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A dome-shaped layer can be selected as a storage site for fluid injection. In this study, we develop a
mathematical model for simulating transient head distribution in a heterogeneous and anisotropic
dome-shaped layer due to a constant-head injection in a fully penetrating well. In the model, a form
of step change is adopted to approximate the upper and lower boundaries of the dome and then the layer
is split into two regions. The Laplace-domain solution of the model is developed using the Laplace trans-
form and method of separation of variables. The transient injection rate at wellbore can then be obtained
based on Darcy’s law and Bromwich integral method. The predicted head contours from the head solution
show significant vertical flow components near the location of step change in the dome reservoir. The
results of sensitivity analysis indicate that the hydraulic conductivity is the most sensitive parameter
and the specific storage is the least sensitive one to the injection rate after a short period of injection time.
In addition, the injection rate for a dome reservoir is also very sensitive to the change of the height for the
reservoir near the injection well (first region) at a very early injection time. In contrast, the injection rate
is more sensitive to the change of the height of the second region than that of the first region at late time.
This analytical solution may be used as a primary tool to assess the capacity of fluid injection to various
dome reservoirs.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A salt dome, known as a diapir, with a dual convex-upward
structure is usually produced by vertical crustal movements of
gravitational forces acting on a salt bed which has a lower density
than surrounding material [1]. Since a salt dome gives a physical
trapping mechanism [2], it may naturally be considered as an oil
reservoir [3,4] or selected as a storage site for injection of liquid
waste or carbon dioxide (CO2) [2,4]. Accordingly, there is a need
to develop a tool to assess the storage capacity or analyze the flow
field due to underground injection.

Some mathematical models had been developed for describing
the behavior of flow field due to pumping or injecting in horizontal
aquifers. Nordbotten et al. [5] developed analytical solutions to
estimate leakage from abandoned wells near injecting wells in
multiple-layer aquifers during the process of waste injection.
Kirkham [6] derived an analytical solution for investigating
steady-state head distribution for a constant-head injection in a
confined aquifer with a finite-radius and partially penetrating well.
Using a similar solution procedure proposed by Kirkham [6],
Javandel and Zaghi [7] developed an analytical solution to describe
steady-state head distribution due to constant-head extraction
ll rights reserved.
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from an extended well which has a finite thickness disk at the bot-
tom of the aquifer.

Most of domes are formed with bent shape due to regional com-
pression. Al-Mohannadi et al. [8] used a finite-difference model to
analyze the behavior of the flow field induced from an injecting
well in a single-layer dome. They found that the curve boundary
of anticline has significant effects on fluid injection. Yeh and Kuo
[9] used a step change approach to approximate the upper curve
boundary of a single-layer anticline in which the lower boundary
is flat. Based on this approximation, they developed an analytical
solution for describing steady-state head distribution induced from
injection or extraction in a fully penetrating well.

The objective of this paper is to develop a mathematical model
for simulating transient flow in a dome reservoir fully penetrated
by an injecting well under constant head condition. The step
change approach is employed to approximate the upper and lower
curved boundaries of the dome reservoir. The domain in radial
direction is then divided into two regions where the first region
starts from the rim of well radius and the other extends infinitely
from the interface between these two regions. The Laplace-domain
solution of the model is first developed for describing the transient
head distribution in the dome reservoir. Then, the time domain
results for the head distribution are evaluated using the Stehfest
algorithm [10]. Furthermore, the solution in time domain for
describing transient injection rate at the wellbore can be acquired
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Nomenclature

a0 constant used in (13) and (14)
am constants used in (13)
bn constants used in (14)
~c1; ~c2; ~c3 constants defined by (B4)
m, n positive integers
p Laplace variable
r radial coordinate
r1 distance from the center of the injection well to the

interface between regions 1 and 2 (trap width)
r2 well radius
r0 radius from the origin defined in complex plane
hi heads used in (1)
h1 head for region 1
h2 head for region 2
sw head at the wellbore
�hi heads used in (A1)
�h1 head used in (13)
�h2 head used in (14)
t time
u dummy variable
z vertical coordinate
z0 z1 + D1 or z2 + D2

z1 aquifer thickness of region 1
z2 aquifer thickness of region 2
ze z1 � D2 or z2 � D1

I0 modified Bessel function of the first kind of order zero
I1 modified Bessel function of the first kind of order one
J0 modified Bessel function of the first kind of order zero
J1 modified Bessel function of the first kind of order one
K0 modified Bessel function of the second kind of order

zero
K1 modified Bessel function of the second kind of order one
Pi the ith parameter used in (25) and (26)
Qw(p) volumetric flow rate in Laplace domain defined by (C3)
Qw(t) volumetric flow rate in time domain defined by (20)
Si,t normalized sensitivity at time t for the ith parameter

defined by (26)
SPi sensitivity for the ith parameter defined by (25)

Ssi specific storage where i = 1 for regions 1 and 2 for region
2

V1, V2 volumes bounded by the upper boundary and its
approximate form of step change in reservoir thickness
as shown in Fig. 1

V3, V4 volumes bounded by the lower boundary and its
approximate form of step change in reservoir thickness
as shown in Fig. 1

