ∂ Fi
∂x j

(x)|), for all x ∈ Ωm···m, and we shall denote by i ∈ I
(resp. J ) for such indices i. They correspond to the notation of index sets A and B in Section 3 respectively. Such a corre-
spondence of notation also holds for the other regions Ω j1··· jn , depending on the slopes of f̂ i,(0), f̌ i,(0) in the corresponding
ranges.

It has been shown in Theorem 4.1 of [6] that if parameters (ε,α, wii, ci, γi) satisfy either (PC-1-a, b) or (PC-2-a, b), for
i = 1, . . . ,n, then there exist 3n fixed points and each of them lies in Ω j1··· jn respectively. In addition, all these 3n fixed
points are repelling and F is one-to-one on each Ω j1··· jn , ji ∈ {l,m, r}, since (3.2) holds for each Ω j1··· jn . However, it is not
sufficient to conclude that these fixed points are snapback repellers by employing merely the setting of upper and lower
maps. One needs to elaborate on constructing sequential upper and lower maps to locate the preimages of the fixed point,
so that these preimages converge back to the fixed point. In the following, we provide a rigorous justification to show
that the fixed point in the middle region Ωm···m is a snapback repeller through constructing a homoclinic orbit with the
sequential graphic-iteration scheme. The repellers in other regions can be treated similarly.

We denote this fixed point in region Ωm···m by x = (x1, . . . , xn) in the following discussion. We further introduce the
following notations:

Lm
i = max

{
g′

0(ξ): ξ ∈ Ωm
i

}
, Lm

max := max
{

Lm
i : 1 � i � n

}
,

L̃m
i = max

{
α + wii g′

ci
(ξ): ξ ∈ Ωm

i

}
, L̃m

max(J ) = max
{

L̃m
i

∣∣ i ∈ J
}
,

l̃mi = min
{
α + wii g′

ci
(ξ): ξ ∈ Ωm

i

}
, l̃mmin(I) = min

{
l̃mi

∣∣ i ∈ I
}
.

The following assumptions will be used to show Ωm
i,(k)

→ {xi} as k → ∞, for all i:

1 + Lm
max

n∑
j=1, j �=i

|wij| < l̃mmin(I), (PC-1-d)

L̃m
max(J ) < −1 − Lm

max

n∑
j=1, j �=i

|wij|. (PC-2-d)

Theorem 4.1. Assume that the parameters (ε,α, wii, ci, γi) satisfy either conditions (PC-1-a, b, c(i), c(ii), d) or (PC-2-a, b, c(iii),
c(iv), d). Then, there exist homoclinic orbits for the fixed point x lying in Ωm···m and x is a snapback repeller.
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Fig. 4. Configuration for ai,(k) and bi,(k) , k = 0,1, for parameters (ε,α, wii , ci , γi) satisfies (PC-1-a).

Proof. We divide the proof of Theorem 4.1 into steps (I)–(VII) which correspond to the ones in the sequential graphic-
iteration scheme in Section 3. To shorten the presentation, we set wii = w , for all i = 1, . . . ,n and illustrate the arguments
only for the case that parameters (ε,α, wii, ci, γi) satisfy (PC-1-a, b, c, d) for every i. In addition, Ω , Ω(k) , Ωi , Ωi,(k) , f̂ −1

i,(k)
,

and f̌ −1
i,(k)

in Section 3 are Ωm···m, Ωm···m
(k)

, Ωm
i , Ωm

i,(k)
, f̂ −1,m

i,(k)
, and f̌ −1,m

i,(k)
herein, respectively, for all k � 1; f̂ −1,m

i,(k)
(y) (resp.

f̌ −1,m
i,(k)

(y)) represents the preimage of y lying in region Ωm
i under f̂ i,(k) (resp. f̌ i,(k)), for all k � 1.

For each x′ = (x′
1, . . . , x′

n) ∈ R
n and i = 1, . . . ,n, we define f̃x′,i,(0)(ξ) = αξ + wgci (ξ)+∑n

j=1, j �=i wij g0(x′
j)+di , for ξ ∈ R

n .

