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INTRODUCTION

SUMMARY

An optimal procedure is developed for deriving gravity anomalies from sea-surface
height measurements obtained by a number of different satellites, the inclinations of
which may vary. We begin by recasting the problem of the conversion of the deflection
of the vertical to gravity in the frequency domain. We show that a deterministic
approach based on the Vening-Meinesz integral is equivalent in the frequency domain
to the stochastically based method of least-squares collocation. A new method for
gridding the deflection of the vertical is developed that uses the fact that satellite tracks
of the same type (ascending or descending) are nearly parallel, so that values at grid
points can be estimated by first performing along-track interpolations, followed by one
cross-track interpolation, both using Akima’s spline. This gridding method is very
efficient compared with methods such as that of fitting minimum curvature surfaces,
especially for dense data such as for the 168 day cycles of ERS-1. A weighted least-
squares method is then employed to obtain the north and east components of deflection-
of-the-vertical components using the gridded along-track components from all of the
individual satellite missions. Finally, gravity anomalies are computed from the two
deflection-of-the-vertical components in the frequency domain with truncated kernel
functions, the use of which is related to the prior removal of a high-degree reference
gravity field. This new procedure is more than 100 times faster than least-squares
collocation, and yields gravity anomalies with errors that are comparable to those
derived by least-squares collocation and smaller than those derived by other recent
applications of spectral techniques, as judged by comparisons with ship-gravity measure-
ments, The case of gravity computation for a single altimetric satellite is handled
separately, and a method is given to estimate the noise spectra of deflection of the
vertical and reduce the numerical problems caused by satellites with high inclination
angles. The new procedures make possible quick, yet accurate, global updates of the
marine gravity field.
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are those used by Haxby et al. (1983), Sandwell (1992), and
McAdoo & Marks (1992). As regards the type of data, the use

Currently there exist altimetric data from five satellite missions,
i.e. Geos-3, Seasat, Geosat, ERS-1 and TOPEX/POSEIDON,
which may be used for deriving marine gravity. Future alti-
meter missions will further increase the amount and density of
sea-surface height measurements. Consequently, it has become
increasingly important to have efficient methods of deriving
gravity anomalies from this large amount of altimeter data.
The fastest methods have been based on spectral techniques
and use of the fast Fourier transform (FFT), and this seems
likely to remain the case. Examples of FFT-based methods
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of deflection of the vertical mitigates, to a large extent, problems
associated with orbital errors (e.g. Sandwell 1992; Hwang &
Parsons 1995). With dense altimeter coverage from several
satellites, it will be difficult and time-consuming to make
orbital corrections to the sea-surface height measurements to
the level required to remove crossover differences and avoid
short-wavelength artefacts in the derived gravity field.

If an FFT-based technique is to be used, the immediate
problem is that of gridding the measurements. As the number
of satellite missions increases, the computer time needed for
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gridding the data will become a major burden in the derivation
of gravity fields. Furthermore, since deflections of the vertical
from different satellite missions have different azimuths, a
method for resolving gridded deflections of the vertical with
different azimuths into an unique set of north and east com-
ponents of the deflection of the vertical is an essential step in
the derivation of gravity. One method used for this purpose
has been described by Sandwell (1984), and has been used in
the construction of a global marine gravity field (Sandwell,
Yale & Smith 1994).

With these problems as a background, the aim of this study
is to develop a fast procedure for deriving marine gravity from
multi-satellite altimeter data. The method should also be
optimal in terms of a comparison with direct measurements of
marine gravity. To this end, we first find a ‘best’ relationship
between deflections of the vertical and gravity anomalies in
the frequency domain, considering factors such as the use of a
high-degree reference geopotential model and errors in the
data. We then look at an efficient gridding technique that
exploits the characteristics of altimetry data distribution
and avoids unnecessary assumptions. The issue of combining
deflections of the vertical with different inclinations is investi-
gated, and we present a method of obtaining the north and
east components of the deflection of the vertical using a
weighted least-squares. As an illustration of the ways of
estimating data noise and dealing with the problems caused
by high inclination angles, we also look at the case of a single
satellite. Finally we evaluate these procedures for converting
deflections of the vertical to gravity by comparing the satellite-
derived gravity anomalies with ship gravity; gravity anomalies
derived by the method of least-squares collocation, and those
obtained by Sandwell et al. (1994) are assessed in the same
way. Tests of the steps in our new procedure have been carried
out for two areas: the area around the Reykjanes Ridge,
defined by 50° < ¢ < 65°, 320° < 1 < 340°; and an area in the
South Pacific defined by —25° <¢ < —10°, 230° < A <250°,
where ¢ is the latitude and A is the longitude.

GRAVITY TO DEFLECTION-OF-THE-
VERTICAL CONVERSION: DUALITY OF
DETERMINISTIC AND STOCHASTIC
APPROACHES IN THE FREQUENCY
DOMAIN

To use an FFT-based method to derive gravity from deflections
of the vertical, we first have to find the relationship between
the gravity anomaly and deflection of the vertical in the
frequency domain. Such a relationship can be established using
either a deterministic approach or a stochastic approach. For
the deterministic approach, we first express the gravity anomaly
and deflections of the vertical as functionals of the Earth’s
disturbing potential, T, specifically:
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where Ag is the gravity anomaly, ¢ and 5 are the north and
east components of the deflection of the vertical, respectively,

y is the normal gravity on the reference ellipsoid, x, y, z are
the local rectangular coordinates (x positive to the east, y
positive to the north and z positive upwards), and R, is the
Earth’s mean radius (= 6371 km). The approximation in (1)
can be made if we use a remove/restore procedure in which
the long-wavelength components are removed from the data
(see below). The relationship between geoidal undulation and
gravity anomaly in the planar approximation is given by
Stokes’ formula (see Schwarz, Sideris & Forsberg 1990):
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where * is the convolution operator, E is the domain of
integration in the X Y-plane, and r = +/x* + % Using Bruns’

formula, N =T/y, and eqs(2)-(4), we obtain the Vening-
Meinesz integral:
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1t is clear from (5) that the kernel functions of ¢ and # are

l
(1-40)

