
ELSEVIER Information and Software Technology 38 (1996) 103-l 10 

DITSE: an experimental distributed database system 
Cheng-Yao Ni, Shyan-Ming Yuan* 

Department of Computer and Information Science, National Chiuo Tung Universiv, Hsinchu, Taiwan, Republic of China 

Abstract 

DITSE (Distributed Transaction Services Environment) is a distributed heterogeneous multi-database system which provides SQL to 
allow users to transparently access multiple databases on different machines. It also provides OLTP (On-Line Transaction Processing) 
services which contribute to develop reliable distributed applications. DITSE follows the most popular commit protocol, two-phase commit 
protocol, to reach an agreement between different transaction managers. In this paper, we describe the architecture and some important 
features of DITSE. Relevant design issues are also addressed. 

Kewvrds: Transaction; DBMS; Concurrency control; SQL; Client-server 

1. Introduction 

The basic premise of a distributed database system is to 

make data stores spread over a collection of machines in a 
wide or local area network such that they appear to the 
users as a single machine. Although this premise is really 
attractive, there are many technical problems behind it. 
According to Stonebraker [ 1 ] , a distributed database system 
must have the following transparencies: location trans- 
parency , performance transparency, copy transparency, 
transaction transparency, fragment transparency, schema 
change transparency, and local DBMS transparency. Many 
research prototypes have been published since 197Os, such 
as SDD- 1, Distributed INGRES, and R* [ 1 ] . Unfortunately, 
these prototypes cannot meet all these transparencies; 
neither can our system. The goal of our system is to try 
to build a distributed database system in an alternative 
direction, not to beat other prototypes. 

What is the difference between our system and others? 
Normally, a database system, whether centralized or dis- 
tributed, is built on top of a file system or raw disk. However, 
we do not build it from scratch. Instead, we build it on top 
of a distributed transactional file system (DTFS) [2] . 
DTFS is a distributed file system which supports distributed 
transaction facilities, including concurrency control and 
recovery. It is standalone and provides an OLTP [ 31 library. 
A client program links the library and then it can access 

files spread over DTFS. Actually, you will see in the latter 
that our database server is also a client of DTFS. The 
benefit of separating DTFS from database systems is that 
we offer transaction services at two different levels-file 
level and database level. To the best of our knowledge, no 

*Corresponding author. This paper is a partial result of the project 
No. 183001 conducted by the ITRI under sponsorship of the Minister of 
Economic Affairs. ROC. 

0950.5849/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved 
SSDI 0950.5849(95)01050-5 

system uses this approach. We think this is an interesting 

experiment, which is why we call DITSE an experimental 
distributed database system. 

There are many different types of distributed database 
system (DDBMS). To avoid ambiguity, we classify DDBMS 
more formally. DDBMS can be classified in different ways 
[4,5] . In this paper, we follow the classification in Ozsu 
and Valduriez [4] . DDBMS can be classified with respect 
to: (1) the autonomy of local systems; (2) distribution; and 
(3) their heterogeneity. Autonomy refers to the distribution 
of control, not of data. It indicates the degree to which 
individual database systems can operate independently. The 
distribution dimension of the taxonomy deals with data. 
Heterogeneity may occur in various forms, ranging from 
hardware heterogeneity to variations in data models. 

From this classification, we find that our system is a 
distributed heterogeneous multidatabase system [ 6,7] 
Currently, we have integrated one heterogeneous DBMS- 
Sybase SQL server. There is no technical problem to in- 
tegrate other DBMS. However, we haven’t done it yet 
owing to resource constraints. To integrate a heterogeneous 
DBMS, we built a front-end software (also termed agent or 
gateway) which operates on top of each local DBMS. 
Different DBMSs use different gateways. The advantage of 
this front-end approach is that each individual DBMS does 
not need to make any change. Moreover, this approach 
makes it possible to gain access to a variety of DBMSs in 
a uniform way. By the way, a common high level language 

(SQL) is provided to prevent heterogeneous query languages 
from annoying users. 

