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This study examines a dual-flow shop-scheduling problem that allows cross-shop processing. The sched-
uling objective is to minimize the coefficient of variation of slack time (lateness), where the slack time
(ST) of a job denotes the difference between its due date and total completion time. This scheduling prob-
lem involves two decisions: job route assignment (assigning jobs to shops) and job sequencing. This
study develops a genetic algorithm (GA) embedded with the earliest due date (EDD) dispatching rule
for making these decisions. Numerical experiments with the GA algorithm indicate that the performance
of adopting a cross-shop production policy may significantly outperform that of adopting a single-shop
production policy. This is particularly true when the two flow shops are asymmetrically designed.

This study develops a grouping heuristic algorithm to reduce setup time and due-date-based demand
simultaneously. This study uses the proposed genetic algorithm (GA) to prove that the grouping heuristic
algorithm performs well. Obtaining an approximate optimal solution makes it possible to decide the
route assignment of jobs and the job sequencing of machines.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Some manufacturing companies must build two plants to fulfill
customer demand. This dual-plants strategy arises from two rea-
sons: rapid capacity expansion and capacity sharing mechanisms.
In the case of rapid capacity expansion, it is often more difficult
to acquire land than equipment. Therefore, many companies will
initially build a space large enough for two plants, and then grad-
ually purchase equipment based on market demand.

For capacity sharing reasons, the dual-plants strategy can adopt
a cross-plant production policy in which two plants mutually sup-
port each other in capacity. This policy increases single plant
capacity because it allows one plant to utilize its equipment capac-
ity fully by filling orders from the other plant.

The cross-plant production policy involves two major sequenc-
ing decisions: (1) route assignment—how to allocate jobs to each
plant, and (2) job sequencing within a plant, as well as how to se-
quence allocated jobs for each plant. Most studies on dual-plant
scheduling are developed under a route assignment assumption
(Toba, Izumi, Hatada, & Chikushima, 2005; Wu & Chang, 2007;
Wu, Chen, & Shih, 2009; Wu, Shih, & Chen, 2009).

This paper considers the problem of scheduling a dual-flow shop
that allows cross-flow shop processing. Each flow shop has three
stages that can process any jobs from the previous stage of a dual
flow shop. Each stage has two machines capable of processing
ll rights reserved.
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one job at a time. Each stage in the two flow shops is functionally
comprehensive. That is, a job can be completely processed in one
stage in either flow shop. Fig. 1 shows that all jobs follow the same
sequential processing route: Stage 1, Stage 2, and Stage 3. The pur-
pose of cross-shop production is to increase the total throughput of
both flow shops and reduce the average job cycle time.

This study presents a genetic algorithm (GA) embedded with the
earliest due date (EDD) dispatching rule (a GA-EDD algorithm) for
scheduling dual flow shops. All jobs have two sequencing decisions
to be made: (1) route assignment (assigning jobs to stages), and (2)
job sequencing within each stage. This study uses the single-shop
production policy as a benchmark to determine the effectiveness
of the proposed dual flow shop algorithm. Single-shop production
means that each job can be processed in only one plant (a flow
shop). Numerical experiments show that GA-EDD for a dual-flow
shop is much better than the production of two single shops.

The remainder of this paper is organized as follows. Section 2
reviews the relevant literature. Section 3 explains the research
problem in detail. Section 4 describes how to compute the coeffi-
cient of slack time variation for a job sequence. Section 5 presents
the solution architecture of the proposed algorithms. Section 6 re-
ports numerical experiments, while Section 7 provides concluding
remarks.
2. Relevant literature

Previous studies on the dual-flow shop-scheduling problem gen-
erally fall into two groups: product-level and operational-level. In
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Fig. 1. The production flow of a typical dual-flow shop.
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the product-level group, a product can be processed only within sin-
gle plant. In the operational-level group, each plant can perform a
group of operations, distributing its operations among different
plants.

Most studies in the product level group-prohibiting any cross-
plant routes category assume that each plant manufactures prod-
ucts separately, which prohibits cross-plant production. Wu, Erkoc,
and Karabuk (2005) provided a comprehensive survey of this topic,
and recent studies have extended their findings (Chiang, Guo,
Chen, Cheng, & Chen, 2007; Lee, Chung, Lee, & Kang, 2006). Most
of these studies use the linear programming (LP) technique to solve
the dual flow shop scheduling problem. These production-level
studies consider one factor: job sequencing within a plant.

