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Parkinson’s Disease (PD) is a common neurodegenerative disorder with progressive loss of dopaminergic
and other sub-cortical neurons. Among various approaches, gait analysis is commonly used to help iden-
tify the biometric features of PD. There have been some studies to date on both the classification of PD
and estimation of gait parameters. However, it is also important to construct a regression system that
can evaluate the degree of abnormality in PD patients. In this paper, we intended to develop a PD gait
regression model that is capable of predicting the severity of motor dysfunction from given gait image
sequences. We used a model-free strategy and thus avoided the critical demands of segmentation and
parameter estimation. Furthermore, we used linear discriminant analysis (LDA) to increase the feature
efficiency by maximizing and minimizing the between- and within-group variations. Regression was also
achieved by assessing the spatial and temporal information through classification and finally by using
these two new indices for linear regression. According to the experiments, the outcomes significantly cor-
related with the sum of sub-scores from the Unified Parkinson’s Disease Rating Scale (UPDRS): motor
examination section with r=0.92 and 0.85 for training and testing, respectively, with p <0.0001. Com-

pared with conventional methods, our system provided a better evaluation of PD abnormality.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Parkinson’s Disease (PD) is a common neurodegenerative disor-
der and results from the progressive loss of dopaminergic and
other sub-cortical neurons (Jankovic, 2008). PD often causes mus-
cle rigidity, remor, and a slowing or complete loss of physical
movement. Previous studies have reported that about 0.1-0.2% of
the population is affected by PD (Chien et al., 2006). Several treat-
ments have been reported to be effective, such as drugs like L-dopa
and brain surgery with deep brain stimulation (Lin et al., 2008).
The clinical diagnosis of PD is typically based on the patient’s med-
ical history and clinical presentations. The specific assessment of
PD includes observations of some common motor tasks, such as
walking a short distance and getting up out of a chair. The Unified
Parkinson’s Disease Rating Scale (UPDRS; Christopher et al., 2008)
is widely used to evaluate PD by clinicians’ observations. It consists
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of four parts includes: (1) mentation, behavior, and mood, (2) ac-
tivities of daily living, (3) motor examination and (4) complications
of therapy. The evaluation of UPDRS relies rather strongly on ex-
pertise; therefore, the measurement of UPDRS tends to be subjec-
tive. Some studies report a high inter-rater reliability in UPDRS
rating (Paulson & Stern, 2004) but according to a study by Richard
et al., the motor section in the UPDRS has the best inter-rater con-
sistency, while the other sections have poor results, especially for
speech disorder and facial immobility (Richard, 1994).

Posture and motor tasks are different for completely healthy
people compared with patients with motor disorders due to age,
stroke or PD. These patients may have problems with asymmetry
of stance, ambulation, and stepping up onto raised structures
(Chen et al., 2005; Yang, 2008). As an objective and quantitative
approach, gait analysis is especially important for evaluating these
motor impairments.

Gait analysis is commonly used to help identify biometric fea-
tures for personal identification, medical diagnosis support, person-
alized training systems for various sports and so on (Chien et al.,
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2006; Cunado, Nash, Nixon, & Carter, 1999; Gafurov, Helkala, &
Sendrol, 2006; Kohle, Merkl, & Kastner, 1997; Lakany, 1999; Salar-
ian et al., 2004). As an objective and quantitative approach, gait
analysis is important for evaluating locomotion. The effectiveness
of this approach is supported by Stebbins and Goetz’s study (Steb-
bins & Goetz, 1998). Consequently, more and more gait analysis
systems are being developed.

Some quantitative gait analysis systems utilize various types of
sensors or equipment attached to the subject’s body to record
physiological or physical signals over time. For example, Salarian
et al. attached gyroscope sensors to subjects’ limbs to compute
the angular rate of rotation (Salarian et al., 2004). Gafurov et al.
used accelerometers attached to subjects’ legs to detect accelera-
tion in three dimensions (Gafurov et al., 2006). The force platform
is another device that is widely used for measuring walking pat-
terns. Chien et al. evaluated bradykinesia by GAITRite system,
which could identify footfall contacts (Chien et al., 2006). Although
the above sensor-based approaches can accurately access gait
dynamics well, they are often expensive, complicated and uncom-
fortable for the subject. To avoid those problems, vision-based sys-
tems (Cunado et al.,, 1999; Yam, Nixon, & Carter, 2002; Zhang,
Vogler, & Metaxas, 2007) have been developed for gait analysis be-
cause of no sensors requirement and are more comfortable for the
subjects. For example, Chang et al. segmented the images of the
subjects into regions and then computed the distances and angles
of their limbs (Chang, Guan, & Burne, 2000). In a study by Melnick
et al.,, the temporal characteristics of gait, such as stride length,
width, cadence and velocity, were measured (Melnick, Radtka, &
Piper, 2002).