Noting that the form of the Fourier transform used here is
given by

F(u,v)= j J f(x, yyexp[—i2n(ux + vy)] dx dy, (7)

on transforming eq. (5) we obtain

%' E(u’ U) } 7 { v }
=—AG(u, v) , (8)
H(u, v) Y4 u

where g = \u?+ v” is the circular frequency. Thus, in theory,
it is possible to determine the gravity anomaly by knowing
only either ¢ or 1. In satellite altimetry, however, we obtain
both the north and east components of the deflection of the
vertical by resolving the ascending and descending along-track
components (see below), and we wish to use them in an optimal
way. In this case we have two observations, & and H, and one
unknown, AG, and hence each entry of (8) forms an observation
equation. Assuming that the weights for E and H are identical,
we can derive a unique AG from Z and H by making use of
the least-squares principle (see, for example, Koch 1987):.

AG(u, v)= %(uH +vE). 9)

Eq. (9) is identical to the formulae given in Sandwell (1992)
and McAdoo & Marks (1992), who derived their formulae
using Laplace’s equation and downward continuation.
Approaches that use either (8) or (9) are deterministic in nature.

In the stochastic approach, the prediction of the gravity
anomaly from deflections of the vertical may be accomplished
by least-squares collocation (e.g. Hwang & Parsons 1995).
Following Moritz (1980), the general prediction formula of
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least-squares collocation involving two types of data reads

C,,C 171
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where s denotes the vector containing the signal, /; and [, are
two vectors containing observations of type 1 and type 2, C;
is the covariance function between s and data of type i, and
C,; are the covariance functions among the data. Assuming
observations are available for the entire XY-plane, the right-
hand side of (10} can be viewed as the convolution between
kernel functions f, f and the data contained in l,, [,, namely

s=f1*l + 1o, (11)
where
CCiy !
(f1/2)=(C,C3) . (12)
21022

The Fourier transform (FT) of (11) is
S=F,L,+F,L,. (13)

This is equivalent to a system identification problem where
the spectra F; and F, are to be identified (Bendat & Piersol
1993). Fourier transforming (12) and using the fact that the
covariance function and spectral density function form a
Fourier transform pair gives

Fl Gll G12 ot Gl
= , (14)
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where G;; are the auto- or cross-spectral density functions of

I, and I,, and G; is the cross-spectral density function between
{; and s, namely

6=, m L 19
G,= lim L*S, (16)
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with T,, T, being the record lengths in the X, Y directions,
respectively. Note that the above definitions have been adopted
from Bendat & Piersol (1993), and here the symbol ‘¥’
represents the conjugate operator. If the two vectors I, and [,
are linearly correlated, which is true for the north and east
deflection of the vertical components (see eq. ), we obtain
(see Vassiliou 1986)

F=—S1

G+ Gy (17)
Fpe — 22
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Now, let s be a vector containing gravity anomalies, and [,
and [, be vectors containing ¢ and 7, respectively. By the
differentiation theorem of FT we have, with (1)-(3),

__9 __° ~2n
AG(u, v) = pe T(u, v, z) =3 [T(u,v)e ]
z
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i (18)
Zu, v)= — -2mvT(u, v),
Y

H(u, v) = — éZnuT(u, o),
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then,

1
Gy = ;547rzquT,
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where Sy is the spectral density function of the Earth’s
disturbing potential. Therefore, with (17) we have
iy
1= 77
q
(20)
iyu
2=
q
Substituting F; and F, into (13), we obtain (9). This shows
that in the frequency domain the deterministic approach based
on the Vening-Meinesz integral, and the stochastic approach
based on least-squares collocation yield the same relationship
between the gravity anomaly and the two deflection of the
vertical components. The implication i1s that when using (9)
for transformation of deflections of the vertical into gravity,
the property of minimum-error variance of the predicted gravity
anomalies, which is intrinsic to least-squares collocation, is
preserved (¢f. Moritz 1980).

FAST GRIDDING BY SPLINES

To use the frequency-domain approach, the first step is to grid
the ascending and descending deflection of the vertical from
individual satellites. Packages such as gmt (Wessel & Smith
1991) and wvsL contain programs for gridding. However, they
are designed for general purposes and do not take advantage of
the characteristics of altimetry data distributions. Furthermore,
the ascending and descending deflections of the vertical are
in fact functions of three variables—latitude, longitude and
azimuth. Therefore, if the gridding is done with a 2-D inter-
polant, the resulting value is in some sense a weighted mean
of the deflections of the vertical surrounding the grid points,
ignoring the fact that the deflections of the vertical used have
different azimuths. If the area searched is small, this will not
create a serious problem since the variation of azimuth in this
case will be small. To avoid the constant-azimuth assumption,
we can view the along-track deflection of the vertical as a
function of along-track distance. The azimuth is implicitly
contained in the distance variable as

e(s) = e(s(x)), (21)

where ¢ is deflection of the vertical, s is along-track distance
and o is azimuth. We can also treat the cross-track deflection
of the vertical as a function of cross-track distance.

A fast algorithm for gridding the along-track deflection of
the vertical can be based on these simple considerations. It is
known that, over a short interval of time, a satellite’s motion
is governed by secular variations in the six Keplerian elements
{Kaula 1966). Thus, within a small latitudinal band, ground
tracks of the same type (ascending or descending) are almost
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parallel and we may fit a straight line to each of the ground
tracks by least-squares. These lines help the search for the
intersection points described below. As shown in Fig. 1, at any
given grid point P, we first find the intersection point between
the first track to the left and a line passing through P and
perpendicular to this track, so that the distance from P to
the track is a minimum. From (21), the deflection of the
vertical at this intersection point can be interpolated from the
deflections of the vertical along the same track. We then
proceed to the second track to the left, and interpolate the
deflection of the vertical on to a point whose distance to the
first intersection point is a minimum. The process is repeated
for a specified number of tracks to the left. For tracks on the
right side of P, the method of obtaining the along-track
deflection of the vertical is the same. When interpolating the
along-track deflection of the vertical we also record the cross-
track distances to P, negative for the tracks to the left and
positive for the tracks to the right. Finally we perform a cross-
track interpolation using the recorded deflections of the vertical
and cross-track distances to obtain the deflection of the vertical
at the grid point P.