This paper is organized in five sections. In the next section, 
we take an overview of the DITSE. The following section 
describes some design issues relevant to DDBMS and the 
choices we have made. The next section explains some 
technical details, algorithms, and problems that we have 
met, and finally, we make a conclusion in the last section. 



104 C.-Y. Ni, S.-M. Yuanllnformation and Sojware Technology 38 (19%) 103-110 

2. System architecture 

The overview of the DITSE system architecture is shown 
in Fig. 1. An arrow is a communication link, either by 
sockets or by remote procedure calls. An ellipse represents 
a process. In the following,. we first take a glance at each 
component of our system. 

2.1. Distributed Transactional File System (DTFS) 

The DTFS consists of the OLTP library and a set of 
servers. Its architecture is shown in Fig. 2. There is only 
one name server (NS) in the DTFS. The name server is 
analogous to the directory assistance operator in the telephone 
system. Just as in the telephone system, it is essential that 

: the 
the 

(1) 

address of the NS is well known. Name server provides 
following services: 

Registration. Every transaction manager (TM) must 
register themselves to the name server. 
Query address. SQL clients can query the name server 
to know where a specific table is. 
Location allocation. When an SQL server creates a new 
table, it asks the NS to assign a location to place it. 
Because every TM has registered itself, the NS has the 
configuration of the whole system, such as the number 
of disks and where these disks are located. Hence, it 
can find a way to balance the capacity of each disk. 
This can prevent the overrun of some TMs while the 

(2) 

(3) 

Distributed Transactional File System 

Fig. 1. The overview of the DITSE s!ructure. 

site A 

-1 

others are idle. Thus, the transaction throughput may 
be increased. 

In addition, there is one lock manager (LM) and one TM 
in each machine. The LM handles concurrency control. 
As its name suggests, it uses locking-based concurrency 
control algorithm to synchronize all local transactions. 
Upon receiving a transaction request, the TM generates 
(forks) a process at each transaction. It depends on the type 
of the request to generate either a coordinator process or a 
cohort process. When a TM receives an OpenTransaction 
operation, it creates a new transaction and generates a 
coordinator process to coordinate the transaction. If a TM 
receives an access operation of an unseen transaction, it 
generates a cohort process to handle that operation and all 
subsequent operations of the transaction. Thus, any trans- 
action has only one cohort process at one site, but it may 
have several cohort processes at different sites at the same 
time. A coordinator and all its cohorts use two-phase commit 
protocol to ensure atomicity property of the transaction. Also, 
a cohort communicates with local LM via message queues to 
acquire lock permissions before accessing the local database. 
The message queue is one of the System V IPCs in UNIX. 

2.2. SQL server 

An SQL server is a LAN-based relational database server 
that stores client data and provides other services such as 
data update and retrieval. It provides database engine that 
processes SQL statements submitted by various clients. In 
general, a database server should also provide other services 
such as concurrency control and transaction processing. 
However, in DITSE, concurrency control is handled by 
LMs and transaction processing is handled by TMs. There 
can be more than one SQL server in DITSE. A user can 
query tables on different SQL servers transparently. 

2.3. Sybase Agent 

Different DBMSs may differ in several aspects. For example, 

site B 

disk 

Fig. 2. Distributed transactional file system. 



C.-Y. Ni, S.-M. Yuan I Information and Sofrware Technology 38 (I 9%) 103-l 10 105 

they may use different data models, query languages, or 

data types. Thus, a local DBMS may not understand the 

SQL commands submitted by our SQL clients. To solve this 

problem, we build an agent on top of each local DBMS to 
transform our clients’ SQL commands to the native SQL 

commands of the DBMS. The only task of an agent is the 

transformation. Our Sybase agent is implemented by the 
Sybase’s DB-Library. It is a set of C routines and macros 

that allow users to send Transact-SQL commands to Sybase 

SQL servers. Since both Sybase and our SQL server are 
relational DBMSs, only data type transformation and some 

query language transformation are needed for our Sybase 

agent. 

