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Sub-Poisson photoelectron statistics in saturated light absorption
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We show that sub-Poisson photoelectrons can result from the finite relaxation time of the fundamental

photoelectron-emitting entities, which could be individual atoms, or valence-band electrons, etc. , depending on
the type of the detectors. After identifying the precise quantum-mechanical criterion for a light without the
intrinsic antibunching property, it is demonstrated that the variance to mean ratio of photoelectron counts
within a fixed time period can be reduced to as small as 2, even for such light. The condition for strong
fluctuation reduction is found to be the saturation of light absorption. Semiconductor photodetectors are
considered in relative details, and their photoelectron statistics are expressed in terms of the intrinsic material

parameters.

PACS number(s): 42.50.Dv, 79.60.—i

Since its earliest experimental realizations [I], sub-
Poisson photoelectron statistics has acquired substantial at-
tention [2]. In addition to serving as one of the fundamental
manifestations of various nonclassical feature of light, the
generation of photoelectrons with fluctuations below the
standard quantum limit has potential applications on coher-
ent light communications, as well as precision measurements
[2].In the study of the properties of light, photoelectric effect
is probably the most commonly used way to perform practi-
cal measurements, due to the fact that a photon number of a
quantum state of light is not subject to direct detection. How-
ever, the generation of photoelectron s is a quantum-
mechanical process, and is therefore inherently probabilistic.
The ways to recover the precise properties of the light under
study, from the outcomes of the stochastic photoelectric pro-
cess, remains a subject of interest. In particular, the states of
light that are able to generate sub-Poisson photoelectrons
have been under intensive investigations. On the other hand,
how to reduce the quantum fluctuations introduced by the
transformation of optical signals to electric signals, due to
the probabilistic nature discussed above, is crucial from the
point of view of applications. The noise reduction below the
standard quantum limit [3] achieved in the various nonclas-
sical light has therefore been one of the main motivations for
the study of this subject.

In this paper, we shall take a somewhat different approach
to the generation of sub-Poisson photoelectrons. Obviously,
the statistics of photoelectrons is not only a property of the
light that generates them, but also depends on the reaction of
the photodetector to the light. In fact, it is the detector that
emits electric current carriers which ultimately give rise to
the photoelectron counts. In most of the previous theoretical
studies, the detector dependence is so idealized that the final
result depends on the properties of the light only. This ide-
alization is in fact the underlining basis for the interpretation
of optical coherence functions as the joint photoelectron de-
tection probabilities [4].In our study, however, we found that
the statistics of photoelectrons is in general a function of the
response of the detecting materials to the incoming light
waves, and could differ substantially for the same state of
light. In particular, we found that sub-Poisson photoelectron
statistics emerges naturally in the circumstance of absorption

saturation. In other words, in order to get photocurrents with
signal-to-noise ratio below the standard quantum limit, one
can simply run the phototube in the saturation regime.

Since our main purpose is to emphasize the detector de-
pendence, we shall consider only the kinds of light that
would generate Poisson photoelectrons in the cases without
absorption saturations. Such lights are usually described as
given classical electromagnetic waves, and their quantum-
mechanical dynamics is neglected. In order to be more pre-
cise, before we calculate the photoelectron statistics in satu-
rated light absorption, we shall discuss first the condition for
such light in terms of single-mode quantum optics.

It is well known that a stochastic point process without
memory of its past forms a Poisson process [5], which gives
a Poisson distribution for the number of counts (or points)
during a given time period. Therefore, for any sub-Poisson
process, a certain memory effect must be present. This
memory effect of the photoelectron counts is implicitly the
basic theme of the current theories for antibunched light [6].
To be precise, a photoelectron count between time t and
t+ dt, with dt an infinitesimal time interval, corresponds to
two quantum-mechanical measurements on the detector
state, performed at t and t+dt, respectively. If the second
measurement results in one more ionized electron in the de-
tector than the first one, then we register a photoelectron
count at time t. Otherwise, there is no count registered in the
same interval. According to quantum mechanics, any mea-
surement corresponds to a projection of the quantum state
vector to one of the eigenspace of the Hermitian operator
associated with the measurement. This projection in the Hil-
bert space will in general alter the state of the system in a
significant way, and effect the probability distribution of the
outcome of a subsequent measurement, associated with both
the same, or a different, Hermitian operator. Applying the
above observation to the case of' photoelectron counts, we
conclude that the detection of a photoelectron at time t cor-
responds to a projection of the state of the coupled system of
the light and the detector. Thus the state of the light alone
could also be altered significantly. From elementary quantum
mechanics we know that the photoelectron generation prob-
abilities are proportional to the expectation value of the pho-
ton number operator n, which is equal to a~a for single
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mode light. Here a and a~ are the annihilation and creation
operators of the mode, respectively. As far as photoelectron
generation probability is concerned, the question is whether