Y0 modified Bessel function of the second kind of order
zero

Y1 modified Bessel function of the second kind of order one
a1

ffiffiffiffiffiffiffi
jz1
p

mp=
ffiffiffiffiffiffiffi
jr1
p

z1

a2
ffiffiffiffiffiffiffi
jz2
p

mp=
ffiffiffiffiffiffiffi
jr2
p

z2

b1 mp/z1

b2 np/z2

v0 function of I0 and K0 defined by (15)
v1 function of I0, I1, K0 and K1 defined by (B5)
jzi vertical hydraulic conductivities where i = 1 for region 1

and 2 for region 2
jri radial hydraulic conductivities where i = 1 for region 1

and 2 for region 2
l0 function of I0 and K0 defined by (16)
l1 function of I0, I1, K0 and K1 defined by (B6)
r0 function of K0 defined by (18)
r1 function of K0 and K1 defined by (B7)
1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSsi=jri

p
where i = 1 for region 1 and 2 for region 2

s0 function of I0 and K0 defined by (17)
s1 function of I0, I1, K0 and K1 defined by (B8)
x0 function of K0 defined by (19)
x1 function of K0 and K1 defined by (B9)
nm, gn constants defined by (B4)
D1 trap height of the lower boundary of a dome reservoir
D2 trap height of the upper boundary of a dome reservoir
U function of J0, J1, Y0 and Y1 defined by (21)
K function of J0, J1, Y0 and Y1 defined by (22)
P function of J0, J1, Y0 and Y1 defined by (23)
X function of J0, J1, Y0 and Y1 defined by (24)
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based on Darcy’s law and Bromwich integral method [11]. The spa-
tial head distributions at two different times are plotted to inves-
tigate the influence of convex-upward boundaries when
compared with those of the horizontal reservoir. The effects of
the trap width and thickness of dome reservoir on the injection
rate are also examined. In addition, the sensitivity analysis for
studying the influence of the change of hydraulic conductivity or
specific storage coefficient on the injection rate is performed.
2. Mathematical model

2.1. Conceptual model

Fig. 1 shows a schematic representation for an injection well
with a radius of rw located at the center of a dome reservoir with
a convex-upward bend. The origin of the coordinate passes
through the center of the dome structure. The upper and lower
curved boundaries of the dome represented by solid lines are
approximated by the form of step change denoted as dashed lines
shown in Fig. 1. The volume V1 between the dashed line and solid
line should be equal to V3. Similarly, V2 should equal V4. The D1 and
D2 represent the trap heights of the lower and upper boundaries of
the dome, respectively. The reservoir is divided into two regions,
i.e., regions 1 and 2, with different hydraulic properties produced
due to regional compression. The r1 is the trap width measured
from the center of the injection well to the interface between re-
gions 1 and 2. The thicknesses of the dome in regions 1 and 2
are denoted as z1 and z2, respectively.

The governing equations depicting transient head distributions
hi in both two regions are expressed as [12]

jri

r
@

@r
r
@hi

@r

� �
þ jzi

@2hi

@z2 ¼ Ssi
@hi

@t
for i ¼ 1;2; ð1Þ

where t represents time; r and z are the variables of radial and axial
coordinates, respectively; jri and jzi denote the hydraulic conduc-
tivities in radial and z direction, respectively, for ith region; Ssi

means specific storage; and i = 1 for region 1 and 2 for region 2.
The head distribution in the dome reservoir before the injection

is considered as uniform. Therefore the initial condition is ex-
pressed as

hiðr; z;0Þ ¼ 0 for i ¼ 1;2: ð2Þ

The head at the wellbore is kept constant as hw and thus the bound-
ary condition at r = rw is expressed as



Fig. 1. Schematic representation of a dome reservoir with dual convex-upward boundaries.
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h1ðrw; z; tÞ ¼ hw for D1 6 z 6 z0: ð3Þ

The remote boundary is

h2ð1; z; tÞ ¼ 0 for 0 6 z 6 z2; ð4Þ

implying that the head is not affected by the injection.
The upper boundary of the reservoir is impermeable and thus

the related boundary conditions are expressed as:

@h1ðr; z0; tÞ
@z

¼ 0 for rw 6 r 6 r1 ð5Þ

and

@h2ðr; z2; tÞ
@z

¼ 0 for r1 6 r 61: ð6Þ

Similarly, the lower boundary conditions for the dome reservoir are
expressed as:

@h1ðr;D1; tÞ
@z

¼ 0 for rw 6 r 6 r1 ð7Þ

and

@h2ðr;0; tÞ
@z

¼ 0 for r1 6 r 61: ð8Þ

Two no-flow conditions due to the step form approximation to
the upper and lower boundaries at r = r1 are necessary and listed as
follows.

@h1ðr1; z; tÞ
@r

¼ 0 for z2 6 z 6 z0 ð9Þ

and

@h2ðr1; z; tÞ
@r

¼ 0 for 0 6 z 6 D1: ð10Þ

In addition, two continuity conditions are required at r = r1. One is
the continuity of the head expressed as

h1ðr1; z; tÞ ¼ h2ðr1; z; tÞ for D1 6 z 6 z2; ð11Þ

while the other is the continuity of the flux written as

jr1
@h1ðr1; z; tÞ

@r
¼ jr2

@h2ðr1; z; tÞ
@r

for D1 6 z 6 z2: ð12Þ
It is noted that the approximation of the upper and lower
curved boundaries of the dome by the forms of step change intro-
duces four conditions required at the interface between regions 1
and 2 as Eqs. (9)–(12).

2.2. Laplace-domain solutions for head distributions

The Laplace-domain solutions for the head distributions in both
regions, �h1 and �h2, can be obtained by applying Laplace transform,
separation of variables, and Fourier series to Eqs. (1)–(12) and the
results can be written as

�h1 ¼
hw

p
v0ð11rÞ � a0l0ð11rÞ �

X
m

ams0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r

� �
cos½b1ðz� D1Þ�

ð13Þ

and

�h2 ¼ �a0r0ð12rÞ �
X

n

bnx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r

� �
cosðb2zÞ; ð14Þ

where a0, am, and bn are unknown coefficients, 11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSs1=jr1

p
;

12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSs2=jr2

p
; a1 ¼

ffiffiffiffiffiffiffi
jz1
p

mp=
ffiffiffiffiffiffiffi
jr1
p

z1; a2 ¼
ffiffiffiffiffiffiffi
jz2
p

np=
ffiffiffiffiffiffiffi
jr2
p

z2; b1 ¼
mp=z1; b2 ¼ np=z2; m and n are positive integers (i.e., 1,2,3, . . .);
v0, l0, s0, r0 and x0 are lumped parameters, respectively defined as
v0ð11rÞ ¼ K0ð11rÞI0ð11r1Þ � I0ð11rÞK0ð11r1Þ
K0ð11rwÞI0ð11r1Þ � I0ð11rwÞK0ð11r1Þ