Many schemes were tested for the along- and cross-track
interpolations. Owing to the unequally spaced knots, methods
such as the natural cubic spline and Lagrange’s polynomials
create very large oscillations on some occasions, and the
deflections of the vertical are corrupted by artefacts in places.
We found that Akima’s spline {de Boor 1978), which was
designed to combat large oscillations, works well in this
application. Furthermore, we suggest that at most three tracks
to the left and to the right—a total of six—are sufficient, and
that the distances from P to the leftmost or the rightmost
track should not exceed three times the average cross-track
spacing. For each along-track interpolation, the data distances
to the intersection point should not exceed 21 km.

= = along-track interpolation
= across-track interpolation

Figure 1. Sketch showing the gridding of deflections of the vertical
by splines. The gridding is first carried out by along-track inter-
polations on the two sides of point P (directions along dashed lines),
followed by one cross-track interpolation (direction along the solid
line).

Fig. 2 compares ERS-1/35-day deflections of the vertical
gridded by the routine ‘surface’ in omT (Wessel & Smith
1991)—this is based on fitting a minimum-curvature surface
(Smith & Wessel 1990)—and the program ‘spgrid’, which is
based on the method just described. The minimum-curvature
method tends to break up features that are clearly linear. Since
only a few data points are used at each grid point, the new
method is also very efficient, especially for very dense data.
Using ERS-1/168-day data over the Reykjanes Ridge, with a
grid spacing of 3’ x 3, "surface” needed 272 CPU seconds on a
Sparcl0 M41 computer, compared with 43 seconds for “spgrid’.

The new method also provides weights to be associated with
the interpolated deflection of the vertical. Based on the error
estimate for Akima’s spline (de Boor 1978), the weight. p, at a
grid is taken to be

1

= 2 20
62 + of + o}

p (22)

where o2 is the unscaled error variance associated with the
cross-track interpolation, ¢ is the unscaled error variance
associated with the along-track interpolation at the first track
to the left and o2 is the same as o7, but to the right. Each of
the unscaled error variances is determined by

a? = x3x3, (23)

where x; and x, are the distances from an intersection point
(or P) to the data points before and after this point {or P).
The weight p serves as a measure of the ‘importance’ of a
gridded deflection of the vertical, and is used in the least-
squares estimation of the north and east components of the
deflection of the vertical described below.

LEAST-SQUARES ESTIMATION OF NORTH
AND EAST DEFLECTIONS OF THE
VERTICAL FROM MULTI-SATELLITE
DATA

Having gridded the along-track deflections of the vertical, the
next step is to resolve the north and east components of the
deflection of the vertical. First, consider the case of one satellite.
As shown in Fig. 3, the deflection of the vertical along an
ascending track, ¢,, and the deflection of the vertical along a
descending track, ¢4, may be obtained by numerically differen-
tiating two successive along-track sea-surface heights (Hwang
& Parsons 1995). The relationship between the component of
the deflection of the vertical along an arbitrary azimuth o and
the north and east components & and n can be expressed as
{Heiskanen & Mortiz 1985)

e=Efcosa+pusina, (24)

The approximate azimuth of an along-track deflection of the
vertical can be determined by the formulae given by Sandwell
(1992) or Hwang & Parsons {1995). At the crossover of two
satellite ground tracks, the relationship between the azimuth
of the ascending track, «,, and that of the descending track,
%4, 18 (Sandwell 1992)

Ag=T— 2. (25)
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Figure 2. Comparison of ERS-1/35-day ascending deflection of the vertical over Gibb’s Fracture Zone, gridded by program ‘spgrid’ {a), and by
program ‘surface’ (b). Owing to the large cross-track spacing, the deflection of the vertical by ‘surface’ contains artefacts, which are not found in

the deflection of the vertical by ‘spgrid’.

north
£
a
®y
o
east
€

Figure 3. The azimuth (a,) of an ascending deflection of the vertical
(¢€4), and the azimuth (a4) of a descending deflection of the vertical (g4)
at a crossover of two satellite ground tracks.

Therefore, for the components of the deflection of the vertical
along the ascending (¢,) and descending (g4) tracks we have

g, =Ccosa, +nsina,,

. . (26)
ga=Ccosog+nsinog=—Ecosa, +nsina,.
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Thus we can obtain ¢ and 5 from the ascending and the
descending deflection of the vertical as

1

é: 7 cos aa(ga_ed)s
. (27)
n= S sina, (82 + &4)-

If the inclination of the satellite’s oribital plane is nearly 90°,
or the work area is over the area where the satellite reaches
its extreme latitudes, the use of the above algorithm will yield
numerical problems. This case is treated in Appendix A.
Now consider the case of multiple satellites, the inclinations
of which will, in general, differ. Assume that we have n sets of
along-track deflections of the vertical at a given grid point,
each set containing both ascending and descending deflections
of the vertical. We seek a solution for the north and east
components of the deflection of the vertical from the n sets
of observations. For n> 1, this forms a typical adjustment
problem for which we can write the observation equations as

g +vi=Ccosal +ysinal,
g+ vl = —Ecosal + nsin o (28)
i=1,2,...,n,

where vi and v} are the residuals of the ascending and
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descending components, respectively, of the deflection of the
vertical for set i. Written in matrix form, eq. (28) reads

V+L=AX, I _=d2P!, (29)

where vector V contains the residuals, L contains the obser-
vations, A is the design matrix, X contains the unknowns
& n, P is the weight matrix and o3 is the variance of unit
weight. P will be a diagonal matrix if all the deflections of the
vertical are uncorrelated. The least-squares solution of (29) is