3. Design issues 

3. I. Distributed query processing 

In traditional database systems, a major aim is to hide 
structural details of the data from the users as much as 

possible. In distributed database systems, one of the main 
goals is that the distribution details should also be hidden. 

To meet these requirements, database systems often 

provide a high level query language. The main function of 

a query processor is to transform this high-level query into 

equivalent lower-level one. The most important module of 

a query processor is query optimization. Query optimizer 

tries to optimize a cost function. In distributed database 

systems, this cost function should be a weighted combina- 

tion of CPU, l/O, and communications costs. However, for 
simplification, we make an assumption that communication 
cost is a dominant factor. 

There are two types of distributed query optimization: 
join and semijoin based algorithms. Semijoin operator [ 81 

can reduce network transfer cost if it is beneficial. A 

semijoin operator is beneficial only if the cost of projecting 
and sending join attributes to the other site is less than the 

cost of sending the whole operand relation and doing the 

actual join. Finding a beneficial semijoin ordering must 

count on database statistics. Maintaining database statistics 
is a burden and the precision of these statistics is still a 
question. Therefore we use join operator. 

Fig. 3 shows the layering scheme of our distributed 
query processing. Some implementation details can be 

found in the section below headed ‘Implementation’. The 
first layer translates the distributed query into an inter- 
mediate language. Then global optimization tries to find an 

execution plan which can minimize network-transfer cost. 
The last layer is performed by all the sites which have 

relations involved in the distributed query. Each subquery 
is then optimized by the traditional query optimization 
algorithm used in the centralized DBMS. 

3.2. Concurrency control 

A simple and elegant locking based algorithm to ensure 

Distributed Query 

control Intermediate Language 
site 

global optimization 

1 
Global Optimized subquety 

j,,“l 

Fig. 3. Layering scheme for distributed query processing. 

transaction serializability is two-phase locking (2PL) [ 91 . 
Our concurrency control algorithm, which is called dis- 

tributed strict two phase locking algorithm, is one variation 

of 2PL. Here, distributed means that lock management duty 

is shared by all sites of the network, and strict implies that 
all locks hold by one transaction are released together as the 

transaction terminates (commits or aborts). 

Table 1 shows lock compatibility followed by lock 

manager. It was first proposed in Gifford [lo]. In general, 

a read lock prevents any other transaction from writing the 
locked data item. This reduces concurrency more than is 
necessary. Since we use intention list as the database 

recovery scheme, a transaction that only reads an item 

(acquires a read lock) should allow another transaction 
with its tentative writes (acquire a I-write lock) until the 
writing transaction commits. Thus, read lock is compatible 

with I-write lock. When the transaction is committing, the 

I-write lock is converted to a commit lock. Commit lock 

is incompatible with any other locks. 

3.3. Deadlock management 

As we know, any locking-based concurrency control 

algorithm may result in deadlock. Deadlock may occur in 
DITSE when transactions wait for each other. There are 
three well-known methods for handling deadlocks: preven- 

tion, avoidance, and detection-and-resolution. Detection- 

Table 1 
Lock compatibility 

Acquired lock 

None 
Read 
I-write 
Commit 

Read 

OK 
OK 
OK 
WAIT 

Lock to be acquired 

l-write Commit 

OK OK 
OK WAIT 
WAIT WAIT 
WAIT WAIT 



106 C.-Y. Ni, S.-M. Yaanllnformarion and Sofrware Technology 38 (19%) 103-110 

and-resolution is the most popular and best-studied manage- 
ment method. Detection is done by studying the global 
wait-for graph (GWFG). Resolution of deadlock is typically 
done by selecting one or more victim transaction(s) to be 
preempted and aborted in order to break the cycles in the 
GWFG. The main difficulty of deadlock detection is to 
gather the GWFG for the whole system. For this considera- 
tion, we use a simple deadlock avoidance method which 
bases on a time-out protocol. This method avoids the trouble 
of assigning a unique time stamp to each transaction and 
comparing time stamps of transactions in run-time. Because 
we do not use the GWFG, this method seems to abort more 
transactions than are actually needed to be aborted. Imple- 
mentation details can be found below under ‘Lock manager’. 