There have been some studies to date on the classification of PD
and the estimation of gait parameters as reviewed above. However,
it is also important to construct a regression model that can eval-
uate the degree of abnormality in PD patients because it is impor-
tant not only to detect whether a subject has PD but also to
determine the severity of the disease. Additionally, objective and
quantitative measurements are also very helpful in assisting doc-
tors in the assessment of PD for rehabilitation and treatment plan-
ning. In this study, we intended to investigate a gait regression
model of PD. The regression analysis was designed to predict the
severity of motor symptoms among PD patients. We extracted pos-
ture and dynamic stride variation data by vision-based approaches.
Afterwards, we optimized the discriminant capabilities of these
features to form useful gait abnormality indices according to a cer-
tain scale determined by experts. Thus, these features had higher
correlation coefficients to the given scale. Finally, we combined
useful indices by linear regression (Lin, Wang, Chen, Chen, & Yen,
2009) to assess the degree of gait abnormality.

2. Materials and methods

2.1. Overview of the regression model for the gait analysis of patients
with Parkinson ’s Disease

We proposed a vision-based analysis system for PD gait evalu-
ation that can classify and compute the regression model from
the given gait data. The architecture of the gait analysis comprises
five main parts: (1) video acquisition, (2) image preprocessing, (3)
feature extraction, (4) learning using extracted features and (5) the
testing processing. Moreover, the flow of image preprocessing
comprises image clipping, background construction, subject detec-
tion, and image normalizing and reshaping. For feature extraction,
both spatial and temporal features are used in this design. The spa-
tial feature is extracted directly using the silhouettes of the sub-
jects in the images. On the other hand, temporal information is
obtained from the time-varying step size. Linear discriminant

analysis (LDA; Dogantekin, Dogantekin, & Avci, 2009) is used to
simultaneously maximize the between-class variations and mini-
mize the within-class variations.

2.2. Subjects

Twelve patients with PD before and after drug treatment and
twelve normal people from Buddhist Tzu Chi General Hospital in
Taiwan were enrolled in this study. Their characteristics are listed
in Table 1. All the experiments were conducted in the department
of Neurosurgery in the hospital. All subjects were asked to wear
light-colored suits and then observed walking back and forth in
the 5 m long pathway in front of a dark curtain serving as the back-
ground. This is because we intended to compare the motor func-
tion of PD patients before and after L-dopa treatment, each PD
patient participated twice in this study. Therefore, we obtained a
sample of 36 effective subjects.

2.3. Gait imaging protocol

The image preprocessing was accomplished by the following
four steps: gait image clipping, background construction, subject
detection, and image normalizing and reshaping.

2.3.1. Video acquisition and gait image clipping

The environmental setup was shown in Fig. 1. A camcorder
(VPC-HD1010, Sanyo Corp., Ltd., Japan) was settled at the front
end of the pathway at approximately 4.5 m, perpendicular to the
subjects’ walking direction. Subjects stood upright on barefeet
and walked along a 4-m pathway at a self-selected speed upon a
verbal cue. After the experiments, all videos were clipped with a
sample rate of 15 frames/s and an image size of 320 x 240 pixels.
Because the subjects performed at different speeds, the extracted
clip numbers of these image sequences varied.

