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The theory of the self-consistent treatment of vortex dynamics developed by Coffey and Clem is extended
to the case of anisotropic type-II superconductors. The vortex response to a microwave electromagnetic field is
theoretically investigated based on the associated complex rf magnetic permeability of anisotropic supercon-
ductors. Microwave dissipation due to vortex motion is studied as a function of the temperature, dc magnetic
field, and microwave frequency. Comparisons of numerical results between anisotropic and isotropic super-
conductors are also given. The influence of the thin edge of superconducting platelets on the microwave
properties is specifically examined as well. The extension presented provides the possible applicability in
studying the high-frequency response of real anisotropic high-temperature superconducting single-crystal
platelets in the mixed state.@S0163-1829~96!03725-3#

I. INTRODUCTION

Measurements of the vortex response to alternating mag-
netic fields or transport currents are commonly applied to
investigate the vortex dynamics in type-II superconductors.
At present, there exist many experimental techniques to
probe the dissipation and screening such as the vibrating-
reed resonator,1,2 torsional oscillator,3 ac magnetic
permeability,4 and microwave surface impedance.5–8 All the
ac measurements can be performed by superimposing a
small ac field on a large dc field. A small ac field interacts
with the penetrated vortices near the surface of the specimen
and deforms the vortex lattice therein, which in turn propa-
gates into the interior of the superconductor. The propagation
is pushed forward through vortex interactions and slowed
down by pinning and viscous drag forces. Accordingly, the
dissipation and shielding properties of type-II superconduct-
ors are strongly dependent on the vortex dynamics. With
related measurements, the models for the pinning and motion
of vortices in the mixed state can be verified.4,9–11

In general, the ac response of superconductors in the
mixed state includes linear and nonlinear responses. In the
linear response, the induced current density is proportional to
a small ac field and independent of the amplitude of the ac
field. If the current density is related to the amplitude, one
then speaks of a nonlinear response. In type-II superconduct-
ors, the existence of vortex pinning due to impurities will
generally cause a nonlinear magnetic ac response above the
threshold amplitude of the driving field.11 The crossover
from a linear to nonlinear response has been investigated
from a unique macroscopic viewpoint by van der Beeket al.
12 The linear response in the regime of thermally assisted
flux flow is better understood in terms of the resistive
state13–15 and London electrodynamics, whereas the Bean
critical-state model is often used in the nonlinear regime.16,17

In the thermally assisted flux flow~TAFF! phenomenology,
the thermally activated depinning of the vortex lines is incor-
porated based on the extension of the Bardeen-Stephen~BS!
flux flow model.18 van der Beek and Kes19 have successfully
utilized the TAFF model to reproduce the irreversibility line

~IL ! for the vortex liquid. Their ac susceptibility has been
theoretically described by a dislocation-mediated flux-creep
approach, which includes elastic and plastic creeps. The plas-
tic creep comes from the dislocation of the flux-line lattice
~FLL!, while elastic creep from elastic deformation of the
FLL. In a small driving field, it is expected that the plastic
creep will dominate. The high-frequency vortex response of
high-temperature superconductors has also been studied
based on the TAFF model reported by Yeh.20 He considered
a pinned Abrikosov FLL of a superconducting single crystal
near the depinning threshold, and the microwave response
was investigated. As discussed elsewhere, Koshelev and
Vinokur21 have calculated the Campbell penetration depth
and surface resistance of a pinned vortex lattice within the
framework of collective pinning theory.21–23A quite distinct
model in discussing the linear ac response of the viscous
flux-line liquid has recently been done by Chen and
Marchetti.24 To incorporate the vortex-vortex interaction to-
gether with the nonlocality effect, they used the hydrody-
namic model25 to describe the response of a flux liquid to an
ac field. Because of the existence of the nonlocality arising
from the viscous forces, two different penetration depths are
introduced which closely relate to the amplitude of the ac
penetrating field. The hydrodynamic model is in contrast
with the TAFF model, where nonlocality is rarely taken into
account and only one ac penetration depth dominates the
response. The response in the mixed state dominated by the
two penetration depths has also been considered based on the
two-mode electrodynamics approach of Soninet al.26 Their
two-mode approach encompasses the nonlocal effects arising
from long-range intervortex interactions as well as the effects
of FLL elasticity. More recently, Sonin and Traito27 have
further considered the influence of the Bean-Livingston bar-
rier on the surface impedance of a type-II superconductor.
The suppression of dissipation due to this barrier was pre-
dicted.

