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S U M M A R Y  
An optimal procedure is developed for deriving gravity anomalies from sea-surface 
height measurements obtained by a number of different satellites, the inclinations of 
which may vary. We begin by recasting the problem of the conversion of the deflection 
of the vertical to gravity in the frequency domain. We show that a deterministic 
approach based on the Vening-Meinesz integral is equivalent in the frequency domain 
to the stochastically based method of least-squares collocation. A new method for 
gridding the deflection of the vertical is developed that uses the fact that satellite tracks 
of the same type (ascending or descending) are nearly parallel, so that values at grid 
points can be estimated by first performing along-track interpolations, followed by one 
cross-track interpolation, both using Akima's spline. This gridding method is very 
efficient compared with methods such as that of fitting minimum curvature surfaces, 
especially for dense data such as for the 168 day cycles of ERS-1. A weighted least- 
squares method is then employed to obtain the north and east components of deflection- 
of-the-vertical components using the gridded along-track components from all of the 
individual satellite missions. Finally, gravity anomalies are computed from the two 
deflection-of-the-vertical components in the frequency domain with truncated kernel 
functions, the use of which is related to the prior removal of a high-degree reference 
gravity field. This new procedure is more than 100 times faster than least-squares 
collocation, and yields gravity anomalies with errors that are comparable to those 
derived by least-squares collocation and smaller than those derived by other recent 
applications of spectral techniques, as judged by comparisons with ship-gravity measure- 
ments. The case of gravity computation for a single altimetric satellite is handled 
separately, and a method is given to estimate the noise spectra of deflection of the 
vertical and reduce the numerical problems caused by satellites with high inclination 
angles. The new procedures make possible quick, yet accurate, global updates of the 
marine gravity field. 
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INTRODUCTION 

Currently there exist altimetric data from five satellite missions. 
i.e. Geos-3, Seasat, Geosat, ERS-1 and TOPEX/POSEIDON, 
which may be used for deriving marine gravity. Future alti- 
meter missions will further increase the amount and density of 
sea-surface height measurements. Consequently, it has become 
increasingly important to  have efficient methods of deriving 
gravity anomalies from this large amount of altimeter data. 
The fastest methods have been based on spectral techniques 
and use of the fast Fourier transform (FFT) ,  and this seems 
likely to remain the case. Examples of FFT-based methods 

are those used by Haxby et u1. (1983), Sandwell (19921, and 
McAdoo & Marks (1992). As regards the type of data, the use 
of deflection of the vertical mitigates, to a large extent, problems 
associated with orbital errors (e.g. Sandwell 1992; Hwang & 
Parsons 1995). With dense altimeter coverage from several 
satellites, it will be difficult and time-consuming to make 
orbital corrections to the sea-surface height measurements to 
the level required to remove crossover differences and avoid 
short-wavelength artefacts in the derived gravity field. 

If an FFT-based technique is to be used, the immediate 
problem is that of gridding the measurements. As the number 
of satellite missions increases, the computer time needed for 
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gridding the data will become a major burden in the derivation 
of gravity fields. Furthermore, since deflections of the vertical 
from different satellite missions have different azimuths, a 
method for resolving gridded deflections of the vertical with 
different azimuths into an unique set of north and east com- 
ponents of the deflection of the vertical is an essential step in 
the derivation of gravity. One method used for this purpose 
has been described by Sandwell (1984), and has been used in 
the construction of a global marine gravity field (Sandwell, 
Yale & Smith 1994). 

With these problems as a background, the aim of this study 
is to develop a fast procedure for deriving marine gravity from 
multi-satellite altimeter data. The method should also be 
optimal in terms of a comparison with direct measurements of 
marine gravity. To this end, we first find a 'best' relationship 
between deflections of the vertical and gravity anomalies in 
the frequency domain, considering factors such as the use of a 
high-degree reference geopotential model and errors in the 
data. We then look at a n  efficient gridding technique that 
exploits the characteristics of altimetry data distribution 
and avoids unnecessary assumptions. The issue of combining 
deflections of the vertical with different inclinations is investi- 
gated, and we present a method of obtaining the north and 
east components of the deflection of the vertical using a 
weighted least-squares. As an illustration of the ways of 
estimating data noise and dealing with the problems caused 
by high inclination angles, we also look at the case of a single 
satellite. Finally we evaluate these procedures for converting 
deflections of the vertical to  gravity by comparing the satellite- 
derived gravity anomalies with ship gravity; gravity anomalies 
derived by the method of least-squares collocation, and those 
obtained by Sandwell et al. (1994) are assessed in the same 
way. Tests of the steps in our new procedure have been carried 
out for two areas: the area around the Reykjanes Ridge, 
defined by 50' < 4 < 65", 320" < 1 < 340"; and an area in the 
South Pacific defined by -25" < 4 < -lo", 230" < 1 < 250", 
where 4 is the latitude and d is the longitude. 

GRAVITY TO DEFLE CTIO N-OF-THE- 
VERTICAL CONVERSION: DUALITY OF 
DETERMINISTIC A N D  STOCHASTIC 
APPROACHES I N  THE FREQUENCY 
DOMAIN 

To use an FFT-based method to derive gravity from deflections 
of the vertical, we first have to find the relationship between 
the gravity anomaly and deflection of the vertical in the 
frequency domain. Such a relationship can be established using 
either a deterministic approach or a stochastic approach. For 
the deterministic approach, we first express the gravity anomaly 
and deflections of the vertical as functionals of the Earth's 
disturbing potential, T, specifically: 

1 dT 1 dT  
(3) 

where Ag is the gravity anomaly, 5 and v ]  are the north and 
east components of the deflection of the vertical, respectively, 

yR, cos 4 21 ' 

y is the normal gravity on the reference ellipsoid, x ,y , z  are 
the local rectangular coordinates (x positive to the east, y 
positive to the north and z positive upwards), and R, is the 
Earth's mean radius ( ~ 6 3 7 1  km). The approximation in (1) 
can be made if we use a remove/restore procedure in which 
the long-wavelength components are removed from the data 
(see below). The relationship between geoidal undulation and 
gravity anomaly in the planar approximation is given by 
Stokes' formula (see Schwarz, Sideris & Forsberg 1990): 