; ð15Þ

l0ð11rÞ ¼ K0ð11rÞI0ð11rwÞ � I0ð11rÞK0ð11rwÞ
K0ð11r1ÞI0ð11rwÞ � I0ð11r1ÞK0ð11rwÞ

; ð16Þ

s0ð11rÞ¼
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �
� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r1

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �
� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� � ;
ð17Þ

r0ð12rÞ ¼ K0ð12rÞ
K0ð12r1Þ

ð18Þ
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and

x0ð12rÞ ¼
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r1

� � ; ð19Þ

in which I0 and K0 are the modified Bessel functions of the first and
second kinds with order zero, respectively. The detailed develop-
ment for the solutions of Eqs. (13) and (14) is presented in Appendix
A. In addition, the determination of coefficients a0, am and bn in Eqs.
(13) and (14) is shown in Appendix B.

2.3. Time-domain solution for injection rate

Applying Darcy’s law to Eq. (13) and using the Bromwich inte-
gral method [11] to the result yields the solution for the injection
rate. Note that the application of the Bromwich integral method for
the Laplace-domain solution to find the time-domain solution can
be seen, for example, in Yang and Yeh 2002 [13]. A detailed proce-
dure for deriving the time-domain solution is given in Appendix C
and the result is

Q wðtÞ ¼ 4jr1rwz1hw

Z 1

0

K �P�U �X
U2 þK2 e�

jr1u2

Ss1
t du ð20Þ

with

U ¼ ðz2 � z1ÞJ0ður1ÞJ1ður1ÞY0ðurwÞ þ J0ðurwÞ½z1J0ður1ÞY1ður1Þ
� z2J1ður1ÞY0ður1Þ�; ð21Þ

K ¼ ½ðz1 � z2ÞJ0ðurwÞY0ður1Þ þ z2J0ður1ÞY0ðurwÞ�Y1ður1Þ
� z1J1ður1ÞY0ður1ÞY0ðurwÞ; ð22Þ

P ¼ ½z2J1ðurwÞY0ður1Þ þ ðz1 � z2ÞJ0ður1ÞY1ðurwÞ�J1ður1Þ
� z1J0ður1ÞJ1ðurwÞY1ður1Þ; ð23Þ

X ¼ ðz2 � z1ÞJ1ðurwÞY0ður1ÞY1ður1Þ þ z1J1ður1ÞY0ður1Þ
� z2J0ður1ÞY1ður1ÞY1ðurwÞ; ð24Þ

where u is a dummy variable for the integration; J0 and Y0 are the
modified Bessel functions of the first and second kinds with order
zero, respectively; J1 and Y1 are the modified Bessel functions of
the first and second kinds with order one, respectively. It is note-
worthy that the injection rate is proportional to hw according to
Eq. (20).

2.4. Sensitivity analysis

The sensitivity analysis is performed herein to investigate the
change of injection rate in response to the change of aquifer
parameter or dome geometry. The sensitivity of the wellbore flow
rate to a specific parameter can be expressed as

SPi ¼
@Q w

@Pi
; ð25Þ

where Pi represents the ith parameter in Eq. (20). A dimensionless
form of the sensitivity may be written as [14]

Si;t ¼
@Q w=Q w

@Pi=Pi
; ð26Þ

where Si,t is the normalized sensitivity coefficient at time t for the
ith parameter.
3. Results and discussion

Following sections present the investigations of the head distri-
bution near the location of step change, the effect of geometry of
the dome reservoir, and the sensitivity analysis for the injection
rate in regard to the aquifer parameters and the heights of dome
reservoir. The dome reservoir is considered to be homogeneous
and isotropic (i.e.,jr1 = jr2 = jr, jz1 = jz2 = jz and Ss1 = Ss2 = Ss) in
this study. The issue regarding the effect of aquifer heterogeneity
or anisotropy of an anticline on the head distribution can be re-
ferred to the work of Yeh and Kuo [9]. The hydraulic conductivity
and specific storage are assumed to be 1 m/day and 10�5 m�1,
respectively. The thicknesses of this reservoir for both regions are
chosen as 40 m. The trap width is 100 m and both trap heights
for the lower and upper boundary are 10 m. The fully penetrating
well has the radius of 0.2 m. The head at the wellbore is considered
to be 50 m which equals 9.36 Mpa under a normal condition of CO2

injection [9].

3.1. Spatial and temporal head distribution

The head distribution in time domain can be obtained based on
Eqs. (13) and (14) and Stehfest algorithm [12,10]. Fig. 2(a) shows
the simulation results of spatial head distribution at t = 30 and
365 days for rw = 0.2 m, r1 = 100 m, z0 = 50 m, z1 = z2 = 40 m,
hw = 50 m, jr = jz = 1 m/day and Ss = 10�5 m�1. Note that this is a
homogeneous and isotropic case when applying the present solu-
tion developed for heterogeneous and anisotropic media. The con-
tours of the head distribution are vertical and the flow is horizontal
in the reservoir except near the spot of step change where some
significant vertical flow components can be observed. In contrast,
Fig. 2(b) indicates that the flow is all horizontal for the flat aquifer
and its flow velocity is slightly higher than that in the dome
reservoir.