Most studies in the operational-level group, which allow some
cross-plant routes, assume that each plant can obtain mutual capac-
ity support. Toba et al. (2005) studied the route-planning problem
in a real-time environment. Wu and Chang (2007) examined the
route-planning problem on a weekly schedule. Wu, Shih, et al.
(2009) and Wu, Chen, et al. (2009) studied route planning in
dual-plant scenarios with different limited transportation capaci-
ties and varying transportation times. Paolo et al. (2010) proposed
a game theoretic protocol of cooperation and multiagent architec-
ture to share capacity among different plants. These operational-
level studies consider one factor between two plants—route assign-
ment—.

Most studies consider either job sequencing within a plant or
route assignment decisions. However, this paper considers both of
these decisions simultaneously.

3. Problem statement

This section explains the dual-plant problem in detail, where the
two plants called Plant_A and Plant_B. The following discussion
first explains the assumptions in this study and then describes
the problem.

Assumption 1. The machine in each dual-plants stage is functionally
comprehensive. Each plant is equipped with the same machine
functionality in each stage of job production.
Assumption 2. Each job has eight routes. The processing routes of
each job fall into three segments. The break point between two
stages of the processing route is called a cut-off point. A job has
eight possible routes: 1 ? 1 ? 1, 1 ? 1 ? 2, 1 ? 2 ? 1, 1 ? 2 ?
2, 2 ? 2 ? 2, 2 ? 1 ? 1, 2 ? 1 ? 2, 2 ? 2 ? 1. The route
i ? j ? k indicates that the first segment i is processed in Stage
1, the second one is processed in Stage 2, and the third one is pro-
cessed in Stage 3. The number 1 indicates that a job is manufac-
tured in Plant_A, while 2 denotes Plant_B.

The problem addressed in this study consists of a set of n jobs
(j 2 J) to be processed in a dual-flow shop, and each plant has three
machines. Each machine m can process one job at a time. The route
of each job requires three sequential stages (three machines) to be
completed. Each job j has a processing time pjm on machine m. The
scheduling objective is to minimize the coefficient of variation of
slack time, in which the slack time of a job denotes the difference
between its due date and total completion time.
4. Slack time evaluation for job sequences

Given a job sequence, this study uses a procedure to evaluate
the slack time for completing all the jobs. This procedure emulates
the processing flow of each job, and makes it possible to obtain the
slack time (i.e., the difference between its due date and total com-
pletion time). The following section presents the notation and de-
tails of the procedure in this study.

Notation
j index of job, j = 1,2, . . . ,n
i index of stage, i = 1,2, . . . ,m

f index of flow shop, f = 1,2
M total number of stages
pi,f,j processing time required for stage i in flow shop f to pro-

cess job j
ti�1,i transportation time for shipping a job from the i � 1 stage

to the next i stage
pi,f a job sequence for n jobs at the stage i of flow shop f,

pi,x = [pi,x(1), . . . ,pi,x(n)]
pi,f(j) the job in the jth position of a sequence at the stage i of

flow shop f
dj the due date for job j
Ci;pi;f ðjÞ

the completion time of job pi,f(j) at stage i of the flow shop f
Ai,f,t the time epoch in which machine in stage i of flow shop f

becomes available; that is, when the machine (i, f) is free at
t, Ai,l,t is the last job-completion-epoch before t; while the
machine (i, f) is in operation at t, Ai,f,t is the first job
-completion-time after t

Sj slack time of job j
rs the standard deviation of slack time
Xs the average slack time
CVs the coefficient of variation of slack time, CVs ¼ rs

Xs

4.1. Evaluation procedure

The following five equations govern the procedure of evaluating
the coefficient of variation of slack time:

Ci;pðjÞ ¼ max
16f62

fmaxfAi;f ;t;Ci�1;f ;pi�1ðjÞ þ ti�1;ig þ pi;f ;piðjÞg ð1Þ

where t = Ci,p(j�1) for 1 6 i 6M

Sj ¼ dj � CM;pðjÞ ð2Þ

Xs ¼
PJ

j¼1Sj

J
ð3Þ

rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1ðSj � XsÞ2

J

s
ð4Þ

CVs ¼
rs

Xs
ð5Þ

Eq. (1) indicates the completion time of job j in job p(j) at stage
i. The term presents the time epoch when machine at stage i is
ready for processing job j; and the term Ai,f,t denotes the time epoch
when job j is ready to be processed at stage i. Eq. (2) indicates the
slack time of job p(j) at stage M. Eq. (3) indicates the average slack
time of a job sequence. Eq. (4) indicates the standard deviation of
slack time of a job sequence. Eq. (5) indicates the coefficient of var-
iation of slack time of a job sequence.
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Fig. 2. Chromosome representation.
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5. Algorithms