X=N"1U, (30)
where N =ATPA, U = ATPL. Furthermore, if we write

a b t
N= , U= s (31)
(o) o)

then these matrix elements can be analytically expressed as

a= 3 (cos sk + 1,
b=3 cosaj sin ol (pl — ph),
i=1

(sin 0)*(Ps + pa). (32)

M=

=
i

I

1

n
t=3 cosu(piei — phe),
=1

s= ), sineg(paes + paca),
i=1

where p! and p; are the weights of the ascending and descending
deflection of the vertical, respectively. The weights of deflection
of the vertical play a crucial role in obtaining reliable estimates
of ¢ and #. In estimation theory, the weight of an observation
is normally taken as the inverse of its error variance. The error
in gridded deflections of the vertical contains two parts: that
arising from the interpolation; and the error in the original
along-track components of the deflection of the vertical. The
former will be termed the interpolation error and the latter,
the commission error. The interpolation error can be obtained
only if we know the variance of unit weight, 63, associated
with the weight given in (22). To estimate this we first assume
that the deflections of the vertical contain only interpolation
errors, and hence the weights required in (32) will be just given
by those in (22). On this assumption, we obtain a solution of
the normal eqs (30), and calculate the vector V, leading to the
estimate

, VPV

6= . (33)
n—2

With 62, the estimate of the interpolation error is
22
é

o ==, (34)
P

Finally the total error is given by

o7 = of + o2, (35)

where o, is the commission error. The estimation of & and 5
is then repeated using (30), but with the new data weight of
1/o2. Based on the work by Hwang & Parsons (1995), and
comparisons between the satellite-derived gravity and ship
gravity, a good choice for the deflection-of-the-vertical com-
mission errors of Seasat, Geosat/ERM (average over up to

60 cycles), Geosat/GM, ERS-1/35-day (average over 18 cycles),
ERS-1/168-day and TOPEX/POSEIDON (average over first
36 cycles} are 10.0, 0.97, 10.0, 1.88, 10.0 and 2.03 prad, respect-
ively. With the new data weight a refined estimate of the
variance of unit weight can be obtained, again using (33). The
error variances of the estimated ¢ and » are the diagonal
elements of the matrix 62N~ '. Note that at grid nodes near
land or isolated bodies it is sometimes impossible to obtain
the two components due to lack of data, as indicated by the
zero determinants of the normal matrices. To avoid dis-
continuity and edge effect, we fill the empty nodes using the
weighted means from nearby non-empty nodes when the entire
grid is established.

FORMULA IN THE CASE OF A
HIGH-DEGREE REFERENCE FIELD

The deflection of the vertical to gravity conversion formulae
must next be modified in the case when a remove/restore
procedure is used. In such a procedure, reference values
computed from a geopotential model are removed from the
observations, and the residual observations used as input to
the conversion formulae such as (9). There are two issues
related to this procedure. One concerns the optimal maximum
spherical harmonic degree to be used, and the other the
modification of the kernel functions. In the first case, we adopt
the suggestion of Wang (1993), who recommended the use of
the highest degree available in the chosen geopotential model,
provided that the geopotential coefficients were properly scaled.
Specifically, in the case of the conversion of deflection of the
vertical to gravity, the reference components of the deflection
of the vertical and the reference values of gravity should be
computed by

Nmax

gef= % &Sa, (36)
n=2
Nmax
M= 3 1S, (37)
n=2
Nmax
Ag'= 3 Ag,S., (38)
n=2

where ¢,, 5, and Ag, are the degree n terms in spherical
harmonic expansions for the north and east components of
the deflection of the vertical, and of the gravity anomaly,
respectively, and Nmax is the maximum expansion degree. The
scaling factor, S,, which minimizes the effect of coefficient
errors and the truncation error due to the finite support of a
data domain, was given by Wang (1993) as

Cn

- k]
Cp &,

n (39)
where ¢, and ¢, are the degree variance and error degree
variance of the Earth’s anomalous potential implied by the
chosen reference field. Fig. 4 shows the S, values as computed
from the OSU91A model (Rapp, Wang & Pavlis 1991), which
is the reference model used in this study.

The second issue is closely related to the first one. Owing
to the use of a high-degree field, as suggested above, the
long- and medium-wavelength components of the deflection of
the vertical will be removed, and hence the residual gravity
anomaly at a computation point is effectively the result of the
convolution of the kernel functions and the residual deflection
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Figure 6. A shaded-relief colour map of the satellite-derived gravity anomalies over the South Pacific.

© 1996 RAS, GJI 125



1.0 T

08

scaling factor
o
@

Kl

<
S
e

g2

0 120 240 360
spherical harmonic degree

Figure 4. Scaling factors S, of OSU91A geopotential coefficients for
minimizing coefficient errors and truncation error.

of the vertical within a spherical cap of a short radius centred
at this point. This observation is reflected in the use of a small
inversion cell in least-squares collocation (e.g. Hwang &
Parsons 1995). The same principle can be applied in the FFT-
based method, through the modification of the kernel functions
in (6), rather than of the data domain as in least-squares
collocation. Specifically, using a spherical cap of radius R, the
truncated kernel functions for the transformation of deflections
of the vertical into gravity, obtained by modifying the kernels
in (6}, are

7, I
(- {oes

where

1, r=+x>+y?<R,
w(x, y) =

(41)
0, r>R.

The FT of I__f and f,, can be computed either numerically or
analytically. Analytical formulae using Fourier series for the
FT of [, and I, are given in Appendix B. Based on the tests
made in Appendix B, we recommend the use of the analytical
formulae in (B13) to compute the FT of the truncated kernels.
One may be concerned with the potential problem that, in
(41}, side lobes of the spectrum of w(x, y) will distort the high-
frequency parts of the spectra of the truncated kernels. In fact
this problem does not occur, since the kernel functions I, I,
decay rapidly, and the spectra of the truncated kernels derived
in Appendix B vary smoothly.