(4) 

where * is the convolution operator, E is the domain of 
integration in the XY-plane, and r = Jm. Using Bruns' 
formula, N = T/y, and eqs (2)-(4), we obtain the Vening- 
Meinesz integral: 

It is clear from ( 5 )  that the kernel functions of 5 

Noting that the form of the Fourier transform 
given by 

rm rw 

(5) 

and v] are 

(6)  

used here is 

.f(x, y )  exp[-i2n(ux + oy)] dx d y ,  (7) 
- m  

~ ( u ,  u)  = J-, J 
on transforming eq. (5)  we obtain 

where q = Jm is the circular frequency. Thus, in theory, 
it is possible to determine the gravity anomaly by knowing 
only either 5 or v ] .  In satellite altimetry, however, we obtain 
both the north and east components of the deflection of the 
vertical by resolving the ascending and descending along-track 
components (see below), and we wish to use them in an optimal 
way. In this case we have two observations, E and H ,  and one 
unknown, AG, and hence each entry of (8) forms an observation 
equation. Assuming that the weights for E and H are identical, 
we can derive a unique AG from E and H by making use of 
the least-squares principle (see, for example, Koch 1987): 

(9) 
iY AG(u, U) = -(uH + u E ) .  
4 

Eq. (9)  is identical to the formulae given in Sandwell (1992) 
and McAdoo & Marks (1992), who derived their formulae 
using Laplace's equation and downward continuation. 
Approaches that use either (8) or (9)  are deterministic in nature. 

In the stochastic approach, the prediction of the gravity 
anomaly from deflections of the vertical may be accomplished 
by least-squares collocation (e.g. Hwang & Parsons 1995). 
Following Moritz ( 1980), the general prediction formula of 
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least-squares collocation involving two types of data reads 

where s denotes the vector containing the signal, 1, and I ,  are 
two vectors containing observations of type 1 and type 2, C, 
is the covariance function between s and data of type i, and 
C,j are the covariance functions among the data. Assuming 
observations are available for the entire XY-plane, the right- 
hand side of (10) can be viewed as the convolution between 
kernel functions f l ,  f, and the data contained in /,, I,, namely 

where 

(12) 

The Fourier transform (FT) of ( 11) is 

S = F , L 1 + F 2 L 2 .  (13) 
This is equivalent to a system identification problem where 
the spectra F, and F2 are to be identified (Bendat & Piersol 
1993). Fourier transforming (12) and using the fact that the 
covariance function and spectral density function form a 
Fourier transform pair gives 

where G i j  are the auto- or cross-spectral density functions of 
1, and 12, and Gi is the cross-spectral density function between 
li and s, namely 

1 
Gi= lim __ LTS, (16) 

T,,T,-m TxT 
with T,, T, being the record lengths in the X ,  Y directions, 
respectively. Note that the above definitions have been adopted 
from Bendat & Piersol (1993), and here the symbol '*' 
represents the conjugate operator. If the two vectors 1, and I ,  
are linearly correlated, which is true for the north and east 
deflection of the vertical components (see eq. 8), we obtain 
(see Vassiliou 1986) 

G2 
Gl, + G22 ' 

F2 = 

Now, let s be a vector containing gravity anomalies, and I ,  
and 1, be vectors containing [ and q, respectively. By the 
differentiation theorem of FT we have, with ( 1 )-( 3), 

= 2nqT(u, u ) ,  

then, 

1 

1' 
Gll = -54n2v2STr 

4 GI = -4n2vST, 
Y 

where S,  is the spectral density function of the Earth's 
disturbing potential. Therefore, with (1 7)  we have 

iyii 

4 
F1=- ,  

Substituting F ,  and F ,  into (13), we obtain (9). This shows 
that in the frequency domain the deterministic approach based 
on the Vening-Meinesz integral, and the stochastic approach 
based on least-squares collocation yield the same relationship 
between the gravity anomaly and the two deflection of the 
vertical components. The implication is that when using (9)  
for transformation of deflections of the vertical into gravity, 
the property of minimum-error variance of the predicted gravity 
anomalies, which is intrinsic to least-squares collocation, is 
preserved (cf. Moritz 1980). 

FAST GRIDDING BY SPLINES 

To use the frequency-domain approach, the first step is to grid 
the ascending and descending deflection of the vertical from 
individual satellites. Packages such as GMT (Wessel & Smith 
1991) and IMSL contain programs for gridding. However, they 
are designed for general purposes and do not take advantage of 
the characteristics of altimetry data distributions. Furthermore, 
the ascending and descending deflections of the vertical are 
in fact functions of three variables-latitude, longitude and 
azimuth. Therefore, if the gridding is done with a 2-D inter- 
polant, the resulting value is in some sense a weighted mean 
of the deflections of the vertical surrounding the grid points, 
ignoring the fact that the deflections of the vertical used have 
different azimuths. If the area searched is small, this will not 
create a serious problem since the variation of azimuth in this 
case will be small. To avoid the constant-azimuth assumption, 
we can view the along-track deflection of the vertical as a 
function of along-track distance. The azimuth is implicitly 
contained in the distance variable as 

m = F ( S ( 4 )  > (21) 

where E is deflection of the vertical, s is along-track distance 
and CI is azimuth. We can also treat the cross-track deflection 
of the vertical as a function of cross-track distance. 