This study proposes four algorithms (GA-EDD-C, GA-EDD-S, GA-
FIFO-C, and GA-FIFO-S) to solve the dual-flow shop-scheduling
problem. Two proposed cross-flow algorithms are respectively
called GA-EDD-C and GA-FIFO-C, while two single flow shop sched-
uling algorithms are called GA-EDD-S and GA-FIFO-S—without any
cross-shop routes. The single flow shop algorithm (GA-FIFO-S)
serves as a benchmark to determine the effectiveness of the other
algorithms. While all four algorithms follow the solution architec-
ture of a typical GA and chromosome representation, they vary in
their solution encoding schemes. This section first describes the
solution architecture of a typical GA, and then describes the details
of GA-EDD-C, GA-EDD-S, GA-FIFO-C, and GA-FIFO-S.

5.1. Solution architecture of a typical GA

A possible solution to a genetic algorithm (GA) is called a chro-
mosome. A chromosome typically represents a string of integers,
each of which is called a gene. The solution quality of a chromo-
some is called its fitness, which represents the coefficient of varia-
tion of slack time in this study (Holland, 1975). A GA aims to find a
near-optimum chromosome using the evolutionary mechanism
described below.

Procedure Typical_GA_Evolution

Step 1: Initialization

� Set t = 0
� Randomly create a set of N chromosomes to form initial

population P0
Step 2: Generate new chromosomes

� Use genetic operators to create Nc new chromosomes

randomly
� Create a set S = Nc [ Pt
Step 3: Update the population

� Set t = t + 1
� Adopt a strategy to select N chromosomes out of S to

form Pt
Step 4: Termination check

� If (Termination = ‘‘yes’’)

then Output the best chromosome in Pt and STOP.

Else go to Step 2.

Two common terminating conditions in Step 4 of the procedure
above are (1) the best solution in P(t) remains the same for more
than Tb iterations, or (2) more than Tf iterations have been per-
formed (i.e., t = Tf).

In Step 3, after completing genetic operations, the GA produces
Q = Nc + N chromosomes in P(t) and newly generated ones, but only
N of them are selected to form P(t + 1). To make this selection, first
sort the Q chromosomes in descending order based on their fitness
values. Denote the sorted chromosomes as p1, . . . ,pQ. In forming
P(t + 1), the algorithm always selects p1 and selects the other pi

based on probability by applying the roulette wheel selection meth-
od (Goldberg, 1989; Michalewicz, 1996).

5.2. GA-EDD-C algorithm

The GA-EDD-C algorithm represents the job sequence sorted by
due date, where manufacturing operations adopt a cross-plant
mechanism. This GA algorithm can be described as follows.

5.2.1. Chromosome representation and decoding
In the GA algorithm, each chromosome represents a job se-

quence that must be decoded to model a dual-flow shop
scheduling solution. A chromosome is denoted by p = [p1, . . . ,pi],
i 6 3, where pi represents the job sequence at stage i. Each job se-
quence pi is denoted by pi = [pi(1), . . . ,pi(n)], where pi represents
the job in the jth job sequence at stage i. The length of the chromo-
some equals the product of the total number of jobs and the total
number of stages. For the chromosome in Fig. 2, p = [p1,p2,p3],
p2 = [J5, J3, J7, . . . , J2], and p2(3) = 7 indicate that job J7 is in the third
job sequence at stage 2. The chromosome is 24 integers (3 � 8)
long.

The chromosome p represents two set of sequencing decisions:
(1) sequencing among stages (route assignment, assigning jobs to
stages of dual-flow shop), and (2) job sequencing within each stage
of a dual-flow shop. The decoding procedure consists of the two
phases described below. In the first phase, the job_allocation pro-
cedure decodes the sequence of the stages of dual-flow shop. In
the second phase, after the initial decoding, the due date-based
decoding scheme decodes job sequencing within each stage i.