3.4. Object naming 

To reference data objects at multiple sites, each data object 
must be uniquely named. One way to guarantee that all 
names are unique is to use a name server that provides a 
global name space. Alternatively, the name space can be 
partitioned by sites so that each site can generate unique 
names without conflict. Although using a name server 
reduces site autonomy, it does increase location trans- 
parency. Without a name server, one must specify table 
location when he or she refers to this table. R* and 
ORACLE use synonyms to solve this problem [ 111. DBA 
must create a synonym for each remote table. Even though 
synonyms can avoid table location to be exposed to users 
or application programs, DBA still have to know where the 
remote table is. Besides, if programmers use the OLTP 
library to develop their own applications, nobody can 
create synonyms for them. For these considerations, we use 
a name server to achieve location transparency. 

4. Implementation 

4.1. The OLTP library 

The OLTP library provides distributed, transaction-semantic 
file access operations. It communicates with the transaction 
manager via socket interface. The syntax of each function 
provided by the OLTP library is the same as corresponding 
traditional UNIX file system call. So programmers who are 
familiar with UNIX would not feel strange. Programmers can 
transparently access any file spread over DTFS. When a pro- 
grammer opens a file, the OLTP library use the file name 
and the user name to query the name server. Name server 
checks its database and then answers where the file is. Also, 
the OLTP library guarantees that all of the file operations 
in a transaction will be atomic and serializable. The follow- 
ing are the functions provided by the OLTP library: 

(1) Open_Truns: open a new transaction 
(2) CZose_Truns: close a transaction 
(3) r-open: open a file, like UNIX open system call 
(4) t-close: close a file, like UNIX close system call 

(4) t-read: read data, like UNIX read system call 
(5) t-write: write data, like UNIX write system call 
(6) t_lseek: move file pointer, like UNIX [seek 

system call 

The OLTP library is implemented by means of transaction 
service operations. Implementation details of transaction 
service operation can be found in Yuan et al. [2] . 

4.2. Client-server database architecture 

The deficiencies of file-server technology have led to the 
development of client-server database management system 
[ 121. Client-server configurations attempt to make the best 
use of both hardware and software resources by separating 
functions into two parts: the front-end portion running on the 
client computer, and the back-end database server, which 
stores and manages data. Before we look at any detail of our 
client-server database architecture, let us review general 
architecture of centralized DBMSs as shown in Fig. 4. There 
is no general guideline about how to divide these layers. To 
adapt this central DBMS architecture to client-server en- 
vironment, an intuitive approach is that the client handles 
the first two layers, and the server handles the other layers. 
Also, recall that in the previous section we mentioned that 
our system based on the OLTP library and the OLTP library 
is a client of the transaction manager. The architecture of 
our client-server database system is shown in Fig. 5. 

4.3. SQL client 

One of the responsibilities of an SQL client is handling user 

scanner & parser I 

access method calls 
access method 

file system calls 

file system 

Fig. 4. Layers of traditional DBMS. 

Fig. 5. Our client-server database system architecture. 