A fast algorithm for gridding the along-track deflection of 
the vertical can be based on these simple considerations. It is 
known that, over a short interval of time, a satellite's motion 
is governed by secular variations in the six Keplerian elements 
(Kaula 1966). Thus, within a small latitudinal band, ground 
tracks of the same type (ascending or descending) are almost 
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parallel and we may fit a straight line to each of the ground 
tracks by least-squares. These lines help the search for the 
intersection points described below. As shown in Fig. 1, at any 
given grid point P, we first find the intersection point between 
the first track to the left and a line passing through P and 
perpendicular to this track, so that the distance from P to 
the track is a minimum. From (21), the deflection of the 
vertical at this intersection point can be interpolated from the 
deflections of the vertical along the same track. We then 
proceed to the second track to the left, and interpolate the 
deflection of the vertical on to a point whose distance to the 
first intersection point is a minimum. The process is repeated 
for a specified number of tracks to the left. For tracks on the 
right side of P, the method of obtaining the along-track 
deflection of the vertical is the same. When interpolating the 
along-track deflection of the vertical we also record the cross- 
track distances to P, negative for the tracks to the left and 
positive for the tracks to the right. Finally we perform a cross- 
track interpolation using the recorded deflections of the vertical 
and cross-track distances to obtain the deflection of the vertical 
at the grid point P. 

Many schemes were tested for the along- and cross-track 
interpolations. Owing to the unequally spaced knots, methods 
such as  the natural cubic spline and Lagrange’s polynomials 
create very large oscillations on some occasions, and the 
deflections of the vertical are corrupted by artefacts in places. 
We found that Akima’s spline (de Boor 1978), which was 
designed to combat large oscillations, works well in this 
application. Furthermore, we suggest that a t  most three tracks 
to the left and to  the right-a total of six-are sufficient, and 
that the distances from P to the leftmost or the rightmost 
track should not exceed three times the average cross-track 
spacing. For each along-track interpolation, the data distances 
to the intersection point should not exceed 21 km. 

- - along-track interpolation 

across-track interpolation - 
Figure 1. Sketch showing the gridding of deflections of the vertical 
by splines. The gridding is first carried out by along-track inter- 
polations on the two sides of point P (directions along dashed lines). 
followed by one cross-track interpolation (direction along the solid 
line). 

Fig. 2 compares ERS-1/35-day deflections of the vertical 
gridded by the routine ‘surface’ in GMT (Wessel & Smith 
1991 k t h i s  is based on fitting a minimum-curvature surface 
(Smith & Wessel 1990F-and the program ‘spgrid, which is 
based on the method just described. The minimum-curvature 
method tends to break up features that are clearly linear. Since 
only a few data points are used at each grid point, the new 
method is also very efficient, especially for very dense data. 
Using ERS-1/168-day data over the Reykjanes Ridge, with a 
grid spacing of 3’ x 3’, ‘surface’ needed 272 CPU seconds on a 
SparclO M41 computer, compared with 43 seconds for ‘spgrid’. 

The new method also provides weights to be associated with 
the interpolated deflection of the vertical. Based on the error 
estimate for Akima’s spline (de Boor 1978), the weight, p ,  at  a 
grid is taken to be 

where o? is the unscaled error variance associated with the 
cross-track interpolation, r ~ f  is the unscaled error variance 
associated with the along-track interpolation at the first track 
to the left and 0: is the same as o;, but to the right. Each of 
the unscaled error variances is determined by 

where x l  and x2 are the distances from an intersection point 
(or P) to the data points before and after this point (or P). 
The weight p serves as a measure of the ‘importance’ of a 
gridded deflection of the vertical, and is used in the least- 
squares estimation of the north and east components of the 
deflection of the vertical described below. 

LEAST-SQUARES ESTIMATION OF N O R T H  
A N D  EAST DEFLECTIONS OF THE 

DATA 

Having gridded the along-track deflections of the vertical, the 
next step is to resolve the north and east components of the 
deflection of the vertical. First, consider the case of one satellite. 
As shown in Fig. 3, the deflection of the vertical along an 
ascending track, E, ,  and the deflection of the vertical along a 
descending track, E ~ ,  may be obtained by numerically differen- 
tiating two successive along-track sea-surface heights (Hwang 
& Parsons 1995). The relationship between the component of 
the deflection of the vertical along an arbitrary azimuth LY and 
the north and east components 5 and ‘1 can be expressed as 
(Heiskanen & Mortiz 1985) 

VERTICAL FROM MULTI-SATELLITE 

E = 4 cos a + q sin a .  (24) 

The approximate azimuth of an along-track deflection of the 
vertical can be determined by the formulae given by Sandwell 
(1992) or Hwang & Parsons (1995). At the crossover of two 
satellite ground tracks, the relationship between the azimuth 
of the ascending track, ga, and that of the descending track, 
ad. is (Sandwell 1992) 
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Figure 2. Comparison of ERS-1/35-day ascending deflection of the vertical over Gibb's Fracture Zone, gridded by program 'spgrid' (a), and by 
program 'surface' (b). Owing to the large cross-track spacing, the deflection of the vertical by 'surface' contains artefacts, which are not found in 
the deflection of the vertical by 'spgrid'. 
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T 
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I 

Figure 3. The azimuth (u,) of an ascending deflection of the vertical 
(ca), and the azimuth (ad) of a descending deflection of the vertical (cd) 
at a crossover of two satellite ground tracks. 

Therefore, for the components of the deflection of the vertical 
along the ascending (E,)  and descending ( E ~ )  tracks we have 

E, = 5 cos u, + 7 sin a,, 

Ed = ( cos ad + q sin ad = -5 cos a, + q sin a,. 
(26) 

Thus we can obtain 5 and q from the ascending and the 
descending deflection of the vertical as 

If the inclination of the satellite's oribital plane is nearly 90", 
or the work area is over the area where the satellite reaches 
its extreme latitudes, the use of the above algorithm will yield 
numerical problems. This case is treated in Appendix A. 