For job pi(j), the term pi;f ;piðjÞ represents the processing time for a
job j at stage i in flow shop f. Let Ti,f denote the total processing
time at the stage i in flow shop f for job pi(j). The procedure for
interpreting the job allocation decision from a given chromosome
is described below.

Procedure Job_Allocation

Step 1: Form the job groups in stage n
l = M, /M is a large number⁄/
k = 1, /⁄index of job group⁄/
For i = 1 to N

Tn;1 ¼
Pi

j¼1pi;1;pðjÞ; /⁄total processing time of the N jobs in
stage n of Plant_A⁄/
Tn;2 ¼

PN
j¼iþ1pi;2;pðjÞ; /⁄total processing time of the N jobs in

stage n of Plant_B⁄/
e ¼ Tn;1 � Tn;2

�� ��; /⁄the variance between total processing
time in two plants⁄/
If (e < l) then;

k = i; /⁄a cut-point of job group⁄/
l = e; /⁄update the least variance⁄/
End if
If (i = N) then

go to Step 2 /⁄check if job group formation
finished⁄/

Endif
Endfor

Step 2: Output job allocation results
Output C(k), 1 6 k 6 f � 1

Given the job allocation decision C(k), the procedure for deter-
mining the job sequence decision for each stage is relatively easy.
The job sequence for stage k (1 6 k 6 f � 1) is pik = [pi(s), . . . ,pi(e)],
where s = C(k � 1) + 1 and e = C(k), whereC(0) = 0 and C(f) = p(N).

Fig. 3(a) illustrates the chromosome-decoding scheme using a
two-phase example. In the first phase, the job allocation of
chromosome-decoding scheme, there are eight jobs to be scheduled



Fig. 3. GA-EDD-C chromosome and decoding schemes.
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on two machines in Stage 2. Support that the processing times for
these jobs in Plant 1 are p1,i = {1,2,3,4,5,6,7,8}, and the processing
time in Plant 2 are p2,i = {2,3,1,5,8,6,7,4}. The accumulated pro-
cessing time in Plant 1 and 2 are Ti,1 = {1,3,6,10,15,21,28,36},
and Ti,2 = {36,34,31,30,25,17,11,4}, respectively. The variance
processing time between two plants is e = {35,31,25,20,
10,4,17,32}. The job cutoff point is located between p(J6) and
p(J4). The set of jobs allocated to machine 1 and the job sequences
are p21 = [J5, J3, J7, J1, J6], while those for the other machine are
p22 = [J4, J8, J2].

In the second phase, the due-date decode scheme, the earlier a
due date appears inpik, the higher is its sequencing priority. For in-
stance, the job sequence at Stage 2 is J5 � J3 � J7 � J1 � J6 � J4 �
J8 � J2 and the due-dates are di = {3,2,4,9,5,6,7,1}. Applying the
due date-sequence decoded scheme sorts the job sequence at Stage
2 in Fig. 3(b) in due-date order, i.e., p21 = [J3, J5, J7, J6, J1], p22 =
[J2, J8, J4]. As a result, the post-decoding result of chromosome p is
a due date-based job sequence. This job sequence first imposes
capacity constraints on the sequence among stages and then deter-
mines a job sequence within each stage.
Fig. 4. Crossover operators: C1.
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Fig. 5. Mutation operators: Swap.
5.2.2. Genetic operators
We used two types of genetic operators to generate the new

chromosomes. The first genetic operator is a crossover operator,
and the second is a mutation operator. A crossover operator gener-
ates a new pair of chromosomes from an existing pair of chromo-
somes, while a mutation operator generates a new chromosome
from an existing one.

The one-crossover operators involve C1 (Reeves, 1995). The
one-mutation operators are Swap (Wang & Zheng, 2003). As stated
in Procedure Typical_GA_Evolution, each iteration generates Nc new
chromosomes. These new chromosomes are generated as follows:
N � Pc1 ones through C1, N � Pm1 ones through Swap, where Nc = N
(Pc1 + Pm1).

The following subsection explains the mechanism of the one-
crossover operators, where parent-1 and parent-2 represent the
parent chromosomes and child-1 and child-2 represent the created
chromosomes.

C1 operator: Fig. 4 shows that one randomly selected point
splits each parent into two sections (head and tail). To generate
an offspring (say, child-2), the head is copied from the head of
parent-2—a string (3,5,6) in this case. The tail is determined by
sequentially referring to the genes of parent-1; only the gene val-
ues not in the head of child-2 appear in the tail. This yields a string
(1,4,9,8,7,2) as the tail of child-2.