3.2. Effect of reservoir geometry on injection rate

This section investigates the effects of the trap width and thick-
ness of dome on the injection rate. Fig. 3 presents the temporal
injection rate for rw = 0.2 m, hw = 50 m, jr = 1 m/day, Ss = 10�5 m�1

for r1 at 100 m and 2000 m and z1 = z2 of 40 m and 45 m. The figure
shows that the injection rates decreases with increasing time. For
r1 = 100 m, the dome with a larger z1 has a larger injection rate
than that with a smaller z1. This is because the thicker dome has
a larger volume to store the injected fluid. In addition, for z1 = z2

of 40 m, the curves of injection rate are the same, indicating that
the location of r1 has no effect on the injection rate if the dome vol-
ume is fixed.

The effects of different thicknesses in regions 1 and 2 on injec-
tion rate are examined. Fig. 4 shows the temporal injection rate for
various values of z1 and z2. For the same z2 of 20 m or 40 m, the
dome with a larger z1 has significantly larger injection rate than
that with a smaller z1. However, for the same z1 of 20 m or 40 m,
the differences of injection rate are very small. Such a result indi-
cates that z1 is a more important parameter than z2 in storing
the injected fluid.

Fig. 5 displays the temporal injection rate per unit thickness (Q/
z1) for the cases that r1 = 100 m and 2000 m with z1/z2 = 0.5, 1, and
2. The values of Q/z1 for different values of z1/z2 are almost identi-
cal before t = 0.02 days for r1 = 100 m, indicating the domes with
the same z1 but different z2 have the same injection rate Q before
that time. After t = 0.02 days, the curve with a smaller z1/z2 has a
larger Q/z1 reflecting that a dome with a larger z2 has larger capac-
ity than that with a smaller z2 to store more injected fluid after



Fig. 2. Spatial head distribution for (a) a dome reservoir and (b) a horizontal reservoir with rw = 0.2 m, r1 = 100 m, z1 = z2 = 40 m, hw = 50 m, jr = 1 m/day and Ss = 10�5 m�1 at
t = 30 days (solid lines) and t = 365 days (dashed lines).

Fig. 3. Temporal injection rate for rw = 0.2 m, sw = 50 m, jr = 1 m/day, Ss = 10�5 m�1

with r1 = 100 m and 2000 m when z1 = z2.

Fig. 4. Temporal injection rate for rw = 0.2 m, sw = 50 m, jr = 1 m/day, Ss = 10�5 m�1,
r1 = 100 m with z1 and z2 = 20 m and 40 m.
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t = 0.02 days. Similarly, the values of Q/z1 for different values of z1/
z2 are almost identical before t = 10 days and start to deviate from
each other after that time for r1 = 2000 m. Physically, those results
indicate the injected fluid reaches the interface between regions 1
and 2 at time of 0.02 days for r1 = 100 m and at time of 10 days for
r1 = 2000 m. Note that the data for the case that r1 = 2000 m are ta-
ken form Li [15] for a salt dome in the Gulf of Mexico.

3.3. Sensitivity analysis

In this section, sensitivity analysis is performed to examine the
responses of injection rate to the relative changes in various
parameters. Fig. 6 shows the temporal normalized sensitivity
coefficient of the injection rate evaluated by Eq. (26) to the param-
eters jr, Ss, z1 and z2 for r1 = 100 m and 2000 m. The figure shows
that z1, the thickness of the dome (region 1), is the most sensitive
parameter at the very early period of injection. Within this period,
the relative change in injection is exactly equal to the relative
change in z1, indicating that z1 is the dominate and most important
parameter at early injection time. After about 0.1 days, the normal-
ized sensitivity coefficient for jr becomes the largest all the time,
indicating that the injection rate is the most sensitive to the rela-
tive change in jr among those parameters. In contrast, the injec-
tion rate is almost insensitive to the relative change in Ss because
of its small normalized sensitivity coefficient. Naturally, the Ss

therefore allows higher degree of uncertainty in estimation. It is



Fig. 6. The temporal normalized sensitivity coefficients of the parameters jr, Ss, z1

and z2 for r1 = 100 m and 2000 m.

Fig. 5. Temporal injection rate per unit thickness z1 for rw = 0.2 m, sw = 50 m,
jr = 1 m/day, Ss = 10�5 m�1 with z1/z2 = 0.5, 1, and 2 when r1 = 100 m and 2000 m.
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worth noting that the normalized sensitivity of Ss is high at very
early time of injection and gradually declines and finally ap-
proaches a constant. Such a high sensitivity of Ss reflects the elastic
behavior of aquifers instantaneously in response to the injection.

It is interesting to note that, for r1 = 100 m, the normalized sen-
sitivity coefficient to z1 starts to decrease but the one to z2 begins
to increase when t = 0.02 days. This result indicates that the effect
of z1 on the injection rate is very short and quickly decreases as
time progresses. However, the impact of z1 on the injection rate
is still strong until the time reaches 104 days. One can observe that
the sensitivity coefficient curves for z1 and z2 crisscross at
t = 104 days, indicating that the injection rate is more sensitive to
the relative change of z2 than that of z1 afterward. On the other
hand, the curves of normalized sensitivity coefficients to the
parameters z1 and z2 for r1 = 2000 m occurring after t=10 days have
similar patterns to those of the case for r1 = 100 m. Obviously, a lar-
ger value of r1 delays the response time of the injection rate to the
relative changes of z1 and z2. Interestingly, Fig. 6 also reveals that
the injected fluid arrives at the interface between regions 1 and
2 near the time of 0.02 days for r1 = 100 m and about 10 days for
2000 m.
4. Concluding remarks

A new mathematical model is developed for describing spatial
head distribution in a heterogeneous and anisotropic dome reser-
voir. A form of step change is adopted to approximate the shape
of dome reservoirs with dual convex-upward boundaries. The
semi-analytical solution of head distribution is derived by Fourier
series and Laplace transform. Then, the time-domain results for
the head distribution are evaluated by Stehfest algorithm and the
time-domain solution for the injection rate at wellbore is
developed based on Darcy’s law and the Bromwich integral meth-
od. The effects of geometry of reservoir and hydraulic parameters
on the injection rate are investigated. The present solutions can
be applied to assess the capacity of fluid storage in dome reser-
voirs. Several conclusions shown below can be drawn from this
study.