Now consider the case of multiple satellites, the inclinations 
of which will, in general, differ. Assume that we have n sets of 
along-track deflections of the vertical at a given grid point, 
each set containing both ascending and descending deflections 
of the vertical. We seek a solution for the north and east 
components of the deflection of the vertical from the n sets 
of observations. For n > 1, this forms a typical adjustment 
problem for which we can write the observation equations as 

EL + t.: = 5 cos a: + q sin xi, 

c ~ + u ~ =  - 5 c o s a a + q s i n a a ,  

i = l , 2  ,..., n ,  

where va and v6 are the residuals of the ascending and 
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descending components, respectively, of the deflection of the 
vertical for set i. Written in matrix form, eq. (28) reads 

V + L =AX, EL = G~P-', (29) 
where vector V contains the residuals, L contains the obser- 
vations, A is the design matrix, X contains the unknowns 
<, q, P is the weight matrix and crt is the variance of unit 
weight. P will be a diagonal matrix if all the deflections of the 
vertical are uncorrelated. The least-squares solution of (29) is 

X = N - ' U ,  (30) 
where N = ArPA, U = ATPL. Furthermore, if we write 

N = ( "  b c  "), .=(:); 
then these matrix elements can be analytically expressed as 

n 

a = 1 (cos M:)2(p: + p i ) ,  
i = l  

b = 1 cos 

c = 1 (sin ~ : ) ~ ( p :  + p a ) ,  

sin %:(pa - p i ) ,  
i = l  

" 

i = l  

n 

t =  1 c o s & ~ ( p ~ & ~ - p ~ E ; ) ,  
i = 1  

" 

where pa and p i  are the weights of the ascending and descending 
deflection of the vertical, respectively. The weights of deflection 
of the vertical play a crucial role in obtaining reliable estimates 
of 5 and q. In estimation theory, the weight of an observation 
is normally taken as the inverse of its error variance. The error 
in gridded deflections of the vertical contains two parts: that 
arising from the interpolation; and the error in the original 
along-track components of the deflection of the vertical. The 
former will be termed the interpolation error and the latter, 
the commission error. The interpolation error can be obtained 
only if we know the variance of unit weight, 6& associated 
with the weight given in (22). To estimate this we first assume 
that the deflections of the vertical contain only interpolation 
errors, and hence the weights required in (32) will be just given 
by those in (22). On this assumption, we obtain a solution of 
the normal eqs (30), and calculate the vector V, leading to the 
estimate 

VTPV 6 2  - ~ 

n-2  ' 

With 6& the estimate of the interpolation error is 

0- 

8 2  

P 
+". 

(33) 

(34) 

Finally the total error is given by 

where crc is the commission error. The estimation of 5 and q 
is then repeated using (30), but with the new data weight of 
l/&. Based on the work by Hwang & Parsons (1995), and 
comparisons between the satellite-derived gravity and ship 
gravity, a good choice for the deflection-of-the-vertical com- 
mission errors of Seasat, Geosat/ERM (average over up to 

60 cycles), Geosat/GM, ERS-1/35-day (average over 18 cycles), 
ERS-1/168-day and TOPEX/POSEIDON (average over first 
36 cycles) are 10.0, 0.97, 10.0, 1.88, 10.0 and 2.03 prad, respect- 
ively. With the new data weight a refined estimate of the 
variance of unit weight can be obtainzd, again using (33). The 
error variances of the estimated < and q are the diagonal 
elements of the matrix 6:N-I. Note that at grid nodes near 
land or isolated bodies it is sometimes impossible to  obtain 
the two components due to lack of data, as indicated by the 
zero determinants of the normal matrices. To avoid dis- 
continuity and edge effect, we fill the empty nodes using the 
weighted means from nearby non-empty nodes when the entire 
grid is established. 

FORMULA I N  THE CASE OF A 
HIGH-DEGREE REFERENCE FIELD 

The deflection of the vertical to gravity conversion formulae 
must next be modified in the case when a remove/restore 
procedure is used. In such a procedure, reference values 
computed from a geopotential model are removed from the 
observations, and the residual observations used as input to 
the conversion formulae such as (9). There are two issues 
related to this procedure. One concerns the optimal maximum 
spherical harmonic degree to be used, and the other the 
modification of the kernel functions. In the first case, we adopt 
the suggestion of Wang (1993), who recommended the use of 
the highest degree available in the chosen geopotential model, 
provided that the geopotential coefficients were properly scaled. 
Specifically, in the case of the conversion of deflection of the 
vertical to gravity, the reference components of the deflection 
of the vertical and the reference values of gravity should be 
computed by 

Nmax 

< I e f =  c <.s,, 

f e f =  1 V J " ,  
n = 2  

Nmax 

n = 2  

Nmax 

A P =  C A g A ,  
n = 2  

where t,,, q,, and Agn are the degree n terms in spherical 
harmonic expansions for the north and east components of 
the deflection of the vertical, and of the gravity anomaly, 
respectively, and Nmax is the maximum expansion degree. The 
scaling factor, S,, which minimizes the effect of coefficient 
errors and the truncation error due to the finite support of a 
data domain, was given by Wang (1993) as 

(39) 

where c, and E, are the degree variance and error degree 
variance of the Earth's anomalous potential implied by the 
chosen reference field. Fig. 4 shows the S, values as computed 
from the OSU91A model (Rapp, Wang & Pavlis 1991), which 
is the reference model used in this study. 