The following subsection describes the one-mutation operator,
where pa denotes the parent chromosomes and pb denotes the
child chromosomes.



Fig. 6. GA-EDD-S chromosome and decoding schemes.
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Swap operator: Fig. 5 shows that we randomly selected two
distinct genes in pa, and then swapped their gene values to gener-
ate pb.
5.3. GA-EDD-S algorithm

The GA-EDD-S algorithm sorts the job sequence by due-date,
but only a single plant can perform manufacturing operations.
The GA algorithm can be described as follows. The GA-EDD-S algo-
rithm adopts the same chromosome as GA-EDD-C, but adopts a dif-
ferent decoding scheme. Refer to the GA-EDD-S chromosome in
Fig. 6(a). In the first phase, job allocation of chromosome-decoding
scheme, the first segment denotes that the job sequence in Stage
1 is J5 ? J3 ? J7 ? J1 ? J6 ? J4 ? J8 ? J2. Applying the Job_Alloca-
tion procedure to split the jobs into two plants produces the
decoding results of p11 = [J5, J3, J7, J1, J6] and p12 = [J4, J8, J2] for this
chromosome. In other words, all the jobs in Stage 1 should be com-
pleted before proceeding to jobs in Stage 2 or Stage 3.

In the second phase, the job sequence in three segments of the
chromosome is the same because the operation of a job in each
plant cannot occur in the other plant using the cross-plant
mechanism.

The GA-EDD-S algorithm creates a new chromosome by apply-
ing a genetic operator to each chromosome segment indepen-
dently, and then joining the newly generated segments to form a
new chromosome. The two genetic operators (C1 and Swap) are
Fig. 7. GA-FIFO-C chromosom
similar to those in the GA-EDD-C in creating new GA-EDD-S
chromosomes.

5.4. GA-FIFO-C algorithm

The GA-FIFO-C algorithm sorts the job sequence by first-in first-
out, and allows the cross-plant manufacturing mechanism. The
chromosomes in the GA-FIFO-C algorithm are similar to those in
GA-EDD-C, but vary in the second phase of the decoding procedure.
Fig. 7 shows that we applied the job_allocation procedure to split
the job sequence into two plants at three stages. Thus, a GA-FIFO-
C chromosome represents a job sequence and imposes no due-date
based on the sequence among machines.

Fig. 7 shows a GA-FIFO-C chromosome, which is much like the
pre-coding chromosome of GA-EDD-C. This chromosome produces
a scheduling solution at three stages by applying the Job_Allocation
procedure. To generate new chromosomes in The GA-FIFO-C gener-
ates new chromosomes by applying a genetic operator to a whole
chromosome, like GA-EDD-C. The GA-FIFO-C algorithm uses the
two genetic operators mentioned above.

5.5. GA-FIFO-S algorithm

The chromosomes in the GA-FIFO-S algorithm are similar to
those in the GA-EDD-S algorithm, but vary in the second phase of
the decoding procedure. Fig. 8 shows that we applied the
e and decoding schemes.



Fig. 8. GA-FIFO-S chromosome and decoding schemes.
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job_allocation procedure to split the job sequence into two plants
at Stage 1. In other words, a GA-FIFO-S chromosome directly repre-
sents a job sequence and imposes no due-date based on the se-
quence among machines.

Fig. 8(a) shows a chromosome in GA-FIFO-S algorithm, which is
similar to the pre-coding chromosome of GA-EDD-S. Fig. 8 shows
that the chromosome at Stage 1 represents a scheduling solution
by applying the Job_Allocation procedure. The job sequences in
Stage 2 and Stage 3 then follow the job sequence in Stage 1. The
GA-FIFO-S algorithm generates new chromosomes by applying a
genetic operator to the whole chromosome, much like the
GA-EDD-S algorithm, and uses the two genetic operators men-
tioned above.

6. Numerical experiments

Numerical experiments were conducted to compare the four
algorithms (GA-EDD-C, GA-EDD-S, GA-FIFO-C, GA-FIFO-S). Personal
computers with PENTIUM Dual-Core 2.8 GHz CPU and 1 Gb mem-
ory were used to run the programs, which were coded in Visual
C++. The parameters of the four genetic algorithms were set as fol-
lows: N = 100, Pc = 0.8, Pm = 0.2, Tb = 1000, Tf = 100,000.