2.3.2. Image background construction and subject detection

First, the background models were constructed by taking photo-
graphs of the environments without subjects. Although there are
many image segmentation approaches (Haritaoglu et al., 2000;
Lu, 2006) for simplicity, we used the image difference and thres-
holding technique (Cho, Chao, Lin, & Chen, 2009) to segment the
subjects’ profiles. The differences between the background and
each of the frames of the subjects’ images were computed. The
absolute value of the difference was then calculated, such that
every pixel of the input image was judged to belong to the fore-
ground object pixel if the corresponding absolute value exceeded
a particular threshold. This threshold depended on the color con-
trast of the curtain and the clothing of the subjects and on the illu-
mination conditions. As a result, we binarized each of the images.
To obtain a more compact silhouette size, we projected the binary
image onto the vertical and horizontal axes (Cho et al., 2009). The
upper and lower bounds of the silhouette were computed by using
a threshold of 2% of the maximum projection amount. The resul-
tant images were normalized to the size of 64 x 64 pixels to fur-
ther reduce the computational costs. According to the study
reported by the previous study (Cho et al., 2009), not only the sub-
ject’s feet but also other parts of the body can contribute useful
information when judging a subject’s motion pattern of his gait;
therefore, we adopted the whole image of a subject instead of
ignoring parts of the subject’s body.

2.4. Dimension reduction of gait image
Principal component analysis (PCA) is a classic technique used

in statistical data analysis and features extraction and data com-
pression (Jolliffe, 2002). It is useful in reducing the dimensionality
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Table 1
The characteristics of PD patients and normal controls in this study.

PD patients Normal controls

Subject Age (year) Gender (M/  Weight L-dopa dose/treatment UPDRS III Drug UPDRS III Drug Age (year) Gender (M/  Weight
F) (kg) (mg) off on F) (kg)

1 44 M 73.5 125 10 8 52 M 52

2 61 F 74.7 375 44 26 50 M 71

3 67 M 71 187.5 46 35 57 M 54

4 65 M 72 250 25 23 48 M 72.5

5 57 M 61 250 52 49 67 F 56

6 59 M 71 187.5 21 16 57 F 65

7 57 M 56 250 28 24 48 F 51

8 68 M 68 250 26 18 51 F 60

9 59 F 46 3125 47 26 57 M 65

10 60 M 78 250 30 25 58 F 67

11 63 F 74 250 40 26 50 F 57

12 59 M 76.5 250 13 9 57 M 75.5

Mean+S.D 59.6+6.78 9M/3F 67 £9.7 243.7 +68.8 31.2+15.0 234 +12.2 544+58 6M/6F 62.2+9

The Hoehn and Yahr (H&Y) scale is referred to Drug off condition to drug on condition.

S.D., Standard deviation.

of image data by transforming them from a correlated high-dimen-
sional image vector to an uncorrelated low-dimensional image
vector. For image processing, the silhouette of a subject in an im-
age frame was originally represented as a binary matrix. We re-
shaped each of the obtained silhouettes as a vector form of
4096 x 1. Afterwards, we collected all the image vectors column-
wise and then computed the associated mean vector and covari-
ance matrix. After computing the eigenvectors of the covariance
matrix, we projected the original image vectors using the obtained
eigenvectors to form a new set of image vectors. We then reduced
the dimensionality of the image by ignoring the projected coeffi-
cients that resulted from eigenvectors with lower eigenvalues.

2.5. Classification using the half-length portrait feature

A person’s posture is often significantly different from that of
others, especially when comparing normal people to patients with
movement disorders. For example, healthy people or PD patients
may be in flexion, stooped, or have festinating or shuffling gaits.
For image processing, the subject’s gait in a video can be described
by x = x (t, c), where x is the image pixel matrix or, equivalently, a
reshaped image vector, t is the time and c is one of the classes. The
dimension reduction processing will project x (t,c) toy (t,c) in a
new space with a lower dimensionality. If we force each image clip,
either x (t, c) ory (t, c) of the same groups of people to be treated as
the same class, we can expect that the learned patterns will be the
static characteristics in the videos. The so-called static characteris-
tics are the half-length portraits (postures) of the subjects regard-
less of their dynamic behaviors. We believe that people with
specific characteristics, such as movement disorders, will keep
some parts of their essential profiles unchanged, which are differ-
ent from the characteristics of healthy people, even when they are
walking.

To perform the above dimension reduction and feature extrac-
tion, we chose a transformation to accomplish these two tasks. Par-
kinson’s Disease is typically diagnosed basing on the physician’s
assessment, we chose a supervised approach to extract gait fea-
tures because of the superiority of supervised methods of classifi-
cation. LDA (Cho et al., 2009; Huang, Harris, & Nixon, 1999) is such
an algorithm used to obtain these essentially static characteristics
because of the mechanism of the suppression of image clip differ-
ences of the same class. LDA simultaneously balances the maximi-
zation of the between-class variations with the minimization of the
within-class variations. Thus, the within-class variations due to

silhouette changing with time were minimized. We then expected
that the features obtained after LDA will indeed be the static pro-
files of the subjects.