Subsequently f̌ i,(0)(ξ) � f̃x′,i,(0)(ξ) � f̂ i,(0)(ξ), for all ξ ∈ R, i = 1, . . . ,n, where f̂ i,(0), f̌ i,(0) are defined in (4.4), (4.5). Now

we set ai,(0) := f̌ −1,l
i,(0)

(x̌m
i,(0)

), bi,(0) := f̂ −1,r
i,(0)

(x̂m
i,(0)

), for all i. These initial settings will be used to locate the first preimage

point x−1 of x, cf. Fig. 4.
(I) Locating the first preimage point x−1 of x with x−1 /∈ ∏n

i=1 Ωm
i : Consider a label set { j1, . . . , jn}, ji ∈ {r, l}. By

(PC-1-c(i), c(ii)), as xi ∈ Ωm
i ∩ [p4,i, x̌m

i,(0)
] ⊂ [ f̌ −1,l

i,(0)
(x̌m

i,(0)
), x̌m

i,(0)
] (resp. Ωm

i ∩ [x̂m
i,(0)

, p2,i] ⊂ [x̂m
i,(0)

, f̂ −1,r
i,(0)

(x̂m
i,(0)

)]), for each

(x′
1, . . . , x′

n) ∈ Ω j1··· jn , there exists ξi ∈ Ω l
i (resp. Ωr

i ) if ji = l (resp. r) such that xi = αξi + wgci (ξi)+∑n
j=1, j �=i wij g0(x′

j)+di ,

for all i. Next, we define functions H(0) and G(0) as replacing Ωi,(1) , x−1
i , and ξi,(1) by Ω

ji
i , xi , and ξi , respectively, in (3.11),

(3.12), and (3.13). Therefore, according to Brouwer’s fixed point theorem, there exists a first preimage x−1 = (x−1
1 , . . . , x−1

n ),
where x−1

i can be chosen in Ω l
i or Ωr

i , for each i = 1, . . . ,n. That is, the preimage x−1 /∈ ∏n
i=1 Ωm

i . Moreover, x−1
i satisfies

(3.6), for all i, and ai,(0) , bi,(0) satisfy [ai,(0),bi,(0)] ⊇ Ωm
i , (3.9), due to (PC-1-c(i), c(ii)).

(II)–(V): By (PC-1-b), f̂ i,(1) and f̌ i,(1) both have fixed point in Ωm
i , for all i = 1, . . . ,n, and all conditions in

steps (II)–(V) of Section 3 are satisfied, by (PC-1-b, c(i), c(ii)). For this TCNN map, we formulate f̂ i,(k)(ξ) := αξ +
wgci (ξ) + B̂ i,(k) + di and f̌ i,(k)(ξ) := αξ + wgci (ξ) + B̌ i,(k) + di , where B̂ i,(k) := ∑n

j=1, j �=i maxξ∈Ωm
j,(k−1)

{wij g0(ξ)}, B̌ i,(k) :=∑n
j=1, j �=i minξ∈Ωm

j,(k−1)
{wij g0(ξ)}, for k � 2, i = 1, . . . ,n. The scenario is similar to Fig. 4 which is drawn for k = 0,1. There-

fore, we can construct a sequence of nested domains
∏n

i=1 Ωi,(k) , with
∏n

i=1 Ωi,(k) ⊆ ∏n
i=1 Ωi,(k−1) , k � 2. In addition, we

can construct an orbit {x−k}∞k=1, such that x−k ∈ ∏n
i=1 Ωm

i,(k−1)
, for all k � 2, and show that x ∈ Ωm···m

(k)
, for all k � 1.

(VI) Convergence of x−k to x, as k → ∞: We shall show that ‖Ωm
i,(k)

‖ → 0, as k → ∞, for all i. This is where condition
(PC-1-d) is needed. Notably, for all i = 1, . . . ,n, k ∈ N,

f̂ i,(k)(ai,(k)) = αai,(k) + wgci (ai,(k)) +
[

n∑
j=1, j �=i

max
x j∈Ωm

j,(k−1)

{
wij g0(x j)

}] + di = ai,(k−1), (4.6)

f̌ i,(k)(bi,(k)) = αbi,(k) + wgci (bi,(k)) +
[

n∑
min

x j∈Ωm
j,(k−1)