C.-Y. Ni, S.-M. Yuanllnfonnation and Sojware Technology 38 (19%) 103-110 107 

interactions. We provide a graphic user interface (GUI) 

to interact with users. This interface is implemented by 

XView (OPEN LOOK toolkits for X11) [ 131. Whenever 

GUI receives an SQL program submitted by the user, it first 
calls the scanner and parser module. The parser module will 
check syntax of the SQL program. If there is no syntax 
error, it translates the SQL program to an intermediate form 

to facilitate further processing by the global query optimizer. 

of the query processing. In this example, we consider three 

relations, namely, relation S, P, and SP, located at site S 1, 

S2, and S3 respectively. Relation S has three attributes, 
s# , sname, and city. Relation P has two attributes: p# and 
pname. Relation SP has three attributes: s# , p# and quality. 
We assume that an SQL query is submitted at site S4 as 

follows: 

select S.sname, P.pname, SP.quality 
from S,P,SP 

4.4. Global query optimization algorithm where S.s# = SP.s# and SP.p# = P.p# and 
S.city = ‘London’ and SP.quality > 100 

Most query optimization algorithms except R* algorithm 

[ 141, which makes an exhaustive search on all join per- 

mutations, are heuristic and heavily dependent on database 
statistics. Our algorithm does not use prediction statistics. 

The following is our algorithm. 

The parser module in the SQL client translates the query 

into an intermediate language and then passes it to me global 

optimizer module. The intermediate language is as follows: 

begin 
I* phase 1: generate subqueries */ 
for each relation R involved in the query do 

generate optimized local subquery SQ for R 
size of R = retrieve(SQ) /* retrieve is a RPC */ 

endfor 
I* phase 2: find join ordering *I 
while there are more than one relation do 

for each pair of relations R and S do 
calculate cost C of joining these two relations 
if cost C less than optimal cost 0 than 0 = C 

endfor 
size of result = join(R,S) 

ATTRIBUTES 
S.sname 
P.pname 
SP.quality 

CONDITIONS 
S.city = ‘London’ 
SP.quality > 100 

JOIN 
S.s# = SP.s# 
SP.p# = P.p# 

There are three phases involved in the optimization pro- 

cess. In the first phase, the optimizer sends three optimized 

subqueries, SQ 1, SQ2 and SQ3, to site 1, site 2, and site 
3 respectively (via remote procedure calls). These sub- 
queries are as follows: /* R and S with minimum join cost */ 

/* join is a RPC */ 
remove(R) /* destroy relation R and S */ SQl: 
remove(S) I* remove is a RPC */ select S.sname, S.s# 

endwhile from S 

end 

/* phase 3: retrieve final result */ 
copy(fina1 result) 
remove(fina1 result) 

The algorithm contains three phases. Phase 1 generates 
globally optimized subqueries. Phase 2 tries to find a join 

ordering which has minimum network transmission cost. 
Phase 3, of course, retrieves final query result. 

where S.city = ‘London’; 

SQ2: 
select P.pname, P.p# 
from P; 

SQ3: 
select SP.quality, SP.s#, SP.p# 
from SP 
where SP.quality > 100; 

This algorithm is a greedy algorithm. It is similar to SDD-1 

algorithm [ 151. However, there is one important difference. 
SDD-1 algorithm is static but our algorithm is dynamic. 

Optimization can be done dynamically as the query is ex- 

ecuted or statically before executing the query. At any point 

of execution, dynamic optimization can choose the best next 

operation based on accurate knowledge of the results of the 
operation executed previously. Therefore, database statistics 
are not needed to estimate the size of intermediate results, 

thereby minimizing the probability of a bad choice. Of 

course, dynamic optimization is not perfect. The main 
shortcoming is that query optimization, an expensive task, 
must be repeated for each execution of the query. 

In the second phase, the optimizer tries to find an ‘optimal’ 

join ordering which minimizes data transfer cost. In the first 
round, it chooses to join relation SP and S into one relation, 

say RESULTO. So it sends the following commands (via 
RPC) : 

join SP and S into RESULT0 --> site 3 
remove SP --> site 3 
remove S --> site 1 

In the second round, it chooses to join RESULT0 and P into 

relation RESULT1 . Again, it sends the following commands: 

4.5. Example 

join RESULT0 and P into RESULT1 --> site 3 
remove RESULT0 --> site 3 
remove P --> site 2 

Finally, it copies RESULT1 from site 3 and then removes it: 