As a result, we computed the between- and within-class matri-
ces, S, and S, respectively, and then solved S‘jv1 — S, to obtain the
LDA transformation matrix. We then computed the posture fea-
tures by projecting the dimension-reduced image vectors to the
new space generated by the eigenvectors of S,' —Sy. To classify
image feature vectors, the minimum distance classifier (MDC;
Duda et al., 2000) was used in this study for its simplicity.

2.6. Classification using lower limb feature

Gait patterns can vary widely, such as walking slowly, shuffling
with short steps, and so on. A very straightforward measurement
of the gait pattern by a vision system is the computation of the
time-varying step size sequence of a subject’s video. Furthermore,
because posture features rely heavily on the upper half-length por-
traits, the step size sequences, however, provided the complement
of posture feature by computing the dynamic stride range, which is
another important information posture cannot cover.

The step size sequences are the temporal information in the vid-
eos. However, due to variations in the gait speeds and step sizes of
different subjects, the analysis of the step size sequences is com-
plex. There are many feature extraction methods to deal with the
time-varying step size functions, such as wavelet and PCA. We
used fast Fourier transform (FFT) because it is time-independent
(Oppenheim et al., 1999). That is, the variations of time-shift
caused by the initiation of the subjects’ movement can be removed.
In addition, to increase the separability for MDC, we again used
LDA to map the power spectra onto a new space. This time, LDA
was used to improve the discrimination because the power spectra
of the step size sequences had lost their planar image properties.

2.7. Classification-based regression

Because LDA maximizes and minimizes the between- and with-
in-class variations simultaneously, the posture features were espe-
cially suitable for discrimination. For gait classification, we usually
have two classes: patients and normal control. However, for gait
regression, we divided the subjects into more classes of different
levels according to various rating scales, such as level 0, level 1, le-
vel 2, ..., level N. We then assigned each class a grade, such as 0, 1,
2,..., N, corresponding to the appropriate posture abnormality



Y.-Y. Chen et al./Expert Systems with Applications 39 (2012) 520-526 523

Starting and
Terminal Line

- Camcorder
" Orientation -~

Fig. 1. The environmental set-up and video recording standard.

degree. Thus, the posture abnormality index (PAI) can be simply
obtained by determining the level (class) of the given upper-length
portrait feature of a subject through MDC classification. Similarly,
we can also assign grades for lower limb movement abnormalities
to compute the foot movement abnormality index (FMAI) by sim-
ilar classification process as described above.

2.8. Regression using both PAI and FMAI

As described in the above section, we computed the two indices,
PAI and FMAI, for half-length and lower limb movement abnormal-
ity for human gait analysis. To proceed, we utilized the linear
regression model (Lin et al., 2009) for the assessment of overall
motor abnormality (MA) as shown in Fig. 2. The response (as deter-
mined by any rating scale or judgment by experts), PAI and FMAI
for each subject were fitted by

MA = B, + By x PAI + B, x FMAL (1)

where fo, 1 and B, were estimated using the minimum sum of
squares residual criterion. After fitting the model, we then evalu-
ated the correlation coefficients between the outcomes by Pearson’s
correlation coefficient.

2.9. The evaluation of regression model for the gait analysis of patients
with Parkinson’s Disease

The regression model for the gait analysis makes use of both
spatial and temporal features from gait image sequences. We first
individually evaluated the performance of PAI and FMAI by corre-
lating them with UPDRS records provided by doctors. We then fur-
ther investigated the performance of MA in the same way. Pearson
correlation, as the most widely used stochastic measure for the lin-
ear dependence of two variables, was used to evaluate the perfor-
mance of the above linear regression, and the equation was as
follows:

)

where ¥x; is the PAI and y; is one of the UPDRS Part III sub-scores, X
and y are the associated sample means, Sy and S, are the associated

standard deviations, N is the number of observations, and r is the
resultant correlation coefficient.