{
wij g0(x j)

}] + di = bi,(k−1). (4.7)

j=1, j �=i
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There exist σi,(k) ∈ [ai,(k),bi,(k)], and σ j,(k−1) ∈ [a j,(k−1),b j,(k−1)] so that the difference of (4.6) and (4.7) yields

Xi,(k) =
n∑

j=1

βi, j,(k−1)

α + wg′
ci
(σi,(k))

X j,(k−1), for i = 1, . . . ,n, k ∈ N,

where Xi,(k) := bi,(k) − ai,(k) � 0, βi, j,(k−1) = |wij|g′
0(σ j,(k−1)) if j �= i, = 1 if j = i, by the Mean Value Theorem. Now, let

M(k) := max{Xi,(k) | i = 1, . . . ,n} = Xi′k,(k) , for some i′k ∈ {1, . . . ,n}. Since βi, j,(k−1) � 0 and α + wg′
ci
(σi,(k)) > 1, for all i, j ∈

{1, . . . ,n}, we thus have

M(k) �
n∑

j=1

βi′k, j,(k−1)

α + wg′
ci′k

(σi′k,(k))
M(k−1),

for all k � 1. Therefore, M(k) � RM(k−1) , if we set

R := sup

{
n∑

j=1

βi, j,(k−1)

α + wg′
ci
(σi,(k))

: i = 1, . . . ,n, k ∈ N

}
.

The assertion will hold if 0 � R < 1. Let us elaborate. It is obvious that R � 0. Next, for every i = 1, . . . ,n, k ∈ N, we
compute

n∑
j=1

βi, j,(k−1)

α + wg′
ci
(σi,(k))

� 1

l̃mmin(I)

(
1 + Lm

max

n∑
j=1, j �=i

|wij|
)

< 1,

by (PC-1-d) and l̃mmin(I)
� 1. Therefore, we conclude that bi,(k) − ai,(k) → 0 as k → ∞, for all i = 1, . . . ,n.

(VII) x is a snapback repeller: As (PC-1-a) implies that (3.2) holds in
∏n

i=1 Ω
ji

i , ji ∈ {l,m, r}, we conclude det(DF(x)) �= 0,

for any x ∈ ∏n
i=1 Ω

ji
i , ji ∈ {l,m, r}. Moreover, we have shown that there exist a homoclinic orbit {x−k}∞k=1 of x, where

x−1 ∈ Ω j1··· jn , for some { j1, . . . , jn}, ji ∈ {l, r}, and x−k ∈ Ωm···m for all k � 2. Thus det(DF(x−k)) �= 0, for all k � 1. Hence,
(3.18) holds. Therefore x is a snapback repeller. �
Remark. (i) As conditions (PC-1-c) and (PC-2-c) involve preimage relations, they can be replaced by the following direct
relations, as remarked in Lemma 3.2 of [6]:

f̌
(

f̂ (p3)
)
> p2, f̌

(
f̂ (p4)

)
> p2, (PC-1-e(i))

f̂
(

f̌ (p1)
)
< p4, f̂

(
f̌ (p2)

)
< p4, (PC-1-e(ii))

gc
(

f̂ (p1)
)
>

1 − α

w
f̂ (p1) − γ

w
, f̂ (p1) < p3, min

{
f̌ (p3), f̌ (p4)

}
> p1, (PC-2-e(i))

gc
(

f̌ (p3)
)
<

1 − α

w
f̌ (p3) + γ

w
, p1 < f̌ (p3), max

{
f̂ (p1), f̂ (p2)

}
< p3, (PC-2-e(ii))

p3 > f̂
(

f̂ (p1)
)
, f̌ (p3) > p1, f̂ (p1) < p4, (PC-2-e(iii))

p1 < f̌
(

f̌ (p3)
)
, f̂ (p1) < p3, f̌ (p3) > p2. (PC-2-e(iv))

Indeed, (PC-1-e(i), e(ii)) can replace (PC-1-c(i), c(ii)), respectively, when (PC-1-a, b) hold, and (PC-2-e(i))–(PC-2-e(iv)) can
replace (PC-2-c(i))–(PC-2-c(iv)), respectively, when (PC-2-a, b) hold.