In addition to the above-described theoretical approaches,
there are more treatments worthwhile mentioning. A more
general analysis of the linear ac response incorporating the
effects flux pinning, flux flow, and flux creep, together with
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nonlocality in type-II superconductors, has been undertaken
by Brandt28 and Coffey and Clem,29–34respectively. Making
use of a continuum method in the FLL, Brandt calculated the
complex ac penetration depth, surface impedance, complex
resistivity, and magnetic ac permeability. Accordingly, the
ac response can be discussed. Based on a self-consistent
treatment of vortex dynamics, Coffey and Clem undertook
an exhaustive investigation of the theory of ac magnetic per-
meability and surface impedance to study the high-frequency
linear response of superconductors. We are here only con-
cerned with the Coffey-Clem model. Applications of this
phenomenological model to high-temperature superconduct-
ors have been accomplished by many workers. Revenaz
et al. 5 explained quantitatively the data of the surface resis-
tance of their samples, the high-Tc YBa2Cu3O72x ~YBCO!
~Y:123! films. Also, the parameters in the Coffey-Clem
model such as the Labusch constant, pinning frequency, and
activation energy can be experimentally determined. In the
low-field and low-temperature regime, the model was used to
extract the viscosity and Labusch constant, together with
their dependence, on temperature by Pambinanchiet al.8 In
the work of Owliaeiet al.,7 the microwave surface resistance
of YBCO films was also well described by this model. In the
field-dependent surface resistance, a crossover from the
pinning-dominated regime to flux-flow regime~viscous force
dominated! was found. The crossover is a consequence of the
suppression of the pinning force due to the magnetic field. A
similar study on another typical high-Tc system, Bi:2212
@Bi 2Sr2CaCu2O8 ~BSCCO!#, was also taken by Hanaguri
et al. 35 The magnetic-field-dependent Labusch parameter in
BSCCO single crystals was reported to be similar to the
conventional superconductors.

The Coffey-Clem model is developed and suitable for iso-
tropic superconductors. As far as high-Tc superconductors
are concerned, the applicability in studying the ac, rf, or
microwave response is restricted to the case of a perpendicu-
lar field configuration. In this configuration, the magnetic
field is applied perpendicularly to the main flat surfaces of
both films and single-crystal platelets; namely, the field is
parallel to thec axis. The vortex dynamics in this configu-
ration ~vortices are parallel to thec axis! is often considered
as nearly isotropic because of the smaller anisotropy in the
ab plane. As discussed above,5,7,8,35 all experiments were
performed in this configuration. In order to avoid demagne-
tization fields in single-crystal platelets in a perpendicular
configuration, many workers have also investigated the same
problems with an alternative, the parallel field
configuration.6,36–38In the parallel field, the vortices are par-
allel to theab plane and the vortex motion is highly aniso-
tropic. Hao and Clem39 have theoretically studied the aniso-
tropic viscous flux motion in low fields in this configuration.
For the purpose of investigating the linear vortex response to
ac fields in the anisotropic flux motion, the validity of
Coffey-Clem model needs reconsideration or modification.
Therefore, the extension from isotropic to anisotropic super-
conductors in this model appears to be of importance and
interest.

Our purpose in this paper is to generalize the Coffey-
Clem model to be suited in the anisotropic superconductors.
The linear response based on our derivations will be system-
atically analyzed in the microwave regime specifically. The

possible pronounced effects of thin edges of platelets~due to
anisotropy! on microwave properties will be discussed de-
tailedly as well. Our results are expected to be applicable to
the study of the high-frequency response for high-Tc super-
conducting single-crystal platelets especially in the parallel
field configuration.

II. MODEL OF VORTEX DYNAMICS
AND ITS EXTENSION

We first briefly review the Coffey-Clem model,29–34

namely, the self-consistent theory of vortex dynamics. The
vortex dynamics is treated self-consistently by including the
nonlocal effects arising from the coupling of the supercurrent
and vortex displacements. Taking account of the response of
the normal fluid, the two-fluid model in the presence of mov-
ing vortices is generalized. Creep effects are described in
terms of the Brownian motion in a periodic potential; thereby
a dynamical complex mobility is obtained. The electrody-
namics of isotropic type-II superconductors is governed by
the two-fluid equation, Ohm’s law for a normal fluid, Lon-
don equations, Ampe`re’s and Faraday’s laws, and the equa-
tion of motion for a vortex. The theory gives the complex ac
penetration depthl̃ as follows:29

l̃ ~v,B0 ,T!5Fl2~B0 ,T!2~ i /2!d̃vc
2 ~B0 ,T,v!

112il2~B0 ,T!/dnf
2 ~B0 ,T,v!

G1/2, ~1!

where l(B0 ,T) is the magnetic-field and temperature-
dependent London penetration depth,dnf is the normal-fluid
skin depth defined asdnf5(2r nf /m0v)

1/2. Thed̃vc in Eq. ~1!
is the effective skin depth due to creep and vortex motion
and is expressed asd̃ vc5(2r̃v /m0v)

1/2, with effective resis-
tivity r̃v5B0f0m̃v(v,B0 ,T), and the dynamic mobility is
given as

m̃v~v,B0 ,T!5
1

h F11S 2
ivh

akp
1

1

I 0
2~n!21D 21G21

, ~2!

whereh is the viscous drag constant,kp the Labusch con-
stant, a5I 1(n)/I 0(n), I 1 and I 0 are the modified Bessel
functions of the first kind, with argumentn5U0(B,T)/
2kBT, andU0 is the activation barrier height of the potential.
The flux quantumf0 and the static magnetic inductionB0
inside the superconductor are related via the intervortex
spacinga0 asB0'f0 /a0

2 . Also, the assumptions ofa0 being
much less than the sample dimension and much greater than
the displacements of vortex motion have been made in ad-
vance. In the linear response theory, the displacements are
typically less than 1 Å .19,20Coffey and Clem also calculated
the complex penetration depth in the absence of flux creep,
and their result is31

l̃ ~v,B0 ,T!