3. Experiments and results
3.1. Subject detection

To detect the subject, we first subtracted the background image
from each current image frame. Pixel candidates of the subjects’
silhouettes were then labeled to construct binary images to ensure
that the absolute values of the differences were larger than an
intensity threshold (10 in this case). The Regions of Interest (ROI)
were determined by projecting the binary images onto the vertical
and horizontal axes. We selected the ROI rectangles to be square
regions. Furthermore, the ROI were normalized to the size of a
64 x 64 matrix. We encoded the detected silhouette images to im-
age vectors.

The mean of the silhouette vectors was computed, and the
covariance matrix was then calculated. Accordingly, the eigen-
values and associated eigenvectors of the covariance matrix were
computed. Among the eigenvectors calculated, the first 280 eigen-
vectors that corresponded to the largest 280 eigenvalues (accumu-
lating 90% of the total variance) were selected as the basis of the
partial eigenspace. The image vectors were then projected onto
the obtained partial eigenspace to extract the PCA coefficients.

To further discriminate among each class of silhouette vector, the
PCA coefficients of the silhouette vectors were processed using LDA.
First, the mean vectors of each class and of the entire set of the vec-
tors on the partial eigenspace were computed. Then the ratio of be-
tween-class variance and within-class variance was maximized.
Accordingly, the ratios before and after LDA were 0.045 and 16.00,
respectively, clearly showing that LDA increased the ratio. Finally,
the LDA coefficients of the silhouette vectors were calculated.

3.2. Spatial feature extraction

We extracted the postural features using LDA and PCA for com-
parative purposes only. The resultant distributions of the four lev-
els of posture abnormality as determined by LDA are shown in
Fig. 3. It shows that postural features extracted by LDA had good
discriminative capability.

3.3. Correlation between PAI and sub-score 28 (Posture) in UPDRS
(Christopher et al., 2008)

Because all the subjects were grouped into four levels of pos-
tural abnormality, we computed the correlation coefficients to
sub-score 28 (Posture) in UPDRS Part III (Christopher et al.,
2008). Vision-based postural abnormality assessment using the
LDA algorithm was very consistent with the assessments of the
therapist. We found the significant correlation between sub-score
28 (Posture) in UPDRS Part III and PAI computed by means of
LDA discrimination (r = 0.92, p < 0.01 for all subjects). On the other
hand, the correlation coefficient by means of PCA discrimination
was moderate (r = 0.68, p < 0.01 for all subjects).

3.4. Temporal feature extraction

The sub-scores 26, 27, and 29-31 are closely related to the sub-
jects’ gait by foot movement. We computed the horizontal range of
the bright pixels for each subject’s binarized image. The dynamic
range functions of time were then transformed by FFT to obtain
power spectra. To assess the locomotor symptoms, power spectra
were further transformed by LDA for regression using a classifica-
tion-based technique. The resultant distributions of the seven
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Fig. 2. The illustration of the classification-based regression.
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Fig. 3. The distribution of the LDA coefficients of the four levels of postural
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Fig. 4. The distribution of the LDA coefficients of the seven levels of postural
abnormality of the subjects.

levels (0-6) of foot-movement-related features extracted by LDA
are shown in Fig. 4, which shows that foot-movement-related fea-
tures extracted by LDA had good ability to separate these groups of
temporal features.

3.5. Correlation between FMAI and sum of sub-scores 26, 27, 29, 30,
and 31 in UPDRS (Christopher et al., 2008)

Because all the subjects were grouped into seven levels of pos-
tural abnormality, we computed the correlation coefficients to sub-
scores in UPDRS Part Il (Christopher et al., 2008). Vision-based
postural abnormality assessment using the LDA algorithm was
very consistent with the assessments of the therapist. We also
found the significant correlation between the sum of sub-scores
26,27,29, 30, and 31 in UPDRS and FMAI by means of LDA discrim-
ination (r=0.98,p <0.01 for all subjects). On the other hand, the
correlation coefficient by means of PCA discrimination was moder-
ate (r=0.71, p < 0.01 for all subjects).

3.6. Assessment by linear regression using both PAI and FMAI

Here we further integrated the two above techniques to assess
the impairment of PD patients in terms of overall motor ability. We
obtained the linear regression parameters o =2.29, 1 =4.17 and
f2=6.29. We show in Fig. 5 the correspondence of the subjects’
motor impairment score as assessed by our method using linear
regression (x-axis) and by the therapist using UPDRS Part III (y-
axis). The detailed training and testing results using cross-valida-
tion are shown in Table 2, and the very significant correlation in
the training phase can be observed.