1. A transient flow field in a dome reservoir is produced after the
start of injection. The flow has a vertical component near the
step change while the flow is horizontal for the region far away
from the change. In addition, the flow velocity in a horizontal
reservoir is slightly higher than that in the dome reservoir.

2. The thickness of dome reservoir has a significant effect on the
injection rate because of much storage while the location of
step change has no effect on the injection rate due to a fixed
reservoir volume. It also indicates that the thickness of the
convex-upward structure of a dome is a more important param-
eter than that of horizontal structure in storing the injected
fluid.

3. The temporal injection rate per unit thickness for various reser-
voir geometries is dominated strongly by the trap width. As
increasing the trap width, the time-lag effect on injected fluid
in progress to escape from the trap region of a dome is enlarged.

4. The results of normalized sensitivity analysis indicate that the
injection rate is the most sensitive to the relative change in
hydraulic conductivity and the least sensitive to the relative
change in specific storage after a short period of injection time.
On the other hand, it is necessary for marking a higher sensitiv-
ity of Ss at very early time of injection because this reveals the
elastic mechanics in aquifers instantaneously owing to the
injection.
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Appendix A. Development for head solutions of Eqs. (13)
and (14)

Applying Laplace transform to Eqs. (1)–(12) results in the flow
equation and associated boundary and continuity conditions in
terms of r and z as
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jri

r
@

@r
r
@�hi

@r

 !
þ jzi

@2�hi

@z2 ¼ Ssp�hi for i ¼ 1;2; ðA1Þ

�h1ðrw; z;pÞ ¼
hw

p
for D1 6 z 6 z0; ðA2Þ

�h2ð1; z;pÞ ¼ 0 for 0 6 z 6 z2; ðA3Þ

@�h1ðr; z0; pÞ
@z

¼ 0 for rw 6 r 6 r1; ðA4Þ

@�h1ðr1; z; pÞ
@r

¼ 0 for z2 6 z 6 z0; ðA5Þ

@�h2ðr; z2; pÞ
@z

¼ 0 for r1 6 r 61; ðA6Þ

@�h1ðr;D1; pÞ
@z

¼ 0 for rw 6 r 6 r1; ðA7Þ

@�h2ðr1; z; pÞ
@r

¼ 0 for 0 6 z 6 D1; ðA8Þ

@�h2ðr;0; pÞ
@z

¼ 0 for r1 6 r 61; ðA9Þ

�h1ðr1; z; pÞ ¼ �h2ðr1; z;pÞ for D1 6 z 6 z2; ðA10Þ

jr1
@�h1ðr1; z; pÞ

@r
¼ jr2

@�h2ðr1; z;pÞ
@r

for D1 6 z 6 z2: ðA11Þ

The solution of Eq. (A1) in Laplace domain for i = 1 after apply-
ing the method of separation of variables with Eqs. (A4) and (A7) is
�h1 ¼E0I0ð11rÞ þ F0K0ð11rÞ

þ
X

m

EmI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
r

� �
þ FmK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
r

� �� �
cos½b1ðz�D1Þ�;

ðA12Þ

where E0, F0, Em and Fm are unknown coefficients. Substituting Eq.
(A12) into (A2) leads to
�hw

p
¼E0I0ð11rwÞþF0K0ð11rwÞ

þ
X

m

EmI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �
þFmK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �� �
cos½b1ðz�D1Þ�:

ðA13Þ
The bracket term in Eq. (A13) should be zero because the left-hand
side of Eq. (A13) is independent of z. That is

EmI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
rw

� �
þ FmK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
rw

� �
¼ 0 ðA14Þ

and

hw

p
¼ E0I0ð11rwÞ þ F0K0ð11rwÞ: ðA15Þ

With substituting r = r1 into Eq. (A12), the head at r = r1 can be
written as

�WðzÞ ¼E0I0ð11r1Þ þ F0K0ð11r1Þ

þ
X

m

EmI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
r1

� �
þ FmK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
r1

� �� �
cos½b1ðz�D1Þ�:

ðA16Þ

The bracket term in Eq. (A16) is represented by an unknown
constant, am, as
am ¼ � EmI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �
þ FmK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �� �
: ðA17Þ

A coefficient of Fourier series determined by integrating Eq. (A16)
with respect to z from zero to z0 can be obtained as [16]

a0 ¼ �
1
z0

Z z0

0
WðzÞdz ¼ �½E0I0ð11r1Þ þ F0K0ð11r1Þ�: ðA18Þ

Note that the result of integration for the last term of Eq. (A16) is
zero.

The constants E0 and F0 can be gotten from solving Eqs. (A15)
and (A18) as

E0 ¼
ðhw=pÞK0ð11r1Þ þ a0K0ð11rwÞ

K0ð11r1ÞI0ð11rwÞ � I0ð11r1ÞK0ð11rwÞ
ðA19Þ

and

F0 ¼
ðhw=pÞI0ð11r1Þ þ a0I0ð11rwÞ

K0ð11rwÞI0ð11r1Þ � I0ð11rwÞK0ð11r1Þ
: ðA20Þ

Moreover, the constants Em and Fm are solved from Eqs. (A14) and
(A17) as

Em ¼
amK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
rw

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
r1

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
rw

� �
� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
rw

� �
ðA21Þ

and

Fm ¼
�amI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r1

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� �
� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� � :
ðA22Þ

Substituting Eqs. (A19)–(A22) into Eq. (A12) leads to Eq. (13).
Similarly, the solution of Eq. (A1) for i = 2 in Laplace domain

with Eqs. (A6) and (A9) can be obtained as

�h2 ¼ E0I0ð12rÞ þ F0K0ð12rÞ

þ
X

n

EnI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r

� �
þ FnK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r

� �� �
cosðb2zÞ;