5Fl2~B0 ,T!1@lc
22~B0 ,T!22id f

22~B0 ,T,v!#21

122il2~B0 ,T!/dnf
2 ~B0 ,T,v! G1/2.

~3!

Here the pinning penetration depth40 ~Campbell penetration
depth! lc and flux-flow penetration depth41 d f are, respec-
tively, defined by
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lc
2[

B0f0

m0kp
, d f

2[
2B0f0

m0hv
. ~4!

Based on the key result, Eq.~1! or ~3!, the high-frequency
response is able to be analyzed from the associated surface
impedance or complex magnetic permeability according to
the geometry to which one refers. For a semi-infinite super-
conductor, we study the response through the surface imped-
anceZs5Rs1 iXs , given by31

Zs5Rs1 iXs5 ivm0l̃~v,B0 ,T!. ~5!

As for a slab with thickness 2c and right circular cylinder of
radiusc, the corresponding complex magnetic permeabilities
are found to be31

m̃slab5
l̃

c
tanhS c

l̃
D , ~6!

and

m̃cyl5
2l̃

c

I 1~c/l̃!

I 0~c/l̃!
, ~7!

respectively.
The surface impedanceZs given in the Coffey-Clem

model can be described well in terms of the circuit represen-
tation as analogous to the circuit representation of the tradi-
tional two-fluid model.42 The supercarrier contribution to the
impedance is represented by the kinetic inductorl s5m0l

2,
the flux pinning by an inductorl f5f0B0 /kp together with a
damping resistorr f5f0B0 /h, and the flux creep is repre-
sented by a creep resistorrc5f0B0vc /kp in series with
l f . The crossover frequencyvc is defined5 as vc

5v0 /@ I 0
2(n)21#1/2, with v05(kp /h)I 1(n)/I 0(n). The

complete circuit representation ofZs due to vortex dynamics
can be seen in Ref. 42.

We now generalize the Coffey-Clem theory to anisotropic
case. We consider a uniaxial anisotropic type-II supercon-
ductor in the shape of a long rectangular rod whose length,
width, and thickness areuzu<b, uxu<a, anduyu<c, respec-
tively. The superconductor has been cooled in a dc magnetic
field parallel to thez axis, producing a uniform vortices lat-
tice. The microwave fieldẑh0e

2 ivt is applied parallel to the
four planes atx56a andy56c, andm0h0!B0 , the static
field in the interior of superconductor. This arrangement is
just the usual parallel field configuration in microwave tech-
nique such as in the cavity perturbation method.6 Meanwhile,
the sample dimensions are denoted as the crystallographic
correspondences of high-Tc superconducting single-crystal
platelets. The thickness is often prepared much less than the
width. We assume that the dynamic properties in theab
plane are isotropic and the length of the rectangular rod is
large enough that the demagnetizing field can be neglected.
By matching the boundary conditions atx56a and
y56c, the field inside the sample induced by applying a
microwave field can be calculated. The result is

B~x,y,t !5 (
n50

`

~21!n
2m0h0
qn

FcosS qna xD cosh~kyy!

cosh~kyc!

1cosS qnc yD cosh~kxx!

cosh~kxa!Ge2 ivt. ~8!

Herekx ,ky are expressed as

kx
25

1

l̃c
2 1

qn
2

c2
l̃a
2

l̃c
2 ~9!

and

ky
25

1

l̃a
2 1

qn
2

a2
l̃c
2

l̃a
2 , ~10!

whereqn5(n1 1
2)p, n50,1,2,3,. . . . The l̃a ,l̃c are com-

plex penetration depths in thea andc directions, being de-
termined self-consistently. The total current density
J5 x̂Jx1 ŷJy can be directly calculated via Ampe`re law
J5m0

21¹3B; we have

Jx5Jx0(
n50

`

~21!nF cqn kycosS qna xD sinh~kyy!

cosh~kyc!

2sinS qnc yD cosh~kxx!

cosh~kxa!Ge2 ivt, ~11!

Jy5Jy0(
n50

`

~21!nFsinS qna xD cosh~kyy!

cosh~kyc!

2
a

qn
kxcosS qnx yD sinh~kxx!

cosh~kxa!Ge2 ivt, ~12!

where coefficients areJx052h0 /c and Jy052h0 /a. The
electric fieldE5 x̂Ex1 ŷEy is easily obtained by Faraday’s
law ¹3E52]B/]t,

Ex5Ex0(
n50

`

~21!nF cqn kycosS qna xD sinh~kyy!

cosh~kyc!

2sinS qnc yD cosh~kxx!

cosh~kxa!Ge2 ivt, ~13!

Ey5Ey0(
n50

`

~21!nFsinS qna xD cosh~kyy!

cosh~kyc!

2
a

qn
kxcosS qnc yD sinh~kxx!

cosh~kxa!Ge2 ivt. ~14!

TheEx0 ,Ey0 in Eqs.~13! and ~14! are evaluated as

Ex05
ivm02h0c~a2kx

21qn
2!

qn
42a2c2kx

2ky
2 52 ivm0l̃a

2 2h0
c

, ~15!

Ey05
ivm02h0a~c2ky

21qn
2!

qn
42a2c2kx

2ky
2 52 ivm0l̃c

2 2h0
a

. ~16!