6.1. Experiment design

Table 1 shows that the dual-flow shop considered in this study
had two plants, six stages, and six machines. The operation time of
Table 1
Process times of three stages in a dual-flow shop.

Plant Stage 1 Stage 2 Stage 3

A U[1,5] U[1,5] U[1,5]
B U[1,5] U[1,5] U[1,5]

Table 2
Due date of each job under the different number of jobs.

20 jobs 40 jobs 60 jobs 80 jobs 100 jobs

Due
date

U[51,70] U[160,180] U[270,290] U[380,400] U[490,510]
each machine (stage) i is a uniform distribution [ai,bi]. The due date
of each job j is a uniform distribution [ai,bi] shown as Table 2.

We used (P,N,T) to represent a test case, where P represents the
proportion of processing time at the same stage of plant A to that of
plant B, N represents the number of jobs, T represents the ratio of
transportation time to processing time. Table 2 shows that P has
four options (1:1, 1:1.5, 1:2, 1:3), N has five options (20, 40, 60,
80, 100 jobs), and T has three options (0.1:1, 0.5:1, 2:1). Thus, each
algorithm had 4 � 5 � 3 = 60 test cases and each test case was ob-
tained by averaging the experimental results of 15 replicates.

The average coefficients of variation of slack time for the four
algorithms were defined as CVGA�EDD�C, CVGA�EDD�S, CVGA�FIFO�C,
and CVGA�FIFO�S. Experimental results indicate that the GA-EDD-C
algorithm outperformed the other algorithms in most cases. A per-
formance metric illustrates the degree of variation in solution qual-
ity, cx = (CVx � CVGA�EDD�C)/CVx, to compare the solution quality
between the GA-EDD-C and a benchmark algorithm (say, x). A po-
sitive cx indicates that GA-EDD-C is better, while a negative value
indicates that GA-EDD-C is worse.
6.2. Experimental results

Table 3 compares the solution quality of the four algorithms by
averaging the experimental results obtained under the four pro-
cessing time ratios and three transportation time ratio options
mentioned above. This table indicates that the proposed dual-flow
shop algorithm (GA-EDD-C) outperforms the three other algo-
rithms (GA-EDD-S, GA-FIFO-C and GA-FIFO-S) in most cases. This
is because GA-EDD-C adopts the cross-flow shop and due-date
based scheduling approach to reduce the total setup number. This
in turn reduces the total setup time and alleviates the effects of
machine capacity loss. This finding advocates the use of the cross
flow shop-based approach to solve the dual-flow shop-scheduling
problem.

Table 3 shows the experimental results of cx. The GA-EDD-C
algorithm outperforms the other three algorithms in terms of cx

in most cases. Of the 60 test cases, cx ranged from 0% to 65%.
Fig. 9 shows the average of cx for each algorithm, indicating that
the GA-EDD-C algorithm outperforms the other algorithms.

Fig. 10 shows that a lower P (process time ratio between two
plants) increases the average of cx. When P reached 1:3, the aver-
age of cx reached 55%. This is due to the large gap in process time



Table 3
Solution qualities of the four algorithms under different J, P, and T.

Jobs P T (%) CVGA�EDD�C CVGA�EDD�S rGA�EDDS (%) CVGA�FIFO�C rGA�FIFO�C (%) CVGA�FIFO�S rGA�FIFOS (%)