The second issue is closely related to the first one. Owing 
to the use of a high-degree field, as suggested above, the 
long- and medium-wavelength components of the deflection of 
the vertical will be removed, and hence the residual gravity 
anomaly at  a computation point is effectively the result of the 
convolution of the kernel functions and the residual deflection 
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Figure 6. A shaded-relief colour map of the satellite-derived gravity anomalies over the South Pacific 
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solution of the spectrum of gravity anomaly is 

1. -~ -LI-L~.-1--21 _-._ I 
spherical harmonic degree 

0 120 240 360 

Figure 4. Scaling factors S, of OSU91A geopotential coefficients for 
minimizing coefficient errors and truncation error. 

of the vertical within a spherical cap of a short radius centred 
at  this point. This observation is reflected in the use of a small 
inversion cell in least-squares collocation (e.g. Hwang & 
Parsons 1995). The same principle can be applied in the FFT- 
based method, through the modification of the kernel functions 
in (6), rather than of the data domain as in least-squares 
collocation. Specifically, using a spherical cap of radius R ,  the 
truncated kernel functions for the transformation of deflections 
of the vertical into gravity, obtained by modifying the kernels 
in (61, are 

where 

The FT of and 7, can be computed either numerically or 
analytically. Analytical formulae using Fourier series for the 
FT of and i, are given in Appendix B. Based on the tests 
made in Appendix B, we recommend the use of the analytical 
formulae in (B13) to compute the FT of the truncated kernels. 
One may be concerned with the potential problem that, in 
(41), side lobes of the spectrum of w(x, y) will distort the high- 
frequency parts of the spectra of the truncated kernels. In fact 
this problem does not occur, since the kernel functions I , ,  I ,  
decay rapidly, and the spectra of the truncated kernels derived 
in Appendix B vary smoothly. 

Using the truncated kernels, the relationships between the 
north and east components of the deflection of the vertical 
and the gravity anomaly, in the frequency domain, are 

Furthermore, since z, and L, contain only imaginary parts, 
we can write 

E,(u,  v) = iR,(u, u )  = iR,(u, u) = Z,(u, u) (43 1 
Using the least-squares method as for deriving (9), a unique 

R,Z(U,  U )  + R,H(u, V )  
AG(u, u) = i2ny 

R: t R i  (44) 

Furthermore, we can anticipate that the errors in the estimates 
of the north and east components of the deflection of the 
vertical will be different. The difference in accuracy will be 
particularly pronounced if altimetric data from satellites with 
very high or low inclinations, such as ERS-1, dominate the 
solution in (30) (see the discussion in Appendix A). For 
example, using Seasat, Geosat/ERM, ERS-1/35-day, and 
ERS-1/168-day data over the Reykjanes Ridge, it was found 
that the north and east deflection of the vertical components 
have average errors of 1.79 and 4.19 prad respectively. Over 
the South Pacific the corresponding numbers are 1.51 and 
5.49 prad. Because of the difference in errors in the north and 
east components of the deflection of the vertical, we should 
further refine (44), taking into account the estimated deflection 
of the vertical errors. The effect of these errors is two-fold. 
First, assuming that the estimated deflections of the vertical 
contain only white noise, and that the spectra of the white 
noises are those corresponding to the averaged error variances, 
we can derive the Gaussian-fitted Wiener filters for the north 
and east components of the deflection of the vertical, using the 
same approach as in Appendix A [see (A17)-(A20)]. Second, 
the average error variances can serve as weights in estimating 
the gravity-anomaly spectrum, so that instead of eq. (44), we 
use 

P,R,E(u, u) + P,R,A(u, u )  
P ,  R: t P,Ri 

AG(u, v) = i27cy (45) 

where P,  and P,  are the inverses of the averaged error variances 
of the estimated north and east deflection of the vertical 
components, respectively, and 5 and A are the filtered north 
and east deflection of the vertical components, respectively. 
Using Seasat, Geosat/ERM, ERS-1/35-day, and ERS-1/168-day 
data, it was found that the filter widths of the Gaussian-fitted 
Wiener filters for the north and east components over the 
Reykjanes Ridge are 6.04 and 6.91 km, respectively, and over 
the South Pacific the corresponding numbers are 6.40 and 
6.99 km. The filter widths of the east component in the two 
test areas are larger than the widths of the north component, 
and this is consistent with the fact that the east component 
has a larger noise level than the north component. 

GRAVITY ANOMALIES FROM 
MULTI-SATELLITE ALTIMETRY 

Summarizing the above developments, the procedure for 
deriving marine gravity anomalies from multi-satellite 
altimetry is 

(1) grid along-track component of the deflection of the 
vertical for ascending and descending tracks for each satellite; 

(2)  at each grid point, estimate the north and east deflection- 
of-the-vertical components by least-squares using ascending 
and descending tracks from all satellites; 

(3) Fourier transform the north and east components of the 
deflection of the vertical and filter separately using Wiener 
filters; 

(4) use the filtered components of the deflection of the 
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equation (9) 
equation (44)  

equation (45) 
equation (45), but with S, = 1 for all n 

Table 1. Standard deviations of the diffcrences (in mgal) between ship gravity and 
satellite gravities derived using various formulae. 

I formula I Revkianes Ridge 1 South Pacific 1 
~ 

8.38 4.85 
8.21 4.74 
7.22 4.02 
7.05 3.94 

I I "  i 

vertical to  calculate the spectrum of gravity anomaly with (45) 
and then d o  an inverse FFT. 

Regarding the last step, we have presented three different 
formulae for converting deflection of the vertical to gravity 
anomaly, evolving from (9)  to (44), then to (45). In Table 1 
we evaluated the results from using the three formulae, and i t  
is concluded that (45) is the best. The cap size R in (41) is set 
to I", based on the experience of Hwang & Parsons (1995), 
who used a cell size of 0.5" plus 0.25" data border in their 
least-squares collocation computations. In fact, any values for 
R between 0.75" and 2" will yield similar results. However, if 
R is too large, for example R = 3 ' or larger, the rms difference 
between the satellite gravity and the ship gravity increases. 
For the reasons discussed earlier, we chose to use the scaled 
OSU91A geopotential model to degree 360 as the reference 

320' 325' 330- 335- 340' 
65' 65' 

60' 

55' 

60' 

55' 

50' 50' 
320' 325' 330' 335' 340' 

field. I n  Table 1 we also list the result when the OSU91A 
coefficients are not scaled. This choice produces a slightly 
worse result than using the scaled coefficients (see the last two 
rows in Table 1). The effect of the flat-earth approximation in 
FFT is negligible (Sideris & Li 1993). Finally, since edge effect 
is inevitable in FFT unless one uses 100 per cent padding, we 
recommend that gridded values within 1" of the grid borders 
are not used. Maps of gravity anomalies on a 3' x 3' grid for 
the two test areas, around the Reykjanes Ridge and in the 
South Pacific, are shown in Figs 5 and 6. 