The corresponding normal-fluid current densityJn is
given straightforwardly through the Ohmic relation
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Jn5 x̂Jnx1 ŷJny5sJnfE, with Jnx5snfxEx and
Jny5s nfyEy . Here we have assumed that the resistivity ten-
sorsJnf is diagonal with entitiessnfx andsnfy along thex and
y directions, respectively.

The induced microwave current density in Eqs.~11! and
~12! generates a Lorentz force acting on the vortices to os-
cillate back and forth near the surfaces of sample. The oscil-
lation, in turn, propagates into the interior of superconductor,
which is impeded by viscous drag friction together with a
restoring force. The governed equation for vortex motion in
anisotropic superconductor is

hJ u̇1kJpu5J3f0ẑ, ~17!

where hJ is the viscosity tensor in the absence of creep
with diagonal elementshx andhy , kJp the tensor of the re-
storing force constant with componentskpx andkpy , andu
the small vortex displacement deviating from its pinning site.
By letting u5 x̂ux(x,y,t)1 ŷuy(x,y,t)5 x̂ux0f (x,y)e

2 ivt

1 ŷuy0g(x,y)e
2 ivt and substituting it along with Eqs.~11!

and ~12! into Eq. ~17!, we have

ux5ux0(
n50

`

~21!nFsinS qna xD cosh~kyy!

cosh~kyc!

2
a

qn
kxcosS qnc yD sinh~kxx!

cosh~kxa!Ge2 ivt ~18!

and

uy5uy0(
n50

`

~21!nF cqn kycosS qna xD sinh~kyy!

cosh~kyc!

2sinS qnc yD cosh~kxx!

cosh~kxa!Ge2 ivt, ~19!

where ux0 and uy0 are given by ux05f0Jy0 /(2 ivhx
1kpx) anduy05f0Jx0 /(2 ivhy1kpy).

The moving vortices generate a local magnetic flux den-
sity Bv52¹3(B03u), which will redistribute the current
density. The nonlocal effect due to vortex motion manifests
itself in the modified London equation

¹3~LJJs!52~B2Bv!. ~20!

Here the tensorLJ contains the information on the anisotropic
field-dependent London penetration depths in thea and c
directions,la andlc ; the entities arem0la

2 andm0lc
2 , while

Js , the supercurrent density, is denoted asJs5 x̂Jsx1 ŷJsy .
Making use of Eqs.~8!, ~18!, and ~19!, we can obtain the
supercurrent density componentsJsx andJsy on the basis of
Eq. ~20!. After a lengthy calculation, we have

Jsx5Jsx0(
n50

`

~21!nF cqn kycosS qna xD sinh~kyy!

cosh~kyt !

2sinS qnc yD cosh~kxx!

cosh~kxa!Ge2 ivt, ~21!

Jsy5Jsy0(
n50

`

~21!nFsinS qna xD cosh~kyy!

cosh~kyc!

2
a

qn
kxcosS qnc yD sinh~kxx!

cosh~kxa!Ge2 jvt, ~22!

where the coefficients are found as

Jsx05
1

m0la
2 F2m0h0l̃a

2

c
1B0uy0G ,

Jsy05
1

m0lc
2 F2m0h0l̃c

2

a
1B0ux0G .

The main anisotropic complex penetration depthsl̃a and
l̃ c , including all the physics of vortex dynamics due to mi-
crowave field, can then be obtained on the basis of the two-
fluid equationJ5Jn1Js . Evaluation of thex component of
the current density yields

l̃a5Fla
21~lcx

2222id f x
22!21

122ila
2/d nfy

2 G1/2, ~23!

where we define

lcx
2 [

B0f0

m0kpy
, d f x

2 [
2f0B0

m0vhy
, dnfy

2 [
2

m0vsnfx
. ~24!

Similarly, consideration of they component of the current
density gives

l̃ c5Flc
21~lcy

2222id f y
22!21

122ilc
2/d nfx

2 G1/2. ~25!

Here we use the definitions

lcy
2 5

B0f0

m0kpx
, d f y

2 5
2f0B0

m0vhx
, dnfx

2 5
2

m0vdnfy
. ~26!

The similarity between Eqs.~23!, ~25!, and~3! appears to be
stimulated. However, some care should be taken in compar-
ing these three equations. The complex penetration depth in
the x direction, l̃a , is dependent on the restoring constant
kpy , viscous coefficienthy , normal-fluid conductivity
snfx , and London penetration depthla , whereasl̃c is on
kpx , hx , snfy , and lc . These dependences elucidate the
basic features of anisotropic vortex motion and can be re-
garded as rules for transforming Eq.~3! to Eqs. ~23! and
~25!.

The above derivations are accomplished under the consid-
eration of no creep effect. In the case where the creep is
included, the corresponding anisotropic complex penetration
depthsl̃a andl̃c are easily produced according to the results
of Coffey and Clem, Eqs.~1!, ~2!, as well as the transforma-
tion rules described above. For example, if one makes some
replacements in Eq.~1! with l→la , dnf→dnfy , d̃vc→ d̃vcy
and Eq.~2!, h→hy , kp→kpy , a similar expression in Eq.
~1! for l̃a is readily obtainable. Similar substitutions in Eqs.
~1! and ~2! lead tol̃c .