Using the truncated kernels, the relationships between the
north and east components of the deflection of the vertical
and the gravity anomaly, in the frequency domain, are

{ Z(u, v) } 1 {l_,é(u, u)}
=—AG(u, v){ _ . (42)
H(u, v) 2my L,(u,v)

Furthermore, since Eé and L, contain only imaginary parts,
we can write

L(u, v) =1iR;(u, v) = iR, (v, u) = L, (v, u). (43)

Using the least-squares method as for deriving (9), a unique
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solution of the spectrum of gravity anomaly is

R:B(u, v)+ R,H(u, v)
RI+R: ’

AG{u, v) = i2ny (44)
Furthermore, we can anticipate that the errors in the estimates
of the north and east components of the deflection of the
vertical will be different. The difference in accuracy will be
particularly pronounced if altimetric data from satellites with
very high or low inclinations, such as ERS-1, dominate the
solution in (30) (see the discussion in Appendix A). For
example, using Seasat, Geosat/ERM, ERS-{/35-day, and
ERS-1/168-day data over the Reykjanes Ridge, it was found
that the north and east deflection of the vertical components
have average errors of 1.79 and 4.19 prad respectively. Over
the South Pacific the corresponding numbers are 1.51 and
5.49 prad. Because of the difference in errors in the north and
east components of the deflection of the vertical, we should
further refine (44), taking into account the estimated deflection
of the vertical errors. The effect of these errors is two-fold.
First, assuming that the estimated deflections of the vertical
contain only white noise, and that the spectra of the white
noises are those corresponding to the averaged error variances,
we can derive the Gaussian-fitted Wiener filters for the north
and east components of the deflection of the vertical, using the
same approach as in Appendix A [see (A17)-(A20)]. Second,
the average error variances can serve as weights in estimating
the gravity-anomaly spectrum, so that instead of eq. (44), we
use

P:R:E(u,v)+ PR, H(u,v)

AG(u, v) =2y P¢R§ PR s
iy

(45)

where P, and P, are the inverses of the averaged error variances
of the estimated north and east deflection of the vertical
components, respectively, and 2 and H are the filtered north
and east deflection of the vertical components, respectively.
Using Seasat, Geosat/ERM, ERS-1/35-day, and ERS-1/168-day
data, it was found that the filter widths of the Gaussian-fitted
Wiener filters for the north and east components over the
Reykjanes Ridge are 6.04 and 6.91 km, respectively, and over
the South Pacific the corresponding numbers are 6.40 and
6.99 km. The filter widths of the east component in the two
test areas are larger than the widths of the north component,
and this is consistent with the fact that the east component
has a larger noise level than the north component.

GRAVITY ANOMALIES FROM
MULTI-SATELLITE ALTIMETRY

Summarizing the above developments, the procedure for
deriving marine gravity anomalies from multi-satellite
altimetry is

(1) grid along-track component of the deflection of the
vertical for ascending and descending tracks for each satellite;

(2) ateach grid point, estimate the north and east deflection-
of-the-vertical components by least-squares using ascending
and descending tracks from all satellites;

(3) Fourier transform the north and east components of the
deflection of the vertical and filter separately using Wiener
filters;

(4) use the filtered components of the deflection of the
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Table 1. Standard deviations of the differences {in mgal) between ship gravity and
satellite gravities derived using various formulae.

formula Reykjanes Ridge | South Pacific
equation (9) 8.38 4.85
equation (44) 8.21 4.74
equation (45), but with §, = 1 for all n 7.22 4.02
equation (45) 7.05 394 |

vertical to calculate the spectrum of gravity anomaly with (45)
and then do an inverse FFT.

Regarding the last step, we have presented three different
formulae for converting deflection of the vertical to gravity
anomaly, evolving from (9) to (44), then to (45). In Table 1
we evaluated the results from using the three formulae, and it
is concluded that (45) is the best. The cap size R in (41) is set
to 1°, based on the experience of Hwang & Parsons (1995),
who used a cell size of 0.5° plus 0.25° data border in their
least-squares collocation computations. In fact, any vatues for
R between 0.75° and 2° will yield similar results. However, if
R is 100 large, for example R = 3 or larger, the rms difference
between the satellite gravity and the ship gravity increases.
For the reasons discussed earlier, we chose to use the scaled
OSU91A geopotential model to degree 360 as the reference

320° 325 330° 335 340°
651 e SR 65"

60°

-30-25-20-15-10-5 0 5 10 15 20 25 30 35 40 45 50 55 60
mgal

Figure 5. A grey-shaded map of the satellite-derived gravity anomalies
over the Reykjanes Ridge.

field. In Table 1 we also list the result when the OSU91A
coefficients are not scaled. This choice produces a slightly
worse result than using the scaled coefficients (see the last two
rows in Table 1). The effect of the flat-earth approximation in
FFT is negligible (Sideris & Li 1993). Finally, since edge effect
is inevitable in FFT unless one uses 100 per cent padding, we
recommend that gridded values within 17 of the grid borders
are not used. Maps of gravity anomalies on a 3’ x 3" grid for
the two test areas, around the Reykjanes Ridge and in the
South Pacific, are shown in Figs 5 and 6.