DISCUSSION 

Table 2 shows the differences among the ship gravity and the 
satellite gravity derived with the above procedure, gravity 
derived by least-squares collocation as in Hwang & Parsons 
(1995), and gravity derived by Sandwell et ul. (1994), for the 
Reykjanes Ridge and the South Pacific areas. For the three 
satellite gravity fields in Table 2, the data used are from Seasat, 
Geosat/ERM ERS-1/35-day and ERS-/168-day. Geosat/GM 
data could not be used because Geosat/GM data north of 
30"s were recently declassified (Carlowicz 1995), but were not 
available to the authors. It is noted that, due to high latitudes, 
the density of the altimeter data over the Reykjanes Ridge is 
relatively high compared with that over the South Pacific area. 
Also, before comparisons were made, the long-wavelength 
deviations between satellite-derived gravity and ship gravity 
were removed, as described in Hwang & Parsons (1995). In 
all cases, least-squares collocation gives the smallest rms 
differences from the ship gravity, followed by the procedure 
described in this paper. The computing times required by these 
two methods on a SparclO M41 computer are also given in 
Table 2. The cpu time of the new procedure includes the times 
for gridding all the data, resolving the north and east deflection 
of the vertical components and computing gravity anomalies 
using (45). It is evident that the method described in this paper 
is more than 100 times faster than least-squares collocation in 
the two test areas. The method of least-squares collocation 
needs a large amount of computer time because of the use of 
dense ERS-1/168-day data. 

The gravity field in the area of the Reykjanes Ridge is shown 
in Fig. 5. An earlier field for the same area, constructed using 
least-squares collocation, was given by Hwang & Parsons 
(1995). A recent research cruise to the Reykjanes Ridge (cruise 
87, RRS Charles Darwin) demonstrated that the earlier attempt 
accurately represented features with length-scales down to 
20 km. Table 2 shows that the field, constructed using the 
modified spectral technique described in this paper, comes 
closer to matching the accuracy of least-squares collocation 
than the standard spectral method. The density of altimetry 

-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 
mgal 

Figure 5.  A grey-shaded map of the satellite-derived gravity anomalies 
over the Reykjanes Ridge. 

coverage has increased with the availability of the ERS-1,' 
168-day data since the earlier attempt of Hwang & Parsons 
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method 
collocation 

fft. this paper 

Table 2. Comparison betweeen ship gravity and thc satellitc gravities derived from various methods 

std.  dev. of diff. (mgals) cpu time (seconds) number of ship measurements 
6.15 49613 9.5238 
7.05 470 9.5238 

Sandwdl et al.. 1994 8.10 95238 

I method 

collocation 
fft, thi5 paper 

Saildwell ct al.. 1991 

(1995). However, the latter field also incorporated ship gravity 
for the area. Where the ship gravity coverage is sparse, for 
example the southern part of the ridge, one can now have 
much greater confidence in the small-scale variability seen 
along-axis. A problem that remains to be solved is whether it 
is possible to adapt the techniques in this paper so that the 
gridded deflections of the vertical and ship gravity can be used 
together to calculate gravity anomalies. Where dense coverage 
of ship gravity exists over a sufficiently large area-this 
is increasingly a byproduct of high-resolution bathymetric 
surveys-it may be possible to combine the gravity spectrum 
derived from the defection of the vertical as in (4S), and a 
gravity spectrum derived from the ship gravity, in some optimal 
way. Elsewhere, it may be necessary to  treat the satellite- 
derived gravity grid as point data, which are then mixed with 
the randomly distributed ship-gravity values to form a new 
gravity grid. In this approach, careful weighting of the two 
data types will be essential in obtaining a good combined field. 

A colour shaded-relief map of the gravity field over part of 
the South Pacific is shown in Fig. 6. The spacing between 
adjacent altimeter ground tracks halves in going from the 
equator to latitudes of 60". Also, the amplitudes of short- 
wavelength features are larger in the area of the Reykjanes 
Ridge than for the South Pacific area. The latter area provides 
a more stringent test, therefore, of the ability to resolve short- 
wavelength features. Because the gravity field for the South 
Pacific area would otherwise be dominated by longer- 
wavelength features, we have removed a reference field up to 
degree and order 10. The lineated gravity anomalies first noted 
by Haxby & Weissel (1986) are clearly visible in Fig. 6. These 
features are aligned with the direction of motion of the Pacific 
plate in a hot-spot frame of reference. Haxby & Weissel (1986) 
suggested that the gravity lineations reflect the development 
of small-scale convection from a convective instability 
occurring beneath the cooling lithospheric plate (Parsons 
& McKenzie 1978; Buck & Parmentier 1986). Alternative 
explanations-involving numerous mini-hotspots (Fleitout & 
Moriceau 1992) or lithospheric stretching of the Pacific plate 
(Sandwell rt (I/. 1 9 9 S t h a v e  since been proposed. The present 
gravity field is able to resolve many more seamounts than 
previously. There are several seamount chains, also aligned 
with the direction of motion of the Pacific plate. The lineated 
gravity anomalies, which have wavelengths across-strike of 
150-200 km, seem to develop and reach full amplitude some 
distance away from the East Pacific Rise. However, there are 

std. dcv.  of diff. (mgals) cpu time (seconds) number of ship Ineasurc'nients 
3.70 68097 14713 
3.94 173 14713 

4.05 14713 

some linear seamount chains closer to the ridge-axis, and i t  is 
not clear whether there is any connection between the lineated 
gravity anomalies and variations along the ridge. The East 
Pacific Rise can also be clearly seen in Fig. 6, despite the fact 
that the direction of illumination was chosen to enhance the 
gravity lineations. Fast-spreading ridges are characterized by 
a small gravity high of almost constant amplitude (e.g. Owens 
& Parsons 1994); the axial gravity high in Fig. 6 appears 
continuous over several hundred kilometres along the axis. 