Having obtained explicit forms of the anisotropic com-
plex penetration depths given in Eqs.~23! and ~25!, the mi-
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crowave response in the mixed state is therefore readily in-
vestigated from the relevant effective magnetic permeability.
The associated magnetic permeabilitym for a rectan-
gular rod is m5^B(x,y)&/m0h0 , where ^B(x,y)&
5(2a32c)21*2c

c *2a
a B(x,y)dxdy. Using the spatial part in

Eq. ~8! to evaluate the integration, we find

m5 (
n50

`
2

~n1 1
2 !2p2 F tanh~kyc!

kyc
1
tanh~kxa!

kxa
G . ~27!

Before performing the numerical calculations, we wish to
illustrate some special considerations to reflect the generality
of our results. In theoretical studies, one usually considers a
slab geometry with thickness 2c, namely, 2a→`. Then the
permeability in Eq.~27! becomes

m5
l̃a
c
tanhS c

l̃a
D , ~28!

which further reduces exactly to Eq.~6! if the slab is isotro-
pic. Moreover, Eq.~28! reveals that the permeability of an
anisotropic slab is clearly dependent onl̃a instead ofl̃c .
This is a consequence of the anisotropic property also shown
in the Meissner-state response from a conventional two-fluid
model43 and in the normal-state response.6 By the way, in
simplifying Eq. ~27! to Eq. ~28!, the identity

(
n5odd

1

n2
5

p2

8

has been used implicitly. If the rectangular rod considered
here is an isotropic superconductor, then the permeability, in
Eq. ~27!, reduces to

m5 (
n50

`
2

~n1 1
2 !2p2 F tanh~ky8c!

kyc8
1
tanh~kx8a!

kx8a
G , ~29!

wherekx85(l̃221qn
2c22)1/2 and ky85(l̃221qn

2a22)1/2. Ex-
pression~29! is not the same as that of Coffey and Clem; see
Ref. 31 @Eq. ~B8!#. Their permeability of an isotropic rect-
angular rod is rewritten, in our notation, as

m5
l̃

c
tanhS c

l̃
D 1 (

n50

`
2

~n1 1
2 !2p2

tanh~kx8a!

kx8
3l̃2a

. ~30!

The primary distinction between Eqs.~29! and ~30! lies in
the different boundary conditions considered in finding the
magnetic induction. The boundary conditions used in the pa-
per of Coffey and Clem31 are the continuity of magnetic
induction only at two planesx56a and the reduction to
those for a slab asa→`. Our considerations here, however,
are the continuity conditions of four planes atx56a and
y56c. It is thus evident that our result in expression~29!
seems more relevant to the study of the microwave response
in the parallel field configurations. Our results given in Eq.
~27! for anisotropic superconductors and Eq.~29! for the
isotropic one will be applied to investigate the vortex re-
sponse together with the effects of the edges of thin platelets.
For related permeabilities derived from a diffusion-type
equation in the Meissner and normal states, we mention the
papers of Wu and Tseng44 and Gough and Exon.6

III. RESULTS AND DISCUSSION

We now demonstrate some numerical results and discuss
those significant physics about the various vortex responses
to a microwave field. The first case we consider is the iso-
tropic superconducting rod whose complex permeability is
given in Eq.~29!. For simplicity, it is instructive to study the
vortex dynamics dominated by flux flow. That is, the normal
fluid is neglected and the complex penetration depth in Eq.
~3! becomesl̃5(11 i )d f /2. Rearrangement of Eq.~29! as a
function of a/d f and c/d f reveals thatm5m81 im9 has a
minimum peak height~0.366! in the imaginary partm9 when
a/d f5c/d f , the square rod. In the extreme casea→`, the
slab has, however, a maximum peak in value of 0.417 in
m9. The results ofm9, m8, and m9/m8 as a function of
c/d f for these two special geometries are plotted in Fig. 1.
The imaginary partm9 conveys the microwave loss of dissi-
pation, which is of vital importance in the analysis of the
microwave response, whereas the real partm8 indicates the
flux screening. As can be seen in Fig. 1, the dissipation is
related to the sample dimensions. In slab geometry, the po-
sition of the dissipation peak occurs atc/d f51.13, while the
square rod atc/d f51.67, a consequence of the skin size
effect. In other words, the corresponding peak frequency of
the square rod is greater than the slab. As a matter of fact, the
peak frequency in the slab is the lowest and its correspond-
ing peak height is, however, a maximum. The results clearly
elucidate the dependence of microwave properties on geom-
etry even in the isotropic superconductors. The linear re-
sponse in the regime of flux flow is in fact nothing less than
the resistive response~Ohmic response! or the TAFF
response.6,14,15Also, if one wishes to investigate the irrevers-
ibility line15,19 in the mixed states, the results here suggest
some correlation with the geometry considered.