DISCUSSION

Table 2 shows the differences among the ship gravity and the
satellite gravity derived with the above procedure, gravity
derived by least-squares collocation as in Hwang & Parsons
(1995), and gravity derived by Sandwell et al. (1994), for the
Reykjanes Ridge and the South Pacific areas. For the three
satellite gravity fields in Table 2, the data used are from Seasat,
Geosat/ERM ERS-1/35-day and ERS-/168-day. Geosat/GM
data could not be used because Geosat/GM data north of
30°S were recently declassified (Carlowicz 1995), but were not
available to the authors. It is noted that, due to high latitudes,
the density of the altimeter data over the Reykjanes Ridge is
relatively high compared with that over the South Pacific area.
Also, before comparisons were made, the long-wavelength
deviations between satellite-derived gravity and ship gravity
were removed, as described in Hwang & Parsons (1995). In
all cases, least-squares collocation gives the smallest rms
differences from the ship gravity, followed by the procedure
described in this paper. The computing times required by these
two methods on a Sparcl0 M41 computer are also given in
Table 2. The cpu time of the new procedure includes the times
for gridding all the data, resolving the north and east deflection
of the vertical components and computing gravity anomalies
using (45). It is evident that the method described in this paper
is more than 100 times faster than least-squares collocation in
the two test areas. The method of least-squares collocation
needs a large amount of computer time because of the use of
dense ERS-1/168-day data.

The gravity field in the area of the Reykjanes Ridge is shown
in Fig. 5. An earlier field for the same area, constructed using
least-squares collocation, was given by Hwang & Parsons
(1995). A recent research cruise to the Reykjanes Ridge (cruise
87, RRS Charles Darwin) demonstrated that the earlier attempt
accurately represented features with length-scales down to
20 km. Table 2 shows that the field, constructed using the
modified spectral technique described in this paper, comes
closer to matching the accuracy of least-squares collocation
than the standard spectral method. The density of altimetry
coverage has increased with the availability of the ERS-1/
168-day data since the earlier attempt of Hwang & Parsons
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Table 2. Comparison betweeen ship gravity and the satellite gravities derived from various methods.

(a) Reykjanes Ridge

method std. dev. of diff. (mgals) | cpu time (seconds) | number of ship measurements
collocation 6.15 49613 95238
fft, this paper 7.05 470 95238
Sandwell et al., 1994 8.40 95238

(b) South Pacific

method std. dev. of diff. (mngals) | cpu time (seconds) | number of ship measurements
collocation 3.70 68097 14713
fft, this paper 3.94 473 14713
Sandwell et al., 1994 4.05 - 14713

(1995). However, the latter field also incorporated ship gravity
for the area. Where the ship gravity coverage is sparse, for
example the southern part of the ridge, one can now have
much greater confidence in the small-scale variability seen
along-axis. A problem that remains to be solved is whether it
is possible to adapt the techniques in this paper so that the
gridded deflections of the vertical and ship gravity can be used
together to calculate gravity anomalies. Where dense coverage
of ship gravity exists over a sufficiently large area—this
is increasingly a byproduct of high-resolution bathymetric
surveys—it may be possible to combine the gravity spectrum
derived from the deflection of the vertical as in (45), and a
gravity spectrum derived from the ship gravity, in some optimal
way. Elsewhere, it may be necessary to treat the satellite-
derived gravity grid as point data, which are then mixed with
the randomly distributed ship-gravity values to form a new
gravity grid. In this approach, careful weighting of the two
data types will be essential in obtaining a good combined field.

A colour shaded-relief map of the gravity field over part of
the South Pacific is shown in Fig. 6. The spacing between
adjacent altimeter ground tracks halves in going from the
equator to latitudes of 60°. Also, the amplitudes of short-
wavelength features are larger in the area of the Reykjanes
Ridge than for the South Pacific area. The latter area provides
a more stringent test, therefore, of the ability to resolve short-
wavelength features. Because the gravity field for the South
Pacific area would otherwise be dominated by longer-
wavelength features, we have removed a reference field up to
degree and order 10. The lineated gravity anomalies first noted
by Haxby & Weissel (1986) are clearly visible in Fig. 6. These
features are aligned with the direction of motion of the Pacific
plate in a hot-spot frame of reference. Haxby & Weissel (1986)
suggested that the gravity lineations reflect the development
of small-scale convection from a convective instability
occurring beneath the cooling lithospheric plate (Parsons
& McKenzie 1978; Buck & Parmentier 1986). Alternative
explanations—involving numerous mini-hotspots (Fleitout &
Moriceau 1992) or lithospheric stretching of the Pacific plate
(Sandwell et al. 1995)}—have since been proposed. The present
gravity field 1s able to resolve many more seamounts than
previously. There are several seamount chains, also aligned
with the direction of motion of the Pacific plate. The lineated
gravity anomalies, which have wavelengths across-strike of
150-200 km, seem to develop and reach full amplitude some
distance away from the East Pacific Rise. However, there are
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some linear seamount chains closer to the ridge-axis, and it is
not clear whether there is any connection between the lineated
gravity anomalies and variations along the ridge. The East
Pacific Rise can also be clearly seen in Fig. 6, despite the fact
that the direction of illumination was chosen to enhance the
gravity lineations. Fast-spreading ridges are characterized by
a small gravity high of almost constant amplitude (e.g. Owens
& Parsons 1994); the axial gravity high in Fig. 6 appears
continuous over several hundred kilometres along the axis.

The density of altimeter coverage will increase yet further
as data from new satellite missions become available-—for
example ERS-2, SALT, SPOT-3 and MOS-2 (Seeber 1993).
ERS-1 has now completed a second 168-day cycle; when this
is fully available the ERS-1/168-day data set will be twice as
dense as that used in this study, i.e. equivalent to the coverage
of Geosat/GM. The procedure described in this paper provides
a rapid means of updating the global marine gravity field as
new sea-surface height measurements accumulate. The modi-
fied spectral technique used retains the speed of previous
spectral methods, but features similar to those used in least-
squares collocation are included, resulting in gravity anomalies
comparable in data quality to those derived by the latter
technique. At present, where the area of study is relatively
small, it may still be desirable to use least-squares collocation.
Some of the steps in the new procedure, for example the fast
method of gridding the along-track deflections of the vertical
and the method of resolving the north and east components,
may have additional applications. For example, the technique
of fast collocation (Bottoni & Arzaghi, 1993) requires the data
to be on a grid, so that the covariance matrix of the data will
be in Toeplitz form and can be quickly inverted. Because least-
squares collocation gives the most accurate result, it may be
possible to combine fast collocation with the efficient gridding
of deflections of the vertical to retain the accuracy of general
least-squares collocation without requiring a large amount of
computer time.
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APPENDIX A: GRAVITY DEFLECTION-OF-
THE-VERTICAL CONVERSION IN THE
CASE OF A SINGLE SATELLITE WITH A
HIGH INCLINATION ANGLE