(ii) If parameters (ε,α, wii, ci, γi) satisfy condition (PC-2-a), then we set ai,(0) := f̂ −1,l
i,(0)

(x̌m
i,(0)

), bi,(0) := f̌ −1,r
i,(0)

(x̂m
i,(0)

).

Hence, by (PC-2-c(iii)) and (PC-2-c(iv)), ai,(0) and bi,(0) satisfy [ai,(0),bi,(0)] ⊇ Ωm
i , and (3.10).

(iii) More generally, if we can construct preimages {x−k}−�+1
k=1 , such that xi

−�+1 ∈ Ω l
i (resp. Ωr

i ), then when parameters
(ε,α, wii, ci, γi) satisfy (PC-1-a, b, c(i)) (resp. (PC-1-a, b, c(ii))) or (PC-2-a, b, c(iii)) (resp. (PC-2-a, b, c(iv))), we can construct
x−�

i ∈ Ωm
i .

(iv) We can consider the other region
∏n

i=1 Ω
ji

i , ji ∈ {r,m, l} and modify the conditions (PC-1-c, d), (PC-2-c, d), so that
Theorem 4.1 is valid for repeller in these regions.
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5. Numerical examples

In this section, two numerical examples are presented. We employ the estimation of repelling neighborhood for the re-
peller introduced in Section 2 and the sequential graphic-iteration scheme in Section 3 to investigate the chaotic behaviors
in a chaotic neural network and a discrete-time predator–prey model. In the examples, we use the software Mathemat-
ica with 16-digit working-precision to examine the conditions of the theory in Sections 2–4 for the considered maps. In
addition, the “Interval Newton Computing” is adopted when rigorous computation precision is required.

Example 5.1. Consider the two-dimensional map (4.1), F = (F1, F2) where

F1(x1, x2) = αx1 + w11 gc1(x1) + w12 g0(x2) + d1,

F2(x1, x2) = αx2 + w22 gc2(x2) + w21 g0(x1) + d2.

Case I. F with parameters ε = 1, c1 = c2 = 0.5, α = −2.5, w11 = w22 = 50, w12 = 0.1, w21 = 0.2, d1 = −0.05, d2 = −0.1.

We take γ1 = 1 > |w12| + |d1| = 0.15, γ2 = 1 > |w21| + |d2| = 0.3, and p3,i = −3.637, p4,i = −2.419, p2,i = 2.419,
p1,i = 3.637, i = 1,2. Set Ωmm = ∏2

i=1 Ωm
i , with Ωm

i = [p4,i, p2,i], i = 1,2. Computations show that Fi satisfies
(PC-1-a, b, d, e(i), e(ii)), for i = 1,2, and x = (0,0) is a repelling fixed point of F lying in Ωmm. Moreover, we com-
pute x−1 ≈ (10.019,10.039) /∈ Ωmm, x−2 ≈ (1.134,1.133) ∈ Ωmm

(1) ≈ [−1.144,1.144] × [−1.154,1.154] ⊂ Ωmm, x−3 ≈
(0.113,0.113) ∈ Ωmm

(2) ≈ [−0.117,0.117] × [−0.121,0.121] ⊂ Ωmm
(1) , . . . , x−11 ≈ (1.111 × 10−9,1.084 × 10−9) ∈ Ωmm

(10) ≈
[−1.457 × 10−9,1.457 × 10−9] × [−1.723 × 10−9,1.723 × 10−9] ⊂ Ωmm

(9) . Hence, by Theorem 4.1, x is a snapback repeller.
Thus, map F is chaotic.

Case II. F with parameters ε = 1, c1 = c2 = 0.5, α = −4, w11 = w22 = 150, w12 = 6, w21 = 2, d1 = −3, and d2 = −1.