We go on to study the response of isotropic supercon-

FIG. 1. Plot of permeabilities in Eqs.~29! and~6! as a function

of c/d f , in the regime of flux-flow dynamics, wherel̃5(1
1 i )d f /2 and d f is flux-flow penetration depth defined as
d f
252B0f0 /m0v. Herec is the half-thickness of the slab.
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ductors based on Eqs.~29!, ~6!, ~3!, and ~1!. To numeri-
cally illustrate the dissipation as a function of temperature,
magnetic field, and microwave frequency, we will use
the parameters on the order of those for the familiar
high-Tc system YBCO. However, we do not simulate
the response for a specific sample. The parameters used
in the study of Coffey and Clem31 are reused at present.
These arel5l(0)@12(T/Tc)

4#21/2$12@B0 /Bc2
(T)#%21/2,

d f
2(B0 ,T,v) 52rn(T)B0 /@m0vBc2

(T)#, and dnf
2 (B0 ,T,v)

5dn
2/ f (B0 ,T), where l(0)51400 Å , Tc591 K,

Bc2
(T)5Bc2

(0)@12(T/Tc)
2#@11(T/Tc)

2#21, rn(T)

51.131028T1231026 Vm, f (B0 ,T)512@12(T/Tc)
4#

3$12@B0 /Bc2
(T)#%, andBc2

(0)5112T. The Labusch con-

stant iskp5kp0@12(T/Tc2)
2#2, kp052.13104 N m22, and

activation barrier heightU05U@12(T/Tc2)#
3/2B0

21 , where

U50.15 eV2T and Tc2 is temperature at which

B05Bc2
(T). Also we define reduced fieldb[B0 /Bc2

(0).
Figure 2 shows the imaginary parts of permeabilities as a
function of reduced temperaturet[T/Tc , at various reduced
fields at fixed 10 GHz, for the three different geometries
considered. These results are plotted from Eqs.~29!, ~6!, and
~3!. It is interesting to observe that the dissipation peak near
Tc disappears in the thick platelet~width 5 1 mm, thickness
5 50 mm!, and the loss decreases sharply nearTc and to
zero. The overall behaviors of the slab~thickness5 5 mm!
and thin platelet~thickness5 5 mm, width 5 1 mm! have
essentially nothing different. The dissipation peaks are
present, and losses are enhanced as a whole except at tem-
perature very nearTc . The effects of a static~reduced! mag-

netic field, on the other hand, are illustrated in Fig. 2, too. By
increasing the reduced field, the peak shape is broadened and
the peak height is lowered for the slab or thin platelet. As for
the thick platelet, the increase in field will greatly increase
the loss, especially at a temperature just belowTc . The re-
sults shown in Fig. 2 are obtained under the consideration of
no-flux creep effect. In the case where creep is included@Eq.
~1!#, the corresponding results are depicted in Fig. 3. Obvi-
ously, the inclusion of flux creep has prominently increased
the dissipationm9; see the scale. In the meantime, the effects
of the magnetic field have some notable differences from
those shown in Fig. 2. The peak broadens more when the
field increases, while the height essentially does not decrease
appreciably. Also, the temperature at the peak moves lower
as compared with Fig. 2. From the results of Figs. 2 and 3,
we deduce that whether the creep is considered or not, the
microwave properties of thin platelets can be simply de-
scribed by a slab with the same thickness, whereas in the
thick plate, care should be taken. That is, in microwave stud-
ies of isotropic superconducting thin platelets, the effect of
thin edges is usually negligible. In Fig. 4, the relation of
m9 vs t is again plotted at distinct frequencies atb50.01 for
a slab~thickness5 5 mm!. There, the solid lines indicate the
results of flux creep@Eq. ~1!#, while dashed lines the results
without creep@Eq. ~3!#. The flux creep has a salient influence
onm9 specifically at frequencies of 1 and 10 GHz. At higher
frequencies them9 is, however, very weakly affected. These
phenomena are due to the fact that the creep is detected at
low frequency.5,12 At frequencyf, f c5vc/2p, wherevc is
the flux-creep crossover frequency described earlier, the vor-
tex dynamics is dominated by thermally activated flux creep

FIG. 2. Imaginary parts of permeabilities in Eq.~29! of a plate-
let and~6! of a slab as a function of reduced temperaturet[T/Tc
for a fixed frequency 10 GHz at various reduced fields
b[B0 /Bc2

(0)50.005, 0.1, and 0.2. The complex penetration depth

l̃ in Eq. ~3! is used in the case without flux creep. The thickness of
the slab is 2c55 mm and the thick platelet has a width 2a51 mm,
thickness 2c550 mm, while the thin platelet has 2a51 mm and
2c55 mm. The material constants used are given in the text.

FIG. 3. Imaginary part of permeabilities in Eq.~29! of a platelet
and~6! of a slab, as a function of reduced temperaturet[T/Tc for
a fixed frequency 10 GHz at various reduced fields
b[B0 /Bc2

(0)50.005, 0.1, and 0.2. The complex penetration depth

l̃ in Eq. ~1! is used in the case with flux creep. The thickness of the
slab is 2c55 mm and the thick platelet has a width 2a51 mm,
thickness 2c550 mm, while the thin platelet has 2a51 mm and
2c55 mm. The material constants used are given in the text.
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so that the complex penetration depth in Eq.~1! strongly
relies on the frequency. The creep effect is usually modeled
as a resistor in series with pinning inductors in a circuit rep-
resentation. At a frequency well belowf c , the vortices can
move freely with modified viscosityh1(kp /vc), instead of
h only.42 The crossover frequency as a function of reduced
temperature is shown in Fig. 5, where another characteristic
frequency f 05v0/2p is also given. The maximumf c is

about 14 GHz. For frequenciesf c, f, f 0 , the vortex dy-
namics is dominated by flux pinning;l̃ is then independent
of frequency. If the frequency isf. f 0 , the vortices are not
pinned at all, and the dissipation is consequently due to free
viscous motion. Finally, the peak temperature in Fig. 4 in-
creases with increasing frequency. Moreover, the peak even-
tually disappears at 100 GHz. In Fig. 6, we showm9 as a
function of reduced static field at different temperatures. The
peak is broadened more as the temperature decreases; how-
ever, the peak height changes appreciably. The reduced field
at them9 peak increases with decreasing temperature.