(n) will differ significantly before and after the projection.
Let

f u) be the state of the light at time t. It is well known
that after the detection of a photoelectron during the small
interval dt, the state of the light fu) will be projected into
another state a

f a)/( u
f
a ta

f n) ', which we call
f P) . Both

fn) and fP) are chosen to be normalized. For the immediate
small interval after t+dt, i.e., from t+dt to t+2dt, the
probability for a photoelectron count to occur is therefore
proportional to (Pfn fP), given the fact that there is a count
occurring in the previous interval between t and t+dt. On
the other hand, if there were no count registered between t
and t+dt, the projection would bring the state fn) back
itself, and the probability to have a count immediately after-
wards would be proportional to (afn fu). Since (Pfn fP) and

(nfnfa) are in general different, there is in general a
memory effect. In- other words, the photoelectron counts in
the past will have certain effect on the counts in the future,
and the photoelectron statistics during a given time period
cannot be strictly Poisson. A natural measure for the degree
of this memory effect is the ratio between the expectation
values of n for

f a) and fP). Let us define such a parameter
G as (PfnfP)/(nfnfn). Then G)1 ((I) means the en-
hancement (reduction) of photoelectron counts by a previous
count, and therefore implies bunched (antibunched) photo-
electron counts, which give rise to super-Poisson (sub-
Poisson) photoelectron count distribution within a fixed time
period. The relation between the state of light and the
bunching-antibunching property is revealed by the observa-
tion of the fact that G( 1 if and only if the variance to mean
ratio, which is uaully referred to as the Pano factor F„, of
the photon number distribution is smaller than 1.This can be
seen by definition of F, :

(nfhn2fn) (nfn fa) —(a'fnfa)F„= unn o. n n

F„(1 implies (afn —n
f
n) ( (n fn f

u), and G(1 sub-
sequently. States with F„&1 are usually referred to as pho-
ton number squeezed states. The connection between
squeezed state and antibunched photoelectron counts is thus
established. For coherent light, G = 1, and there is no
memory effect intrinsically in the light. Poisson photoelec-
trons will be generated in an ideal photodetector.

In the cases of G~ 1, let us remark briefIy on the condi-
tions for the observation of antibunched photoelectron statis-
tics in practice. The disturbance (projection) caused by the
detection of a count at time t on the quantum state of light
will not, in fact, last forever. This is because the light is
coupled not only to the detector, but also to its source, for
example, a laser cavity with population inversion. Therefore,
the mean photon number will relax from (Pfn fP) to a sta-
tionary value within a characteristic time, which we call
T, T, is in fact the second order coherence time of the light.
It is clear that the antibunching effect can be observed only if
the mean temporal separation between successive photoelec-
tron counts is comparable to, or smaller than, T, f 7]. If this

were not the case, the disturbance caused by one photoelec-
tron count would be washed out before the next count, and
no memory effect would last.

In the following we will concentrate on either a coherent
light with G= 1, or on the case where the mean time inter-
vals between photoelectron counts are much longer than T,
for G@1. We will show how sub-Poisson photoelectron
statistics can still result naturally from the realistic consider-
ation of the detection process. Let us consider first the case
where the detector is composed of a collection of identical
atoms. Each atom can be ionized by the incoming light and
emit a photoelectron. Concentrating on one particular atom,
it will be eventually ionized and become an ion. If it relaxes
back to an atom, by capturing an electron, immediately after
the ionization, then the sequences of times t&, t2, . . . , at
which ionizations occur, will form a Poisson point process
f 5]. However, an ion does not relax immediately in practice.
It will remain in the state of an ion for a finite amount of
time before relaxation. This finite relaxation time suppresses
the occurrences of tightly bunched photoelectron clusters and
makes the final statistics sub-Poisson. One would argue,
however, that the suppression is valid for the photoelectrons
emitted by only one atom, and will be invisible if we super-
impose the photoelectron emission times from a large num-
ber of atoms. Our calculations below not only confirm the
sub-Poisson character for one atom quantitatively, but also
show that this character survives in the case of many atoms.