ðA23Þ

where E0, F0, En and Fn are unknown coefficients. Both E0 and En

should be zero due to the remote boundary condition Eq. (A3). Eq.
(A23) is therefore written as

�h2 ¼ F0K0ð12rÞ þ
X

n

FnK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r

� �
cosðb2zÞ: ðA24Þ

Let r = r1 in Eq. (A24), the head at r = r1 can then be expressed as

WðzÞ ¼ F0K0ð12r1Þ þ
X

n

FnK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r1

� �
cosðb2zÞ: ðA25Þ

According to the determination of a coefficient of Fourier series, one
can get

a0 ¼ �
1
z0

Z z0

0
WðzÞdz ¼ �F0K0ð12r1Þ: ðA26Þ

Thus, one can obtain

F0 ¼ �a0=K0ð12r1Þ: ðA27Þ

Assume that bn ¼ �FnK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r1

� �
. Thus, one can write

Fn ¼ �bn=K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r1

� �
: ðA28Þ

Finally, Eq. (14) can be obtained after substituting Eqs. (A27) and
(A28) into Eq. (A24).
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Appendix B. Evaluation of coefficients a0, am and bn

The unknowns a0 and am can be obtained based on the bound-
ary conditions (Eqs. (A5) and (A8)) as well as the requirement of
continuity of flux (Eq. (A11)). Substituting Eq. (13) into Eq. (A8)
results in

~c3a0 þ
X

n

bngn cosðb2zÞ ¼ 0 for 0 6 z 6 D1: ðB1Þ

Substituting Eqs. (13) and (14) into Eq. (A11) gives

�~c1
hw

p
þ ~c2a0 þ

X
m

amnm cos½b1ðz� D1Þ�

¼ ~c3a0 þ
X

n

bngn cosðb2zÞ for D1 6 z 6 z2: ðB2Þ

Placing Eq. (14) in Eq. (A5) leads to

�~c1
hw

p
þ ~c2a0 þ

X
m

amnm cos½b1ðz� D1Þ� ¼ 0 for z2 6 z 6 z0

ðB3Þ

with

~c1 ¼ 11v1ð11r1Þ; ~c2 ¼ 11l1ð11r1Þ; ~c3 ¼ 12r1ð12r1Þ;

nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �
; gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
2

q
r1

� �
;

ðB4Þ

v1ð11r1Þ ¼
K1ð11r1ÞI0ð11r1Þ þ I1ð11r1ÞK0ð11r1Þ
K0ð11rwÞI0ð11r1Þ � I0ð11rwÞK0ð11r1Þ

; ðB5Þ

l1ð11r1Þ ¼
K1ð11r1ÞI0ð11rwÞ þ I1ð11r1ÞK0ð11rwÞ
K0ð11r1ÞI0ð11rwÞ � I0ð11r1ÞK0ð11rwÞ

; ðB6Þ

r1ð12r1Þ ¼
K1ð12r1Þ
K0ð12r1Þ

; ðB7Þ

s1ð11r1Þ ¼
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
rw

� �
þ I1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þa2
1

q
rw

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
rw

� �
� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
rw

� � ;
ðB8Þ

x1ð12r1Þ ¼
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
1

q
r1

� � ; ðB9Þ

where I1 and K1 are the modified Bessel functions of the first and
second kinds with order one, respectively. For an expression of
Fourier series, adding the term �~c1

hw
p þ ~c2a0 and

P
mamnm cosðdmzÞ

with dm = mp/z0 to both sides of Eq. (B1) yields

� ~c1
hw

p
þ ð~c2 þ ~c3Þa0 þ

X
n

bngn cosðb2zÞ þ
X

m

amnm cosðdmzÞ

¼ �~c1
hw

p
þ ~c2a0

� �
þ
X

j

ajnj cosðdjzÞ for 0 6 z 6 D1: ðB10Þ

Similarly, adding the term
P

mamnm cosðdmzÞ to both sides of Eqs.
(B2) and (B3) results in Eqs. (B11) and (B12), respectively, as

~c3a0 þ
X

n

bngn cosðb2zÞ þ
X

m

amnmfcosðdmzÞ � cos½b1ðz� D1Þ�

¼ �~c1
hw

p
þ ~c2a0

� �
þ
X

j

ajnj cosðdjzÞ for D1 6 z 6 z2; ðB11Þ
X
m

amnmfcosðdmzÞ � cos½b1ðz� D1Þ�g

¼ �~c1
hw

p
þ ~c2a0

� �
þ
X

j

ajnj cosðdjzÞ for z2 6 z 6 z0; ðB12Þ

where the subscript j is an integer from 1,2,3. . . The bracket terms
on the left-hand side of Eqs. (B10)–(B12) represent a constant of
Fourier series and ajnj represents the coefficient for each cos(djz).
Based on the formula of Fourier series, the unknowns a0 and ajnj

can, respectively, be expressed as

a0 ¼
~c1z1

~c2z1 � ~c3z2

hw

p
ðB13Þ

and

ajnj ¼ Xja0 �
2~c1 sinðdjD1Þ

djz0

hw

p
þ
X

n

Hjngnbn

þ
X

m

amnmðEmj � HmjÞ; ðB14Þ

where

Xj ¼
2½~c2 sinðdjD1Þ þ ~c3 sinðdjz2Þ�

djz0
; ðB15Þ

Hjn ¼
sinðb2z2 þ djz2Þ

b2z0 þ djz0
þ sinðb2z2 � djz2Þ

b2z0 � djz0
for b2 – dj; ðB16Þ

Hjn ¼
z2

z0
for b2 ¼ dj; ðB17Þ

Emj ¼ 0 for dm – dj; ðB18Þ

Emj ¼ 1 for dm ¼ dj; ðB19Þ

Hmj ¼
1

b1 � dj
þ 1

b1 � dj

� �
sinðdjD01Þ

z0
for b1 – dj; ðB20Þ

Hmj ¼
z1

z0
cosðdjD01Þ for b1 – dj: ðB21Þ

Note that the value of aj is in fact equal to am.
In a similar manner, the unknown bn can be obtained based on