The density of altimeter coverage will increase yet further 
as data from new satellite missions become available---for 
example ERS-2, SALT, SPOT-3 and MOS-2 (Seeber 1993). 
ERS-I has now completed a second 168-day cycle; when this 
is fully available the ERS-1/168-day data set will be twice as 
dense as that used in this study, i.e. equivalent to the coverage 
of Geosat/GM. The procedure described in this paper provides 
a rapid means of updating the global marine gravity field as 
new sea-surface height measurements accumulate. The modi- 
fied spectral technique used retains the speed of previous 
spectral methods, but features similar to those used in least- 
squares collocation are included, resulting in gravity anomalies 
comparable in data quality to those derived by the latter 
technique. At present, whcre the area of study is relatively 
small, it may still be desirable to use least-squares collocation. 
Some of the steps in the new procedure, for example the fast 
method of gridding the along-track deflections of the vertical 
and the method of resolving the north and east components, 
may have additional applications. For example, the technique 
of fast collocation (Bottoni & Arzaghi, 1993) requires the data 
to be on a grid, so that the covariance matrix of the data will 
be in Toeplitz form and can be quickly inverted. Because least- 
squares collocation gives the most accurate result, it may be 
possible to combine fast collocation with the efficient gridding 
of deflections of the vertical to retain the accuracy of general 
least-squares collocation without requiring a large amount of 
computer time. 
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APPENDIX A: GRAVITY DEFLECTION-OF- 
THE-VERTICAL CONVERSION I N  THE 
CASE O F  A S I N G L E  SATELLITE WITH A 
H I G H  INCLINATION A N G L E  

Reduced along-track deflection of the vertical 

Here we will investigate a numerical problem when applying 
(27) in the case of data from one satellite and seek an improved 
procedure. For a satellite such as ERS-I, whose orbital 
inclination is about 98", the term sin aa becomes very small 
and will create a numerical problem for the east component q 
as determined from (27). The problem can best be examined 
in terms of covariance propagation. Assuming that the ascend- 
ing and descending deflections of the vertical are uncorrelated 
and their error variances are of the same magnitude, we can 
derive the error variances of 5 and q as 

1 d 
0; = -(0: 1- 0:) = T. 

4 sin2 a, 2 sin2 M ,  

Thus, the ratio of the two error variances is 

0: cos2a, 
0: - sin2 M ,  

If, for example, a, = 8", then 0," is 50 times larger than 0:. 
Thus the noise of the east component is greatly amplified to 
the extent that any filter will not properly remove it. A similar 
situation occurs for the north component when M ,  approaches 
90" or when the satellite reaches its maximum absolute 
latitudes. 

In view of this numerical problem, an improved procedure 
is suggested below. First, we obtain the reduced deflection of 
the vertical along a fixed azimuth a. (for the ascending 
deflection of the vertical) and (n - ao) (for the descending 
deflection of the vertical) using (26): 

E,O = 5 cos M~ + q sin a. 

('43) 

I 
[ F ,  sin(ao + a,) + Ed sin(cco - M , ) ]  , -~ - 

sin 2 ~ ,  

& = 5 cos(n - ao) + q sin(n - ao) 

1 
sin 2 ~ ,  

[E,  sin(cro -a,) + c, sin(cco + a,)]. -- - 
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S,, and S,, to the left sides of (A10) and ( A l l )  and dividing 
the resulting equations by (A12), we obtain 

The value a. should be chosen at  the geographic centre of the 
work area. The reduced deflections of the vertical from the 
transformation in (A3) are then functions of two variables, like 
t: and q, and can be operated on in the same way. The error 
variances of 6: and 6: are 

1 
o:,, = __ [a: sin2(ao - 

sin2 21, r,) + o: sin2(ao + a,)] 

If oa = o d ,  and xu = a,, we will have 

Therefore the error variances of 6: and c: are almost identical 
lo those of c, and cd, and none of the two has increased noise. 
At this stage, we can filter c: and c: using an optimal filter 
(see below). Furthermore, by (27) we have 

1 
2 sin a. 

q = __ ($ + E : ) .  

Fourier transforming the above equation and substituting into 
(9) gives 

where E t  and E: are the FTs of 6: and E:,  respectively. 

Wiener filter 

The reduced components of the deflection of the vertical given 
by (A3) can be filtered by a Wiener filter. To this end we have 
to estimate the noise spectra of the reduced deflection of the 
vertical. Assuming that the reduced deflections of the vertical 
contain noise levels n and m, we can write 

tz = 5 cos a. + q sin a. + n 

8: = -t cos a. + q sin a. + m .  

('48) 

and 

(A91 

Assuming that the signals and noise are uncorrelated, we can 
Fourier transform both sides of (AS) and (A9), and use the 
relationship in (8), to obtain the spectral density functions of 
the two reduced components of the deflection of the vertical 

AG*AG sa, = ___ (u sin a0 + v cos ao)2 + S,, , 
Y 2 q 2  

AG*AG 
S d d  = ~ (u sin cxo - u cos txo)2 + S,, , 

Y 2 q 2  

u2 cos2 ao) , 

where S,, and S d d  are the auto-spectral density functions of 
the reduced ascending and descending components of the 
deflection of the vertical, respectively, Sad is the cross-spectral 
density function of the two components, and S,, and S,, are 
the auto-spectral density functions of the noise. O n  moving 

(A131 

To obtain circularly symmetric and smooth spectral density 
functions of the noises we can employ azimuthal smoothing, 
defined by 

where q cos $ = u, and q sin (CI = u. We can also use this pro- 
cedure to derive circularly symmetric forms for s,, and S d d .  