As stated before, an atom will alternate between two
states, neutral atom and positively charged ion, when inter-
acting with the external light. We call these two states 1 and
2, respectively. Let the transition probability from 1 to 2
during a small time interval dt be equal to P ]dt, and the
transition probability from 2 to 1 Xzdt. Thus the lifetimes of
state 1 and 2 are 1/X& and 1/X2, respectively. A photoelec-
tron count is registered when a transition from 1 to 2 hap-
pens. Let m be the number of such transitions during a given
time period T. We need to calculate P (T), the probability
distribution of m within a time period T. To do so, we first
introduce two quantities Q' (t), i = 1,2. They are defined to
be the probability densities that the total time period spent in
m of state i intervals combined together is between t and
t+ dt. They are given by f 5]

() r)/ll i

When m is much larger, they can be approximated by normal
distributions:

with variances and means given by p, ;=m/X;, o.
, =m/X, .

Now we define another quantity Q (t) to be the probability
density that the mth photoelectron count happens between t
and t+ dr. Clearly, Q (t)dt is equal to the probability that,
after m of 1 and 2 state intervals (they are alternating), the
total time spent is between t and t+ dt. Therefore, we have
the convolution
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ft
Q (t)= Q (t1)Q„,(t —t, )dt, .

Jp

This is again a normal distribution. The mean p, is equal to
p, &+ p, 2, and the variance o. is o., + o.2. Finally, the desired
photoelectron distribution P (T) is given by

I' T
P (T) = Q (t)F(T—t)dt,

0

where F(t) is the probability that there is no photoelectron
count in an interval of t. It can be easily calculated and is
equal to [k2exp( —k1t) —k1exp( —X2t) j/()1. 2

—k1). For T
much longer than the mean photoelectron counting intervals,
we have

(
ao 1 1

P (t)= F(t)«Q (T)= —+ —Q (T)
Jp

The corresponding variance and mean of the random vari-
able m are

t'1 11
(m) = —+ — t,

k2]

t 1 1//1 11-'
(Am2)= —,+ —, —+—

(~1 ~2) (~1 2/

The Fano factor F for P (T) is therefore equal to

(Am2)

(m)

One can clearly see that F is always smaller than 1, as
anticipated before. In fact, the range of F is 1/2~F «1.
The lower limit is achieved when X& = k2, while the upper
limit is achieved when either X

&
~~ or X2~~, which cor-

responds to the cases where one of the two states relaxes
infinitely fast. They reduce to the case of a Poisson process
whose Fano factor is known to be 1.

As emphasized before, the observed photoelectron counts
actually result from the superposition of counts emitted by
many atoms. One would think that after the superposition,
the suppression of photoelectron clusters will be washed out
and Poisson statistics recovered. This intuition turns out to be
wrong, and the sub-Poisson character does preserve, as
shown below. Let the total number of atoms be N; the total
number of counts M from all the N atoms is equal to
m, +m2+ . m~. Here m&, . . . , mz are independent ran-
dom variables with the identical distribution function
P (T). From the central limit theorem [8] we have that for
N&) 1, M is a normal random variable with variance
(b,M ) equal to N(b, m ), and mean (M) equal to N(m).
Therefore,

(b, M')
M (M)

m.

In other words, the sub-Poisson character of one atom statis-
tic is transferred exactly to the statistics of a large number of
atoms. It is interesting to note that even though M is a sub-
Poisson random variable, there is no antibunching effect be-
tween successive counts after the superposition. This is be-
cause for the majority of the cases, two successive counts are
from different atoms, and there should be no correlations
between them. Therefore, many atom photoelectron counts
and a Poisson process with equal intensity share the same
intercount interval probability distribution. The distinction
lies in the fact that the first has memory, while the latter has
not. We also note that the Fano factor is significantly smaller
than 1 only when XI and X.2 are comparable. This is pre-
cisely the condition for absorption saturation to occur, since
the absorption cross section of the incoming light is propor-
tional to the fraction of neutral atoms, which is equal to
X.2/()1. 1+k2).

In the following, we will apply the results of the above
calculations to the more commonly used semiconductor de-
tectors. In a semiconductor material under photoillumination,
a valence-band electron would make a direct transition to the
conduction-band level with the same crystal momentum, and
leave a hole in the valence band. Assuming that the photo-
detector does not exihibit gain [9], then each such transition
will result in one photoelectron count. After a certain mo-
ment, which we call the hole lifetime, the empty valence
state (hole) will capture an electron in the conduction band
through various recombination processes. Therefore, each
valence-band level interacting with the incoming light will
alternate between two states, occupied and empty, analogous
to an atom considered before. We can then identify the tran-
sition rates X. &, X2 discussed above as the rate at which a
valence electron makes a upward direct transition, and the
rate at which an empty valence state captures an electron,
respectively. We shall obtain k& and k2 in terms of the in-
trinsic material parameters of the semiconductor.