Reduced along-track deflection of the vertical

Here we will investigate a numerical problem when applying
(27) in the case of data from one satellite and seek an improved
procedure. For a satellite such as ERS-1, whose orbital
inclination is about 98°, the term sin ¢, becomes very small
and will create a numerical problem for the east component ¢
as determined from (27). The problem can best be examined
in terms of covariance propagation. Assuming that the ascend-
ing and descending deflections of the vertical are uncorrelated
and their error variances are of the same magnitude, we can
derive the error variances of ¢ and # as

1 2
2 2 2 a
;= (o +03)= s
¢ 4cos?a, 2 cos®a,
. (A1)
1 o
2 2 2 a
;= T (624 063)=7T—75—.
T 4sin’a, ¢ a) 2sin’a,
Thus, the ratio of the two error variances is
2 2
ol cos’a,
n a
— = (A2)
6; sinfa,

If, for example, o, = 8°, then ¢? is 50 times larger than o7.
Thus the noise of the east component is greatly amplified to
the extent that any filter will not properly remove it. A similar
situation occurs for the north component when «, approaches
90° or when the satellite reaches its maximum absolute
latitudes.

In view of this numerical problem, an improved procedure
is suggested below. First, we obtain the reduced deflection of
the vertical along a fixed azimuth a, (for the ascending
deflection of the vertical) and (n — ) (for the descending
deflection of the vertical) using (26):

£ = & cos g -+ 1 sin a

sin 2a,

[83 Sin(aO + aa) + &4 Sin(“o - da)] >
€3 = & cos(m — ay) + 1 sin(m — ag)

sin 2a,

[&, sinfog — o) + £4 sinf{oty + 2,)] -
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The value «, should be chosen at the geographic centre of the
work area. The reduced deflections of the vertical from the
transformation in (A3) are then functions of two variables, like
¢ and 7, and can be operated on in the same way. The error
variances of £ and & are

2
% sin’ 2a,

[62 sin?(otg + o) + 03 sin? (2 — 2,) ],

(Ad)
2 _ 2 20 2 «in2
8= g o [o2 sin®(og — %, ) + 0§ sin*(a + o) ].
If 6, ~ 04, and 2, = a,, we will have
0%, ~ 03,
5 , (A5)
a3, < a3.

Therefore the error variances of ¢2 and 3 are almost identical
to those of ¢, and &4, and none of the two has increased noise.
At this stage, we can filter ¢ and & using an optimal filter
(see below). Furthermore, by (27) we have

0 0
= &y — &
2COSOCO(a d):

(A6)

0 0
= &yt &q)-
T 2 sin ao( a)

Fourier transforming the above equation and substituting into

(9) gives

iy v

u
R R S R G (A7
2g| sin o COS 0

where EQ and E§ are the FTs of &2 and &3, respectively.

Wiener filter

The reduced components of the deflection of the vertical given
by (A3) can be filtered by a Wiener filter. To this end we have
to estimate the noise spectra of the reduced deflection of the
vertical. Assuming that the reduced deflections of the vertical
contain noise levels n and m, we can write

d=¢cosag+nsina,+n (A8)
and
&= —¢cosog+ysinoy+m. (A9)

Assuming that the signals and noise are uncorrelated, we can
Fourier transform both sides of (A8) and (A9), and use the
relationship in (8), to obtain the spectral density functions of
the two reduced components of the deflection of the vertical:

AG*AG | 5
Sa,,:—yz*z(u sin ag + v €os uo)* + Sqn, (A10)
q
AG*AG | 5
ad = ——5— (4 8in oy — v €08 %p)” + Siom (A11)
Yq
AG*AG
wd = —5—5— (U sin? oy — v* cos? %), (A12)
Yq

where S,, and S4q are the auto-spectral density functions of
the reduced ascending and descending components of the
deflection of the vertical, respectively, S.4 is the cross-spectral
density function of the two components, and S,, and S, are
the auto-spectral density functions of the noise. On moving
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Son and S to the left sides of (A10) and (A1l1) and dividing
the resulting equations by (A12), we obtain

(u sin o + v COS 0tp)

Saa- (A13)

Son =822 — ;
TR 42 sin? o — v? cos? a

(u sin &y — v €OS ag)?
Smm = Saq —

: » (A14)
u? sin? oy — v* cos? oy

To obtain circularly symmetric and smooth spectral density
functions of the noises we can employ azimuthal smoothing,
defined by

_ 1 2n

Sml9) =3 f Snalg cos ¥, g sin ) dyp, (A15)
o}

- 1 2n

Smm(q)=§;f Smm(q €08 ¥, ¢ sin ) dyp, (Al6)
[

where g cos Y =u, and g sin ¢ =v. We can also use this pro-
cedure to derive circularly symmetric forms for S,, and Sguq.
Fig. A1 compares the spectral density functions of signal and
noise for the reduced ascending component of the deflection
of the vertical from the ERS-/168-day and ERS-1/35-day data
over the Reykjanes Ridge. The latter are averaged from 18
cycles of data. The noise of the ERS-1/168-day deflections of
the vertical is clearly larger than that for ERS-1/35-day data.
At lower frequencies, the signal spectra from ERS-1/35-day
and ERS-1/Gm agree very well.