Fig. A1 compares the spectral density functions of signal and 
noise for the reduced ascending component of the deflection 
of the vertical from the ERS-/l68-day and ERS-1/35-day data 
over the Reykjanes Ridge. The latter are averaged from 18 
cycles of data. The noise of the ERS-1/168-day deflections of 
the vertical is clearly larger than that for ERS-1/35-day data. 
At lower frequencies, the signal spectra from ERS-1/35-day 
and ERS-l/Gm agree very well. 

Using the estimated noise spectra, the Wiener filters for 6; 

and 6: can be calculated by 

To obtain smooth Wiener filters and to investigate the filter 
widths, we least-squares fit the values as computed from (A17) 
and (A18) by a Gaussian function of the form exp(-nd2q2), 
where d is the filter width. Note that the inverse Fourier 
transform of exp(-nd2q2) is [exp( -nx2 /d2) ] /d  which is the 
Gaussian filter in the space domain. The filtered deflections of 
the vertical in the frequency domain are 

The raw deflection of the vertical in (A7) should be replaced 
by the filtered deflection of the vertical for the computation of 
gravity anomalies. Fig. A2 compares Wiener filters for the 
deflection-of-the-vertical from ERS-1/35-day and ERS-1/168-day 
data. The filter widths as determined by the Gaussian function 
fits for ERS-1/35-day ascending and descending deflections of 
the vertical are 23.89 and 27.14 km, respectively, while for 
ERS-1/168-day data the numbers are 9.14 and 8.57 km. Based 
on these numbers and Fig. A2, the estimated 2-D resolutions 
of ERS-1/35-day data and ERS-1/168-day data are 3-4 cycle 
degree-' and 11-12 cycle degree- ', respectively. 
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0 

FigureAl. Spectral deiisity functions (SDF) of the signal and noise of the ascending deflection of the vertical from ERS-li3S-day and 
ERS-lil68-day data over the Reykjanes Ridge 

APPENDIX B: FOURIER TRANSFORMS O F  
TRUNCATED KERNEL FUNCTIONS I N  
ANALYTICAL FORM 

Analytical expressions of the truncated kernel functions and 
1, will be derived here. The function w(x,  y )  in (41) can be 
approximated by a complex Fourier series, 

- 

where c,, are the complex Fourier coefficients. By the change 
of variables 

we obtain c,,, by 
1 f a  f n  

c,, = J J G(X, j)exp[-i(m% + njj)] di djj, (B3) 4nZ -1[ - n  

where 

1, ~ = m s - R ,  n 
T 

W(X, jj) = I 
By the definition of the Hankel transform (Mesko 1984) and 
using the polar coordinates 

X = Fcos 0 ,  j = ?sin 6 ,  

rn = k cos +, 
(B5)  

n = k sin $, k = Jm, 

Using the formula for Bessel functions of integral order 
(Lebedev 1972, p. IOO), 

d 
- [x"J,(x)]  = .xnJ"- , ( x ) ,  
dx 

with x = kr we have 

d 
dr 

(87) 

- [rJ,(kr)] = /trJ,(kr) . (B8) 

Replacing the variable r by f and integrating (B8), we obtain: 

fJ , (kF)  dF= -FJl(kF) =-Jl($R).  (B9) 
k 1 i = 0  Tk 

F = ( n / T ) R  

Thus, 

c m n = - J 1 ( $ R )  R 
2 Tk 

With (BlO), the FTs of Tc and I, are 
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- ERS-l/S-day (raw) 
ERS-1/35-day (Gaussian) 
ERS-l/IB&day (raw) 
ERS-l/lB&day (Gaussian) 

C 

0 2  - 

0 2 4 6 8 10 
frequency (cycleldegree) 

Figure A2. Gaussian-fitted Wiener filters for along-track deflection of the vertical from ERS-1/3S-day and ERS-1/168-day altimetry over the 
Reykjanes Ridge. The top figure is for the ascending tracks and the bottom one is for the descending tracks. 

Using the theorem of frequency shift, we have In conclusion, 

- 2xi 
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Figure B1. The spectra of the truncated kernel function 15 along the u direction for various radii R (note: 1" is equivalent to 111 km). The 
expansion degree in the Fourier series is 300. The frequency along the u direction is fixed at 0.04 cycle degree ' .  The spectrum with R = 20" is 
equivalent to the spectrum of the original kernel function. 

where D = 2T. For a numerical computation, it is noted that 

When u - (m/D) = 0 and u - (n /D)  = 0, we have 

To verify the formula given in (B13), one may choose a large 
R value so that z, z L,  and t, z L,  and the exact values of 
L, - and z,, will be known. Fig. B1 shows the spectra of r, and 
I , ,  which are the imaginary parts of (B13). Using an expansion 
degree to  m = n = & 300 it is found that with R = 20" E ,  and 

z, are practically identical to L, and L, with a relative 
difference below Use of degrees higher than 300 reduces 
the difference only marginally, thus we decided to use 
m = n = f 300 for all the computations described in this paper. 
Also shown in Fig. B1 are the discrete Fourier transforms 
(DFT) of I,, l,, which exhibit large deviations from the theoreti- 
cal values, especially a t  high frequencies. This implies that we 
may not obtain correct spectra of 

For practical applications, it would be extremely time- 
consuming to compute L,  and L,  on a point-by-point basis. 
This problem can be overcome by computing L,  and t, on a 
grid, and interpolating the required value from the grid. 
Experiments show that for R = 0.5", lo, 2", a grid interval of 
0.1 cycle degree-' for u, u, and a bicubic spline interpolation 
yield values identical to those computed by (B13). For 
the current altimeter data density, a maximum frequency of 
30 cycle degree-', equivalent to a data spacing of l', is sufficient 
for most uses. Furthermore, the following relationships will 
help to save storage space and computer time: 

and 7, by DFT. 

Q - U ,  * u ) =  -L& f u ) ,  

q u ,  4 = Z,(V, 4, 
L&u, V) = Z,(u, - v ) .  

(B16) 
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