Here, we use a simple example to illustrate the whole flow 
copy RESULT1 
remove RESULT 1 

--> site 3 
--> site 3 



108 C. -Y. Ni, S. 44. Yuan I Information and So&are Technology 38 (I 9%) 103-I 10 

4.6. Callback procedure 

Although our query optimization algorithm can find the 
best join ordering based on the accurate table size gathered 
from phase 1, it is quite time consuming. This is because 
the remote procedure calls are synchronous. To get the 
accurate table sizes, the optimizer must block to wait for 
the retrieve remote procedure returns. That means a sub- 
query cannot be issued before the previous one has com- 
pleted. The synchronous behaviour leads phase 1 to be 
time-consuming, especially when retrieving a large relation. 
So, we must try to execute subqueries in parallel. 

To execute subqueries in parallel, the optimizer cannot 
wait to hear back from the server. To deal with this, we use 
callback procedures. Upon receiving a retrieve request, an 
SQL. server first acknowledges the request and then uses 
callback procedure to reply after it really completes the 
task. Callback procedure mechanism changes the role of 
clients and servers temporarily. After the optimizer issues 
all subqueries, it changes its role from the client to the 
server, and then waits for callback procedures. Via callback 
procedures, waiting time of phase 1 becomes the maximal 
executing time among all subqueries, not the sum of them. 

4.7. SQL server 

There are two stages to implement an SQL server. First, we 
develop an RPC server with Sun RPC [ 161. Second, we 
use Sun lightweight process [ 171 to develop a multithread 
version of the RPC server. 

The RPC server provides two categories of remote 
procedure calls. One category of procedures handles data 
definition operations. The others handle data manipulation 
operations. Data definition remote procedure calls include: 

create_rel: create a new table 
drop_rel: drop a table 

Data manipulation remote procedure calls include: 

retrieve: retrieve a portion of the relation 
remove: destroy the relation 
join: join two relations 
copy: copy the relation from one site to the other site 
update: update specific tuples 
insert: insert one tuple into the relation 
delete: delete the tuple from the relation 

Standard SUN remote procedure call paradigm is synch- 
ronous. In other words, a server can only handle one request 
at a time. During the server handling a request of one client, 
the other clients must wait (if it issues a request at this 
moment). However, a database server must handle a client’s 
request concurrently (asynchronous). There are two ways to 
solve this problem. The first is using the UNIX fork system 
call. Each time when a server gets a request, it forks a child 
process to handle this request. The parent process then keeps 
waiting for other requests. This method is simple but not 
suitable for a database server. A database server normally 
contains some global information in its address space. If it 
forks new processes, the consistency of global information 

between these processes must be maintained by other system 
facilities, such as shared memory IPC. The better way is to 
let parent and child processes share some portion of address 
space. This consideration leads us to use threads. 

We use Sun lightweight process library to implement our 
multithread SQL server. Sun lightweight processes (threads) 
operate more efficiently than ordinary SunOS processes 
because threads communicate via shared memory instead of 
a file system. Because threads can share a common address 
space, the cost of creating tasks and inter-task communic- 
ation is substantially less than the cost of using more heavy- 
weight primitives. 

Two alternatives to manage threads are possible: static 
threads and dynamic threads. With a static design, the choice 
of how many threads needed can be made either when the 
program is written or when it is compiled. This approach 
is simple, but inflexible. A more flexible approach is to allow 
threads to be created and destroyed during the execution 
time. Thus, we choose to use the dynamic approach. 