We take γ1 = 9.1, γ2 = 3.1. Similar to Case I, we take p3,1 = −5.323, p4,1 = −2.921, p2,1 = 2.921, p1,1 = 5.323, p3,2 =
−4.181, p4,2 = −3.175, p2,2 = 3.175, p1,2 = 4.181. Then, as in Case I, Fi also satisfies (PC-1-a, b, e(i), e(ii)), and x = (0,0)

is a repelling fixed point of F lying in Ωmm. However, the parameters do not satisfy (PC-1-d). Hence, we shall use the
expanding condition (2.6) to find a repelling neighborhood B1.07(x), due to αr − r

√
2βr > 1, if 0 � r � 1.07.

We replace Ωmm by Ω̃mm := ∏2
i=1 Ω̃m

i ⊆ B1.07(x), with Ω̃m
i = [p̃4,i, p̃2,i] = [−0.75,0.75], for i = 1,2. Moreover, in

the new region Ω̃mm, Fi still satisfies (PC-1-a, b, e(i), e(ii)), for i = 1,2. Hence, we can construct preimages {x−k}, with
x−1 /∈ Ω̃mm, x−2 ∈ Ω̃mm, by steps (I)–(II) of Section 4. Furthermore, since Ω̃mm is a repelling neighborhood of x, we auto-
matically have x−k → x, as k → ∞. In fact, the computation shows x−1 ≈ (19.500,19.000) /∈ Ω̃mm, x−2 ≈ (0.574,0.576) ∈
Ω̃mm, . . . , x−11 ≈ (6.711 × 10−15,9.703 × 10−15). Hence, the fixed point x = (0,0) is a snapback repeller and the map F
is chaotic.

Example 5.2. We consider the discrete-time predator–prey system F = (F1, F2) with

F (x1, x2) = (
F1(x1, x2), F2(x1, x2)

) = (
x1eb(1−x1)−ax2 , x1

(
1 − e−ax2

))
, (5.1)

where a = 5 and b = 3. It can be computed that map (5.1) has three fixed points (0,0), (0.4214296448,0.3471422131),
and (1,0). Herein, we shall estimate the repelling neighborhood for the repelling fixed point x = (1,0), as (2.1) only holds
for this fixed point. Our methodology can be further extended to treat the other fixed points of the map. In respecting

(2.2), (2.3) and taking s1 =
√

27 − √
629 ∼= 1.38569, and r = 0.009, we compute s1 − ηr > 1. Hence, B0.009(x) is a repelling

neighborhood of the fixed point x.
Next, we find numerical preimages of x: x−1

q = (x−1
q ,0), . . . , x−10

q = (x−10
q ,0) with x−1

q = 0.0595202092926404, x−10
q =

1.0045817501837184, and x−10
q ∈ B0.009(x). We can actually use the Multi-Shooting Method and Interval Newton Computing

Method to show that there exists a true orbit {x−1, . . . ,x−10} near the numerical orbit {x−1
q , . . . ,x−10

q }, with x−10 ∈ B0.009(x),

F (x−k−1) = x−k , k = 1,2, . . . ,9, F (x−1) = x, and det(DF(x−k)) �= 0, for 1 � k � 10. Thus, if we take x−10 as the snapback
point, then it lies in the repelling neighborhood of x, according to Proposition 2.2. Thus, x is a snapback repeller, and F is
chaotic.

6. Conclusions

We have derived two methodologies to establish the existence of snapback repeller, hence chaos, for multi-dimensional
maps, under Marotto’s theorem. The first one is to estimate the radius of repelling neighborhood for a repelling fixed point,
under the Euclidean norm. The first-order as well as the second-order formulations have been derived for the estimation.
These estimates are essential and useful in various computations involving the local property of the repeller. Secondly, we
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have proposed a sequential graphic-iteration scheme to construct the homoclinic orbit for a repeller. The scheme employs
local structure and iterated upper and lower bounds for each component of the map to track the preimages of a repeller.
The application of the scheme to a chaotic neural network has been illustrated. We also demonstrated the use of the
estimate for the repelling neighborhood in this chaotic neural network and a predator–prey model. The conditions for the
present theories are all computable numerically and can be combined with other computation techniques such as Interval
Computing, as demonstrated in our examples. The present investigation has reconfirmed the existence of snapback repellers
in several works in the literature, under valid conditions. The formulations along with their extensions provide effective
approaches to confirm the existence of snapback repellers and facilitate the use of Marotto’s theorem in other systems in
the literature.
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