We now turn our attention to anisotropic superconductors.
As an instructive illustration, we again investigate the flux-
flow regime so that l̃a→(11 i )d f x/2 and l̃ c→(1
1 i )d f y/2. For convenience, we definex[c/d f x and
y[a/d f y ; then, the permeability in Eq.~27! of an aniso-
tropic rod can be expressed as

m5 (
n50

`
2

qn
2 F tanh@Aqn2~x2/y2!22ix2#

Aqn2~x2/y2!22ix2

1
tanh@Aqn2~y2/x2!22iy2#

Aqn2~y2/x2!22iy2
G . ~31!

In the case ofy→` (a→`), the result reduces to that of a
slab described in Eq.~28! and has a dissipation peak~0.417!
at x5c/d f x51.13. Equation~31! has a minimum peak when
x5y. The conditionx5y reveals that the rod is equivalently
a square one, but not actually a square rod in shape. In this
equivalent square rod, the dissipation peak is a minimum. All
the behaviors are very similar to those given in Fig. 1. There-
fore, the thin edges should be dealt with carefully. Addition-
ally, the permeability in expression~31! is quite analogous to
the study of Gough and Exon.6 They considered the normal-

FIG. 4. Imaginary part of permeability Eq.~6! as a function of
reduced temperaturet5T/Tc for the cases where creep is both in-
cluded and excluded with fixed reduced fieldb50.01 at various
microwave frequencies. The slab thickness 5mm and material con-
stants are given in the text.

FIG. 5. Temperature-dependent characteristic frequenciesvc

and v0 when the creep is considered. Herev05(kp /h)
I 1(n)/I 0(n) and vc5v0 /@ I 0

2(n)21#1/2 with n5U0(B0 ,T)/2kBT.
Material parameters are given in the text.

FIG. 6. Plot ofm9 of slab with l̃ given in Eq.~1! vs reduced
field b[B0 /Bc2

(0) at f510 GHz for different reduced tempera-
turest[T/Tc50.6, 0.7, 0.8, 0.85, and 0.9. The slab thickness is 5
mm and the material parameters used are given in the text.
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state response of anisotropic superconductors in the parallel
field configuration. The permeability is derived from the an-
isotropic magnetic flux diffusion equation. The authors
pointed out the importance of thin edges on the microwave
response of a platelet crystal. Our result shown in Eq.~31!
can reproduce all their discussion provided that
B0→Bc2

(T), the upper critical field, because asB0 ap-

proachesBc2
(T), this will imply a divergent l(B0 ,T),

which in turn makesd nf→dn5(2r/m0v)
1/2 and l̃→(1

1 i )dn/2, a penetration depth of the normal-state response.
As for the general consideration of vortex dynamics, one

can also execute similar calculations from Eq.~27!. How-
ever, some care should be taken before the execution. In the
parallel configuration, the vortex motion is anisotropic and
consequently the material parameters such asBc2

(0), viscos-
ity, and London penetration are strongly dependent on the
anisotropic ratiog[lc /lab5Amc /mab. Besides, the field-
orientation-dependent Labusch constantkp0 and anisotropic
normal-state resistivities should also be taken into account
altogether, remembering that the parameters used previously
in the analysis of the isotropic case are the in-plane ones. The
c-axis parameters now are given as follows. The zero-
temperature upper critical fieldBc2

(0)5112g T, normal-

state resistivity45 rc51.3/T1(3.231025) T, Labusch con-
stant38 kp052.23105 N m22, and the activation barrier
height46 U50.15g eV T. Here the anisotropic ratiog is re-
ported to be 5–8 for the high-Tc superconductor YBCO.

47

With these parameters, we can investigate the ac response of
anisotropic flux motion. Also, one is able to tell the different
of responses between anisotropic and isotropic supercon-
ductors. The results with flux creep based on our generalized
Coffey-Clem model are shown in Figs. 7–9 where the results
of the isotropic one (g51) are given for the purpose of
comparison. Figures 7~a! and 7~b! display the dependence of
m9 on reduced temperature for two thicknesses 2c55 and
10 mm of the platelet. As can be seen in Fig. 7~a!, the an-
isotropy makes them9 peak more broadened and the peak
temperature is lowered considerably compared with the iso-
tropic one. What is more, the peak height is also increased
appreciably. In the anisotropic ones, the peak temperature
decreases with increasing the anisotropy and no appreciable
change in peak height is observed. In Fig. 7~b!, the inclusion
of anisotropy again lowers the peak temperature, but not as
large as in~a!. The results indicate that the microwave re-
sponse is strongly dependent on the material anisotropy and
sample size. The magnetic field dependence of the micro-
wave dissipation is shown in Fig. 8. Figure 8~a! illustrates
that the anisotropy has narrowed the curve ofm9 and the
peak is confined aroundb50.01 at f510 GHz andt50.6.
As the field increases, the dissipation in the anisotropic su-
perconductor is depressed much in comparison with the iso-
tropic one. The same condition for a thicker platelet,
2c510 mm, causes them9 curve to be more broadened as
depicted in Fig. 8~b!. Furthermore, the peak heights are de-
creased appreciably with increasingg in anisotropic case in
this condition. The influence of anisotropy onm9 as func-
tions of reduced temperature and static field appears to be
quite different. One is that the curve is broadened in Fig. 7
and the other narrowed in Fig. 8. Finally, we demonstrate the
frequency-dependentm9 in Fig. 9. Apparently, the anisot-