the requirement of continuity in hydraulic head, i.e., Eq. (A10).
Substituting Eqs. (13) and (14) into Eq. (A10) leads toX

m

am cos½b1ðz� D1Þ� ¼
X

n

bn cosðb2zÞ for D1 6 z 6 z2: ðB22Þ

For an expression of Fourier Series, adding
P

nbn cosðhnzÞ to both
sides of Eq. (B22) yieldsX

m

am cos½b1ðz� D1Þ� �
X

n

bn½cosðb2zÞ � cosðhnzÞ�

¼
X

j

bj cosðhjzÞ for D1 6 z 6 z2; ðB23Þ

where hn = np/(z2 � D1). The unknown bj can then be written as

bj ¼
X

m

amcmj �
X

n

bnðOnj � PnjÞ; ðB24Þ

where

cmj ¼
sinðb1ze þ hjzeÞ

b1ze þ hjze
þ sinðb1ze � hjzeÞ

b1ze � hjze
for b1 – hj; ðB25Þ

cmj ¼ 1 for b1 ¼ hj; ðB26Þ

Onj ¼ �
1

b2ze þ hjze
þ 1

b2ze � hjze

� �
sinðb2D1Þ for b2 – hj; ðB27Þ
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Onj ¼ cosðhjD1Þ �
sinðhjD1Þ

2hjze
for b2 – hj; ðB28Þ

Pnj ¼ 0 for hn – hj; ðB29Þ

Pnj ¼ 1 for hn ¼ hj: ðB30Þ

Note that bj also equals bn.
Eqs. (B13), (B14) and (B24) are linear with respect to the un-

knowns a0, am and bn. Therefore, am can be solved after substituting
Eqs. (B13) and (B24) into (B14) and the result isX

m

Yjmam ¼ kj
hw

p
; ðB31Þ

where

Yjm ¼ nmWjm þ
X

n

CjngnHnjcmj; ðB32Þ

Wjm ¼ Ejm � Hjm � Ijm; ðB33Þ

Cjn ¼ ½Onj � Pnj þ Inj��1
; ðB34Þ

kj ¼
2~c1 sinðdjD1Þ

djz0
�

~c1z1

~c2z1 � ~c3z2
Xj: ðB35Þ

The constant bn can be obtained after substituting am of Eq. (B31)
into Eq. (B14).

Appendix C. Development of Eq. (20)

The Laplace-domain solution for the injection rate can be ob-
tained based on Darcy’s law as

Q w ¼
Z z0

D1

2pjr1rw
@�h1

@r

					
r¼rw

dz: ðC1Þ

With Eq. (13), the hydraulic gradient at the rim of the wellbore is
expressed as

@�h1

@r

					
r¼rw

¼ a011l1ðrw11Þ �
hw11v1ðrw11Þ

p
þ
X

m

am

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
s1 rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1 þ a2
1

q
cos½b1ðz� D1Þ�


 �
: ðC2Þ

Based on Eqs. (B13) and (C2), the result of integration of Eq. (C1)
yields

Q wðpÞ¼2pjrrwz111

� hw

p
z111v1ðr111Þl1ðrw11Þ� z111v1ðrw11Þl1ðr111Þþz212r1ðr112Þv1ðrw12Þ

z111l1ðr111Þ�z212r1ðr112Þ

� �

ðC3Þ

with

v1ð11r1Þ ¼
K1ð11r1ÞI0ð11r1Þ þ I1ð11r1ÞI0ð11r1Þ

K0ð11rwÞI0ð11r1Þ � I0ð11rwÞK0ð11r1Þ
; ðC4Þ

l1ð11r1Þ ¼
K1ð11r1ÞI0ð11rwÞ þ I1ð11r1ÞI0ð11rwÞ
K0ð11r1ÞI0ð11rwÞ � I0ð11r1ÞK0ð11rwÞ

; ðC5Þ

r1ð12r1Þ ¼
K1ð12r1Þ
K0ð12r1Þ

; ðC6Þ

s1ð11r1Þ¼
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r1

� �
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1

q
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� �
þ I1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12
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q
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� �
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1þa2
1

q
rw

� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1þa2
1

q
r1

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1þa2
1

q
rw

� �
� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

1þa2
1

q
rw

� � ;
ðC7Þ
x1ð12r1Þ ¼
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
1

q
r1

� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

2 þ a2
1

q
r1

� � : ðC8Þ

Note that the integrations for the first and third terms of Eq. (C2)
with respect to z equal zero.

The result of inverse Laplace transform for Eq. (C3) using the
Bromwich integral method [4] can be expressed as

QwðtÞ ¼
1

2pi

Z r0þi1

r0�i1
Q wðpÞept dp; ðC9Þ

where i is an imaginary unit and r0 is a larger constant than the real
part of each singularity in complex plane. Eq. (C3) is a multiple va-
lue function and thus has a branch point at p = 0 and a branch cut
extending from p = 0 to p = �1. The result of Eq. (C9) can be ob-
tained by integration along the modified pathway of Bromwich
integral, which consists of a close contour with a semicircle, circle,
straight line parallel to the imaginary axis and two straight lines
parallel to the branch cut.