Since the crystal momentum k is conserved in optical
transitions, the only possible final state to which a valence
electron can make a transition by a photon absorption is the
one in the conduction band with the same k. We denote the
valence and conduction states ~vk) and ~ck), respectively.
The resonance frequency of the transition is assumed to be
coo. Let P(co) be the photon flux density at frequency co. We
have [9]

ETC
) 1= @(~O) 22 7 yGop

where c is the light velocity and ~, is the spontaneous radia-
tive decay lifetime from

~
ck) to

~
v k), which can be ex-

pressed in terms of the momentum matrix elements between
these two states. Here we make a simplification by assuming
that the photon flux density P(co) takes a square form, with
a narrow full width 5 and central frequency ~*. In other
words, @(co) is equal to P for co*—b./2(to(su*+ b, /2, and
zero otherwise. Then N, defined as the total number of
valence-band states which interact with the photon flux and
which could make upward transitions, is equal to

N= pJ(su*)AV,
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where pJ(co) is the optical joint density of states per unit
volume and unit frequencies. Let us define further a quantity

f as the fraction of the N states that remains in the valence
band under illumination. In stationary states, the electron-
hole generation rate has to be equal to their recombination
rate. The recombination rate in the whole material is equal to
rnpV, where r is an intrinsic material parameter which in-
cludes both radiative and nonradiative (usually the case) re-
combination processes [9]. V is the volume under illumina-
tion and n, p are the electron and hole concentrations.
Without doping, it easy to see that
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Equating the generation and recombination rates in the
whole volume, we have. . . .

N
Nf)t&=r 2 (1 f) V. —

Solving it as an equation for f, we have

FIG. 1. The variance to mean ratio FM= (b.M )—/(M) of photon
electron number distribution within an arbitrary fixed time period is
plotted as a function of the dimensionless incoming photon flux
density y—= P/P* in a semiconductor photodetector. When
y= 1/2, the transition rates X& and Xz are equal to one another, and
the minimal FM is achieved. Poisson process with FM= l is recov-
ered when y—+0 or ~Go, because one of the transition rates di-
verges in these cases.

yf= 1+ ——
2

y'
y+ —,

with

X. tV
y=—

rN

2r„to* rpJ(to*)b,
VT'C

1 f—

Here y represents the dimensionless photon Aux density. One
can easily see that f satisfies the requirement that O~f~ 1

for all y. In fact, f= 1 when y=O, and f~O when y —+~.
Absorption saturation will occur if f decreases significantly
from 1. Population inversion results when P(to*), or equiva-
lently X, , is so strong that f is smaller than 1/2. This is
actually what happens in a semiconductor laser with an op-
tical pump. The fraction of time in which a valence state is
occupied is f, by definition. In other words, f= X 2 /

(kt+ k2). Therefore we have the ratio between P t and X2,
once f is know, by the relation

Finally we recall that the Fano factor of the photoelectron
generated by the photon Aux is completely determined by
this ratio, which is now expressed in terms of three funda-
mental material parameters: the spontaneous emission life-
time 7.„of the conduction electron, the intrinsic recombina-
tion rate r, and the joint density of state at illumination peak
frequency pJ(to*). In Fig. 1, we plot the Fano factor FM
against the dimensionless photon fiux density y. The maxi-
mal noise reduction F~= 1/2 is achieved when y= 1/2.

In conclusion, the photoelectron statistics of a photodetec-
tor with finite relaxation time is derived. It is shown that the
variance to mean ratio of photoelectron counts during an
arbitrary time period can be significantly reduced below the
standard quantum limit when the light absorption is satu-
rated. In this paper we assumed, however, that the second
order coherence time T, is much smaller than the mean tem-
poral separation between two successive photoelectron
counts. In other words, we consider the cases where Poisson
statistics would be obtained if the relaxation is infinitely fast.
This restriction allows us to treat the incoming light as a
classical plane wave implicitly in the calculation of various
transition rates. A full quantum theory that deals with the
effect of projections of the quantum state of light caused by
the measurement processes demands further investigations.
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