ropy has highly enhanced the microwave losses. Besides, the
disappearance in them9 peak in the isotropic superconductor
now emerges in the anisotropic ones as shown in Figs. 9~a!
and 9~b!. The effect of sample size on them9 peak is also
observed in these two figures. The increase in thickness of
the sample makes the peak shape more sharp and the peak
frequency is localized near 5 GHz.

According to the Figs. 7–9, the influence of anisotropy
together with sample size on them9 peak has been clearly
elucidated so far. The results suggest the importance of an-
isotropy in the analysis of the microwave response of high-
temperature superconducting platelet crystals in the parallel
field configuration.

FIG. 7. ~a! Plot of m9 in Eq. ~27! of a rectangular rod, 2a51
mm, 2c55 mm at f510 GHz andb50.01. The material param-
eters used are described in the text.~b! Plot of m9 in Eq. ~27! of a
rectangular rod, 2a51 mm, 2c510 mm at f510 GHz and
b50.01.
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IV. SUMMARY

We have extended the Coffey-Clem model to the aniso-
tropic case. The idea of a self-consistent treatment of vortex
dynamics as well as the anisotropic London electrodynamics
establish the basis for our extension. The permeability in Eq.
~27! acts as a good candidate for the microwave response of
anisotropic superconducting single crystals in the shape of
platelets in the parallel field configuration. The permeability
depends on the anisotropic complex penetration depths,
which are determined by a self-consistent treatment of vortex
dynamics. Our results in Eqs.~23! and ~25! provide some
conversion relations from isotropic to anisotropic supercon-
ductors within the framework of the Coffey-Clem model.
Besides, our derivations provide a possible tool for experi-

mentally determining the anisotropic properties such as vis-
cosity, Labusch constant, normal-fluid resistivity, and so
forth.

Numerical studies indicate some fundamental information
about the vortex response to a microwave field. If the vortex
dynamics is dominated by flux flow, then the response be-
haves as a resistive one. Accordingly, the microwave prop-
erties of platelike single crystals are highly related to the thin
edges of samples for both isotropic and anisotropic super-
conductors because of the skin size effect. A square rod in
the isotropic case or an equivalent square rod in anisotropic
superconductors gives the possible minimum peak height
and the highest peak frequency. Therefore, one can prepare
suitable sample dimensions to get the minimum peak and in

FIG. 8. ~a! Field-dependent imaginary part ofm in Eq. ~27! of a
rectangular rod, 2a51 mm, 2c55 mm at T50.6Tc and f510
GHz. ~b! Field-dependent imaginary part ofm in Eq. ~27! of a
rectangular rod, 2a51 mm, 2c510 mm at T50.6Tc and f510
GHz.

FIG. 9. ~a! Frequency-dependent imaginary part ofm in Eq. ~27!
of a rectangular rod, 2a51 mm, 2c55 mm at T50.6Tc and
b50.01. ~b! Frequency-dependent imaginary part ofm in Eq. ~27!
of a rectangular rod, 2a51 mm, 2c510 mm at T50.6Tc and
b50.01.
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turn the anisotropic viscosity is able to be extracted. For
material parameters on the order of high-temperature super-
conductors, the YBCO system, the inclusion of flux creep
effectively enhances the dissipation heavily and makes the
peak height essentially unchanged at various static magnetic
fields. The dependence of vortex dynamics on microwave
frequency is also numerically illustrated to indicate the fact
that the creep is detected at the low-frequency regime. At
very high frequency, the dissipation peak becomes very
sharp and moves closely toTc ; eventually the peak shape
vanishes. Our results specifically indicate the effects of thin
edges of plates should be noted in the microwave study. To
obtain the dissipation peak, it is indicated that a thin platelet
would be in preference to a thick platelet. Also, the consid-
eration of anisotropy makes the microwave properties of the
anisotropic quite different from those of the isotropic super-
conductors. It therefore reveals that the microwave response

is strongly dependent on the anisotropic vortex motion to-
gether with the sample dimension.

The generality here encompasses all the isotropic results
given by Coffey and Clem31 previously and the special con-
sideration such as the anisotropic normal-state response pro-
vided by Gough and Exon.6 The extension also provides the
possibility of studying highly anisotropic high-Tc supercon-
ductors, the BSCCO system. In BSCCO, the creep is more
pronounced because of its relatively low activation energy.
Regarding the interpretation, the irreversibility line in the
mixed state, the extension here gives more possible depen-
dence on sample geometry, too.
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