For comparison, we also implemented some traditional meth-
ods using features such as stride time and stride length. We sum-
marize the correlation using stride length, stride time and our
method in Table 3, which shows that the linear regression method
utilizing both posture and foot-movement outperformed the other
methods.

4. Discussion

We proposed a novel regression approach to evaluate the de-
gree of abnormality in the gait of movement disorder patients.

50

40

20

10

Score Assessed by UPDRS Part lll

0 TS 1 = 1 L L
0 10 20 30 40 50

Score Assessed by Our Method

Fig. 5. The correlation of the subjects’ motor impairment score (green rectangles
and red circles for PD and normal subjects, respectively) assessed by the regression
model for the PD gait and by the therapist using UPDRS Part III. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Table 2
The training and testing results.
Phase Correlation coefficients (r) p-Value
Trial 1 Training 0.95 <0.0001
Testing 0.86 <0.0001
Trial 2 Training 0.89 <0.0001
Testing 0.83 <0.0001
Average Training 0.92 <0.0001
Testing 0.85 <0.0001
Table 3

The mean and standard deviation of the traditional gait parameters. For each
parameter, the correlation coefficients to UPDRS-P3 were calculated.

Statistics  Stride length Stride time Regression model for the PD
(pix) (s) gait
Mean 19.4100 1.1593 17.61
(pix)
Std. (pix)  1.2500 0.1740 14.06
Corr. -0.5116 0.1172 0.8451
coeff.
p-Value 0.0014 1.1556 <0.0001

Traditionally, the evaluation is accomplished by interviews and
strongly relies on expertise of the physicians (National Parkinson
Foundation, 2009). Engineering-based methods are more objective.
Most researchers (Chien et al., 2006; Gafurov et al., 2006; Salarian
et al., 2004) use a number of sensors to capture gait dynamics by
recording various signals. Vision-based methods (Yam et al,
2002; Zhang et al., 2007) provide an inexpensive and more com-
fortable way for experimenters to evaluate the static and dynamic
characteristics from the videos of patients. However, there are a
limited number of studies on the problems with assessment meth-
ods. From the results, our method could provide a very accurate
and objective assessment of the degree of motor impairment (as
listed in Table 3, significant correlation r = 0.85 with p < 0.01 com-
pared to the doctor’s rating records). The method outperformed
classical method using either stride time or stride length features.

The linear regression model was developed in the pre-computer
age of statistics, but it is still a very effective way of modeling the
relationship between the predictors and responses. However, for
the application of movement disorder assessment using the mon-
ocular image sequence, the model would have failed if we directly
fitted it with spatio-temporal information from subjects’ videos
and UPDRS data due to the large number of variables, high variance
in prediction and low interpretation capability. Investigation of the
essential correlation between UPDRS and postural and dynamic
stride information is straightforward, but the drawback of large
numbers of data remains. As reported by Cho et al. (2009), the vi-
sion-based pattern recognition technique could be utilized to dif-
ferentiate between PD patients and healthy people with very
high accuracy. However, the study did not provide a quantitative
approach to assess the degree of abnormality in PD patients. Thus,
in this paper we used UPDRS to train a system to achieve this goal.
For example, if an instance of posture information was classified as
the third class of abnormality, we knew that the instance would be
calculated to have a grade of 3 —1 =2 for posture abnormality.
Similarly, we evaluated the dynamic stride abnormality by classi-
fying each instance. Hence, we then used the linear regression
model to fit the UPDRS Part IIl database with the posture and dy-
namic stride abnormality data.

Finally, we developed a PD gait regression system that is capable
of predicting the abnormality degree from gait image sequences.
We used a model-free strategy and thus avoided the critical de-
mands of segmentation and parameter estimation. Furthermore,

we used LDA to increase the feature efficiency by maximizing and
minimizing the between- and within-group variations. According
to the experiments, the outcomes significantly correlated to the
sum of the UPDRS Part Il sub-scores with r = 0.92 and 0.85 for train-
ing and testing, respectively, with p < 0.0001. Compared with con-
ventional methods, our system provided a better evaluation of PD
abnormality.
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