Using the estimated noise spectra, the Wiener filters for &2
and €] can be calculated by

S_aa _gnn
O (q)= _“——((? @ (Q), (A17)
®y(q) = de(q)_smm(q)‘ (A18)

Saa(q)

To obtain smooth Wiener filters and to investigate the filter
widths, we least-squares fit the values as computed from (A17)
and (A18) by a Gaussian function of the form exp(—nd*q?*),
where d is the filter width. Note that the inverse Fourier
transform of exp(—nd2q®} is [exp(—nx?/d*)]/d which is the
Gaussian filter in the space domain. The filtered deflections of
the vertical in the frequency domain are

EQ(u, v) = @, (q)EY, (A19)
Eg(u, v) = Q4(q)Eq. (A20)

The raw deflection of the vertical in (A7) should be replaced
by the filtered deflection of the vertical for the computation of
gravity anomalies. Fig. A2 compares Wiener filters for the
deflection-of-the-vertical from ERS-1/35-day and ERS-1/168-day
data. The filter widths as determined by the Gaussian function
fits for ERS-1/35-day ascending and descending deflections of
the vertical are 23.89 and 27.14 km, respectively, while for
ERS-1/168-day data the numbers are 9.14 and 8.57 km. Based
on these numbers and Fig. A2, the estimated 2-D resolutions
of ERS-1/35-day data and ERS-1/168-day data are 3—4 cycle
degree ! and 11-12 cycle degree ™*, respectively.
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Figure Al. Spectral density functions (SDF) of the signal and noise of the ascending deflection of the vertical from ERS-1/35-day and

ERS-1/168-day data over the Reykjanes Ridge.

APPENDIX B: FOURIER TRANSFORMS OF
TRUNCATED KERNEL FUNCTIONS IN
ANALYTICAL FORM

Analytical expressions of the truncated kernel functions fé and
I, will be derived here. The function w(x, y) in {(41) can be
approximated by a complex Fourier series,

w(x, y)= 71im ,Z, _Z Com €XP liin(%rfx + %y):l (B1)

— o0

where ¢, are the complex Fourier coefficients. By the change
of variables

L B2
X="p. ¥== (B2)
we obtain ¢, by
1 T n

Cmn =73 j J W(x, V) exp[—i(mx + ny)] dx d¥, (B3)
where

IR

R
W(X, J) = (B4)

By the definition of the Hankel transform (Mesko 1984) and
using the polar coordinates
X=F7cosb, j=rsinb,
(BS)
k=+m?+n?,

m=kcosy, n=ksiny,

we have
1 (n;T)R n
Cn =773 j F dfj exp[ —ikF cos(0 — )] do
4n F=0 0=—-n
1 (r/TOYR
- f 7 o(kF) dF . (Bo)
21 Jioo

Using the formula for Bessel functions of integral order
(Lebedev 1972, p. 100),

d

d—[X"J,,(X)] =x"Jp - (x), (B7)
X

with x = kr we have

j‘-l;[rJl(kr)] = krJy(kr). (B8)

Replacing the variable r by 7 and integrating (B8), we obtain:

r=@MDR - 4R kn
:mJ1<~R>. (B9)

(n/T)R 1
f Fo(kP) dF = PRI (KF)) i 7

o

Thus,

—-§—J k—nR (B10
cmn'—ZTk 1 T . )

With (B10), the FTs of I, and I, are
_ in
Z§ . . F (l: exp[;(mx+ny):|)
PRI s
F (l,, expl:?(mx + ny)])

(B11)
L
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Figure A2. Gaussian-fitted Wiener filters for along-track deflection of the vertical from ERS-1/35-day and ERS-1/168-day altimetry over the
Reykjanes Ridge. The top figure is for the ascending tracks and the bottom one is for the descending tracks.

Using the theorem of frequency shift, we have In conclusion,

m n 2n/m? + n?
L. u—ﬁ,v—— - -~ R

J
l; in 2T L(u, v) _ —2nRi & © !
F <{ln} exp[?(mx+ny)}> = m " {L_,,,(u, 0)} D mzz_w n:zw \/m2+n2
L"(u—ﬁ,v—'z*i_) ;
—2mi 1 U_B>
= X ,
/( _my, __)2 "2 )2 m
=57 5T (u-5>+<l/~5> u—7
n (B13)
(==5%)
X . (B12)
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Figure B1. The spectra of the truncated kernel function I, along the u direction for various radii R (note: 1° is equivalent to 111 km). The
expansion degree in the Fourier series is 300. The frequency along the v direction is fixed at 0.04 cycle degree '. The spectrum with R =20° is

equivalent to the spectrum of the original kernel function.

where D = 2T. For a numerical computation, it is noted that

(2nk )
Jl 'hR

P G D
nR
=5 (Jol0) = 12(0))
_R Bi4
= (B14)
When u — (m/D) =0 and v — (n/D) = 0, we have

| I
Je=5) (=5 ) (- 5) -4

To verify the formula given in (B13), one may choose a large
R value so that Ly~ L, and L,~ L, and the exact values of
Lg and L, will be known. Fig. Bl shows the spectra of lé and

1,, which are the imaginary parts of (B13). Using an expansion
degree to m=n= %300 it is found that with R =20° L, and

L, are practically identical to L, and L, with a relative
difference below 107, Use of degrees higher than 300 reduces
the difference only marginally, thus we decided to use
m=n= =300 for all the computations described in this paper.
Also shown in Fig. B1 are the discrete Fourier transforms
(DFT) of I, I,, which exhibit large deviations from the theoreti-
cal values, especially at high frequencies. This implies that we
may not obtain correct spectra of I, and I, by DFT.
For practical applications, it would be extremely time-
consuming to compute L, and L, on a point- -by-point basis.
This problem can be overcome by computing L§ and L,on a
grid, and interpolating the required value from the grid.
Experiments show that for R=10.5°1°2° a grid interval of
0.1 cycle degree ™* for u, v, and a bicubic spline interpolation
yield values identical to those computed by (B13). For
the current altimeter data density, a maximum frequency of
30 cycle degree !, equivalent to a data spacing of 1, is sufficient
for most uses. Furthermore, the following relationships will
help to save storage space and computer time:

L(~u, £v)= —L,(u, +v),
Zé(u, U)=z,,(v, u), (B16)
L, (u,v)=L,(u, —v).
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