20 1:1 1 0.112 0.135 17 0.517 78 0.111 �1
50 0.108 0.144 25 0.503 79 0.111 3

200 0.134 0.124 �8 0.679 80 0.123 �9
1:1.5 1 0.112 0.144 23 0.395 72 0.125 11

50 0.123 0.142 13 0.523 76 0.128 4
200 0.156 0.126 �24 0.726 79 0.132 �19

1:2 1 0.140 0.170 18 0.389 64 0.156 10
50 0.143 0.172 17 0.562 75 0.149 4

200 0.144 0.165 13 0.612 77 0.150 4
1:3 1 0.177 0.348 49 0.653 73 0.218 19

50 0.182 0.353 49 0.627 71 0.221 18
200 0.201 0.467 57 0.709 72 0.222 9

40 1:1 1 0.098 0.107 9 0.249 61 0.097 �1
50 0.097 0.109 10 0.234 58 0.097 �1

200 0.097 0.114 15 0.272 64 0.097 �1
1:1.5 1 0.117 0.144 18 0.132 11 0.121 3

50 0.116 0.138 16 0.129 10 0.121 4
200 0.113 0.143 21 0.159 29 0.121 7

1:2 1 0.137 0.215 36 0.194 29 0.147 7
50 0.140 0.228 39 0.195 28 0.147 5

200 0.139 0.243 43 0.173 20 0.147 5
1:3 1 0.157 0.516 69 0.346 54 0.695 77

50 0.160 0.546 71 0.417 62 0.547 71
200 0.179 0.575 69 0.568 68 0.308 42

60 1:1 1 0.089 0.101 11 0.157 43 0.090 1
50 0.089 0.100 11 0.168 47 0.090 2/0

200 0.087 0.101 13 0.164 47 0.090 3
1:1.5 1 0.112 0.135 17 0.135 17 0.117 4

50 0.112 0.134 16 0.133 15 0.117 4
200 0.109 0.150 27 0.136 19 0.117 6

1:2 1 0.128 0.213 40 0.176 27 0.137 6
50 0.132 0.190 31 0.176 25 0.137 3

200 0.130 0.206 37 0.176 26 0.137 5
1:3 1 0.149 0.432 66 0.205 27 0.640 77

50 0.150 0.450 67 0.207 28 0.659 77
200 0.157 0.458 66 0.212 26 0.664 76

80 1:1 1 0.094 0.103 9 0.163 42 0.089 �5
50 0.094 0.104 10 0.165 43 0.089 �5

200 0.093 0.103 10 0.196 53 0.089 �4
1:1.5 1 0.111 0.129 14 0.117 6 0.108 �2

50 0.111 0.133 17 0.130 15 0.108 �2
200 0.108 0.148 27 0.118 9 0.108 1

1:2 1 0.126 0.196 36 0.147 14 0.125 �1
50 0.129 0.190 32 0.163 21 0.125 �3

200 0.128 0.183 30 0.147 13 0.125 �2
1:3 1 0.136 0.413 67 0.191 29 0.581 77

50 0.137 0.390 65 0.202 32 0.569 76
200 0.140 0.366 62 0.195 28 0.605 77

100 1:1 1 0.094 0.103 9 0.159 41 0.090 �4
50 0.094 0.103 9 0.206 54 0.090 �4

200 0.093 0.103 10 0.227 59 0.090 �3
1:1.5 1 0.114 0.142 19 0.126 9 0.113 �1

50 0.114 0.148 23 0.126 9 0.113 �1
200 0.112 0.143 22 0.126 11 0.113 1

1:2 1 0.134 0.214 37 0.231 42 0.132 �2
50 0.134 0.212 36 0.200 33 0.131 �2

200 0.131 0.206 36 0.191 32 0.132 0
1:3 1 0.143 0.370 61 0.196 27 0.555 74

50 0.146 0.380 62 0.197 26 0.571 74
200 0.158 0.377 58 0.200 21 0.570 72
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between two plants, which benefits the cross-flow shop
mechanism.

Fig. 11 shows the average of cx for different transportation time
ratios for the 60 test cases, indicating that the ratio of transporta-
tion time to processing time is not obvious tocx. In terms of com-
putation time, Fig. 12 shows that all four algorithms are quite
efficient, requiring less than eight minutes for each test case.
7. Concluding remarks

This study examines a dual-flow shop-scheduling problem by
comprehensively considering the processing time and transporta-
tion time features. We propose four algorithms ( GA-EDD-C, GA-
EDD-S, GA-FIFO-C, and GA-FIFO-S) to solve the dual-flow
shop-scheduling problem. The GA-EDD-C algorithm serves as a



Fig. 9. Average of cx for various algorithms.

Fig. 10. Average of cx at various processing time ratios between two plants.

Fig. 11. Average of cx at various transportation time-processing time ratios.
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Fig. 12. Computation times for the four types of algorithms.
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benchmark. Numerical experiments indicate that the proposed GA-
EDD-C algorithm outperforms the other algorithms. These results
imply that a dual-flow shop approach should be used to solve
the scheduling problem.

The experiments in this study indicate that the GA-EDD-C algo-
rithm outperforms other algorithms when there is a large gap in
processing times between two plants. This performance difference
may be due to by the advantages of the cross-flow shop.

An extension to this study is the scheduling of three or more flow
shops. Such an extension would require another decision-making
criterion: how to allocate jobs to each stage among different flow
shops.
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