The structure of our multithread server is shown in Fig. 6. 
Whenever a multithread server boots up, it first creates two 
threads: scheduler and daemon thread. Scheduling in Sun 
lightweight process is by default, priority-based, non- 
preemptive within a priority. But we want each thread 
equally to share CPU time. So we must use round-robin 
scheduling. Fortunately, Sun lightweight process provides 
sufficient primitives to do this work. Scheduler thread owns 
the highest priority. It sets up a timer and then goes to 
sleep. When it is sleeping, a lower priority thread can be 
executed. When the timer expires, it reshuffles the queue of 
time sliced threads which are at a lower priority and then 
goes to sleep again. Daemon thread is a watchdog waiting for 
the request of SQL clients. If an SQL client makes a remote 
procedure call, daemon thread will dynamically create a new 
thread which executes the specific procedure. When this 
procedure eventually returns, the thread kills itself. 

Because there are multiple threads executing concurrently, 
we must have a synchronization mechanism. Sun light- 
weight process library provides monitor mechanism as the 
synchronization mechanism. All of the global information, 
such as system catalog, must be protected by a monitor. 

Fig. 6. The multithread SQL sewer. 



C.-Y. Ni, S.-M. Yuan/lnformaiion and Software Technology 38 (19%) 103-110 109 

The main problem of Sun lightweight process library 

is that threads lack kernel supports, so system calls are 

handled serially. Although the non-blocking I/O library 

mitigates this problem somewhat. The performance of a 
multithread server is still not very good. In the future, the 
SQL server will be ported on Sun Solaris operating system 

which has kernel supported threads. 

4.8. Lock manager 

We have already mentioned that we use a simple deadlock 

avoidance method which is based on a time-out protocol. 

The basic idea is that each transaction can at most own a 

lock for a default period of time. After the timer expires, 

the transaction must be aborted mandatorily. Since circular 
waiting is impossible, deadlock never happens. Obviously, 

DITSE cannot support long-lived transaction [ 181 because 

a transaction cannot own the lock for a long period of 

time. 

Before looking at the scenario of the lock manager, we 
first introduce two special data structures: data item waiting 

queue (DIWQ) and lock manager waiting queue (LMWQ). 

Each locked data item has its own DIWQ. DIWQ element 

records transaction identifier and lock type which the 
transaction acquires. Each lock server has one LMWQ. 
LMWQ element records transaction identifier, how long to 

wake up the transaction (Time-to-Wakeup), and some 

information of lock request which the transaction makes. 

When a transaction cannot acquire a lock on a data item, 
the LM performs the following actions: 

(1) Puts the transaction to the data item’s DIWQ. 
(2) Calculates Time-to-Wakeup. 
(3) Puts the transaction to LMWQ. 

(4) Sets an alarm clock according to Time-to-Wakeup 

of the transaction. 

In action (3), Time-to-Wakeup is calculated by the 
formula: 

Time_to_ Wakeup = Lock-Time + Time-Out - current time. 

We use an example to explain this formula. If a transaction 
A cannot acquire a lock, there must be another transaction 
B that has acquired an incompatible lock before transaction 

A. Lock-Time indicates when transaction B acquires the 
lock. Time-Out is a default value which specifies the 

longest time that a transaction can own a lock. Current time 
is time that we are calculating this formula. From the above 

description, you can see that Time_to_WakeUP is how 

long to wake up transaction A since it was put into LMWQ. 

You may be curious about when to invoke the transactions 
in either DIWQ or LMWQ. There are two possibilities. 
First, when a transaction releases the lock, the lock manager 
checks the data item’s DIWQ. If DIWQ is empty, nothing 
will be done. Otherwise, lock manager will wake up one or 
more transactions in DIWQ. Second, when the alarm clock 

expires, the transaction in LMWQ will be woken up. Note 

that no matter in which case, the awaken transaction can 

acquire the lock successfully. Therefore, our time-out 

protocol not only ensures no deadlock but also ensures no 
starvation. 

5. Summary and future work 

In this paper, we have given an overview of the DITSE. It 

is a distributed database system which was built on top of 

a distributed transactional file system, not directly on top of 
a traditional file system. A global query optimization 

algorithm which does not rely on prediction of join 

selectivity is also proposed. We follow the client-server 

computing model to build an autonomous multithread SQL 

server. Keeping SQL server’s autonomy has an advantage 
that DITSE can dynamically integrate other SQL servers. 