The value of integration for the semicircle equals zero if its ra-
dius approaches infinity while the result of integration along the
circle also equals zero if its radius approaches zero. Additionally,
no pole exists in this complex plane. The variable p is expressed
in terms of polar coordinate for describing a discontinuity at the
branch cut. For the integration above the branch cut, let p = r0eip

and thus 1i ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSsi=KriÞr0

p
where r0 represents the radius from the

origin. In contrast, let p = r0e�ip and thus 1i ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSsi=KriÞr0

p
for

the integration below the branch cut. The result of integration
for Eq. (C9) is therefore the sum of these two integrations ex-
pressed as

QwðtÞ ¼ �
1

2pi

Z 1

0
Qwðr0eipÞe�r0tdr0 þ 1

2pi

�
Z 1

0
Q wðr0e�ipÞe�r0t dr0: ðC10Þ

The Bessel functions can be expressed as a typical complex
number of the sum of real and imaginary number as [17]

Kv ze�
1
2pi

� �
¼ �1

2
pie�

1
2vpi½�JvðzÞ þ iYvðzÞ�; ðC11Þ

Iv ze�
1
2pi

� �
¼ e�

1
2vpiJvðzÞ; ðC12Þ

where v represents the order of Bessel function. Substituting Eqs.
(C11) and (C12) into the first term of Eq. (C10) and letting
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ss1r0=Kr1

p
yields

� 1
2pi

Z 1

0
Qwðr0eipÞe�r0tdr0 ¼ 2jr1rwz1hw

Z 1

0

� Xþ iP
U� iK

e�
Kr1u2

Ss
t du; ðC13Þ

where u is a dummy variable for the integration. Similarly, the sec-
ond term of Eq. (C10) can be expressed below based on
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ss1r0=Kr1

p
and Eqs. (C11) and (C12).

1
2pi

Z 1

0
Q wðr0e�ipÞe�r0tdr0 ¼ 2jr1rwz1hw

Z 1

0

� X� iP
Uþ iK

e�
Kr1u2

Ss
t du: ðC14Þ

The sum of Eqs. (C13) and (C14) results in Eq. (20) which represents
the injection rate at the wellbore. Note that the imaginary unit can
be eliminated by the derivation of common denominator as
U2 + K2.



1562 C.-C. Kuo et al. / Advances in Water Resources 34 (2011) 1553–1562
References

[1] Ramsay JG, Huber MI. The techniques of modern structural geology. Folds and
fractures, vol. 2. London: Academic press; 1987.

[2] Matter JM, Takahashi T, Goldberg D. Experimental evaluation of in situ CO2–
water–rock reactions during CO2 injection in basaltic rocks: implications for
geological CO2 sequestration. Geochem Geophys Geosyst 2007;8(2).
doi:10.1029/2006GC001427.

[3] Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM. Gas-
water-rock interactions in Frio formation following CO2 injection: implications
for the storage of greenhouse gases in sedimentary basins. Geology
2006;34(7):577–80.

[4] Metz B, Davidson O, Coninck HD, Loos M, Meyer L, editors. IPCC special report
on carbon dioxide capture and storage. New York: Cambridge Univ Press; 2005.

[5] Nordbotten JM, Celia MA, Bachu S. Analytical solutions for leakage rates
through abandoned wells. Water Resour Res 2004;40:W04204. doi:10.1029/
2003WR002997.

[6] Kirkham D. Exact theory of flow into a partially penetrating well. J Geophys Res
1959;64(9):1317–27.

[7] Javandel I, Zaghim N. Analysis of flow to an extended fully penetrating well.
Water Resour Res 1975;11(1):159–64.

[8] Al-Mohannadi N, Ozkan E, Kazemi H. Pressure-transient responses of
horizontal and curved wells in anticlines and domes. SPEREE 2007:66–76.
[9] Yeh HD, Kuo CC. An analytical solution for heterogeneous and anisotropic
anticline reservoirs under well injection. Adv Water Resour 2010;33:419–29.
doi:10.1016/j.advwatres.2010.01.007.

[10] Stehfest H. Numerical inversion of Laplace transforms. Commun ACM
1970;13(1):47–9.

[11] Hildebrand FB. Advanced calculus for applications. 2nd ed. Englewood Cliffs,
Nork York: Prentice-Hall; 1976.

[12] Chang YC, Yeh HD. A new analytical solution solved by triple series equations
method for constant-head tests in confined aquifers. Adv Water Resour
2010;33:640–51. doi:10.1016/j.advwatres.2010.03.010.

[13] Yang SY, Yeh HD. Solution for flow rates across the wellbore in a two-zone
confined aquifer. J Hyd Eng ASCE 2002;128(2):175–83. doi:10.1061/
(ASCE)0733-9429(2002)128:2(175).

[14] Liou TS, Yeh HD. Conditional expectation for evaluation of risk groundwater
flow and solute transport: one-dimensional analysis. J Hydrol
1997;199:378–402.

[15] Li X. Vertical resolution: gravity versus vertical gravity gradient. The Leading
Edge; 2001.

[16] Andrews LA, Shivamoggi BK. Integral transforms for engineers and applied
mathematicians. New York: Macmillen; 1988.

[17] Carslaw HS, Jaeger JC. Conduction of heat in solids. 2nd ed. London: Oxford
University Press; 1959.

http://dx.doi.org/10.1029/2006GC001427
http://dx.doi.org/10.1029/2003WR002997
http://dx.doi.org/10.1029/2003WR002997
http://dx.doi.org/10.1016/j.advwatres.2010.01.007
http://dx.doi.org/10.1016/j.advwatres.2010.03.010
http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:2(175)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:2(175)

	Transient analysis for fluid injection into a dome reservoir
	1 Introduction
	2 Mathematical model
	2.1 Conceptual model
	2.2 Laplace-domain solutions for head distributions
	2.3 Time-domain solution for injection rate
	2.4 Sensitivity analysis

	3 Results and discussion
	3.1 Spatial and temporal head distribution
	3.2 Effect of reservoir geometry on injection rate
	3.3 Sensitivity analysis

	4 Concluding remarks
	Acknowledgements
	Appendix A Development for head solutions of Eqs. (13)	and (14)
	Appendix B Evaluation of coefficients a0, am and bn
	Appendix C Development of Eq. (20)
	References