All communication links between SQL client and SQL 

server are implemented with Sun remote procedure call. 

There are still a lot of efforts that should be made in the 

future. The most important thing is performance enhance- 
ment of transaction manager and SQL server. The SQL server 

currently lacks fast access methods and buffer management. 

We believe that adding this stuff can greatly enhance perfor- 

mance. Also, a PC version of SQL client should be provided. 

In recent years, there have been ever-increasing DBMS 
vendors supporting Microsoft ODBC (Open Database 

Connectivity). The ODBC interface is a C-programming 

language interface for database connectivity. It provides a 

common API (Application Programming Interface) which 

allows applications to access diverse DBMSs. In the future, 
we will use the ODBC to implement our database agent. 

There is then no need to develop a new database agent in 
order to integrate other DBMSs. For different DBMSs, we 

just need to link our database agent with different ODBC 

drivers supported by database vendors. 

References 

111 

121 

[31 

[41 

151 

161 

[71 

Stonebraker, M Readings in database systems Morgan-Kaufmann 

(1994) pp 507-509 

Yuan, S-M, Lin, J H and Ni, C-Y ‘The design and implementation 

of a distributed transaction processing system’ J. Inf Science and 
Eng. Vol 9 No 4 (1993) pp l-22 

Andrade, J M, Carges, T and MacBlane, M ‘Open on-line trans- 

action processing with the TUXEDO system’ IEEE Computer 
Society Int. Con&: COMPCON-92 San Francisco, CA, USA (1992) 

pp 366-371 

Ozsu, M T and Valduriez, P Principles of distributed database 
systems Prentice-Hall (1991) 

Sheth, P and Larson, A ‘Federated database systems for managing 

distributed heterogeneous, and autonomous databases’ ACM Camp. 
Surv. Vol 22 No 3 (September 1990) 

Templeton, M et al. ‘Mermaid-a front-end to distributed 

heterogeneous databases’ Proc. of rhe IEEE Vol 75 No 5 (May 

1987) pp 695-707 

Cardenas, A F ‘Heterogeneous distributed database management: 



110 C.-Y. Ni, S. 4. Yuan I Information and Software Technology 38 (19%) 103-I IO 

the HD-DBMS’ Proc. of the IEEE Vol 75 No 5 (May 1987) pp 
588-600 

[8] Bernstein, P A and Chiu, D M ‘Using semi-joins to solve relational 
queries’ J. ACM Vol 28 No 1 (January 1981) pp 25-40 

[9] Eswaran et al. ‘The notions of consistency and predicate locks in 
a database system’ Comm. ACM, Vol 19 No 11 (November 1976) 
pp 624-633 

[lo] Gifford, D K ‘Violet: an experimental decentralized system’ ACM 
Operating Systems Review Vol 13 No 5 (1979) 

[ 1 l] Khoshafian, S et al. A guide to developing client/server SQL 
applications Morgan-Kaufmann (1992) 

[ 121 Dewitt, S et al. ‘A study of three alternative workstation- 
server architectures for object-oriented database systems’ 16th Int. 

Conf on Very Large Data Bases Brisbane Australia (1990) pp 
107-121 

[ 131 Heller, S XView Programming Manual Op’Reilly & Associates 

(1990) 
[ 141 Kim, W, Reiner, S and Batory, D S Query Processing in Database 

Systems Springer-Verlag (1985) 
[ 151 Bernstein, P A et al. ‘Query processing in a system for distributed 

database (SDD-1)’ ACM Trans. Database System Vol 6 No 4 
(December 1981) pp 602-625 

[ 161 Network programming guide Sun Microsystems (1990) 
[ 171 Programming utilities and libraries Sun Microsystems (1990) 
[ 181 Gray, J and Reuter, A Transaction processing: concepts and 

techniques Morgan-Kaufmann (1993) pp 2 10-2 19 


