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Abstract

Regulation of pre-mRNA splicing is achieved through the interaction of RNA sequence elements and a variety of RNA-
splicing related proteins (splicing factors). The splicing machinery in humans is not yet fully elucidated, partly because
splicing factors in humans have not been exhaustively identified. Furthermore, experimental methods for splicing factor
identification are time-consuming and lab-intensive. Although many computational methods have been proposed for the
identification of RNA-binding proteins, there exists no development that focuses on the identification of RNA-splicing
related proteins so far. Therefore, we are motivated to design a method that focuses on the identification of human splicing
factors using experimentally verified splicing factors. The investigation of amino acid composition reveals that there are
remarkable differences between splicing factors and non-splicing proteins. A support vector machine (SVM) is utilized to
construct a predictive model, and the five-fold cross-validation evaluation indicates that the SVM model trained with amino
acid composition could provide a promising accuracy (80.22%). Another basic feature, amino acid dipeptide composition, is
also examined to yield a similar predictive performance to amino acid composition. In addition, this work presents that the
incorporation of evolutionary information and domain information could improve the predictive performance. The
constructed models have been demonstrated to effectively classify (73.65% accuracy) an independent data set of human
splicing factors. The result of independent testing indicates that in silico identification could be a feasible means of
conducting preliminary analyses of splicing factors and significantly reducing the number of potential targets that require
further in vivo or in vitro confirmation.
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Introduction

Alternative splicing (AS), in eukaryotes, is one of the

mechanisms of post-transcriptional regulation that generate

multiple transcripts from the same gene. These transcripts are

then translated into multiple proteins having diverse biological

functions. According to the comparative alignment of EST

sequences and high-throughput biotechnology techniques such

as exon/exon-junction array and RNA-Seq, it has been revealed

that most genes (larger than 90%) undergo alternative splicing in

humans [1,2,3,4]. In general, alternative splicing is regulated by

splicing factors (SF) that recognize and associate with specific RNA

sequence elements in order to enhance or repress the ability of the

spliceosome to recognize nearby splice sites [5,6]. More precisely,

the mechanism is finished through many of the positive or negative

trans-acting splicing factors which are recruited to the enhancer or

silencer cis-acting sequence elements of the pre-mRNA, such as

exonic splicing enhancer (ESE), exonic splicing silencer (ESS),

intronic splicing enhancer (ISE) and intronic splicing silencer (ISS)

[7,8,9]. Meanwhile, the process exploits the dynamic composition

of splicing factors under various cell lines or developmental stages

to have flexible intermolecular interactions such as protein-RNA,

RNA-RNA, and protein-protein interactions [10,11,12]. Cancer

cells often take advantage of this flexibility to produce proteins that

promote growth and survival [13].

Eukaryotic messenger RNAs (mRNAs) are produced by

accurately removing introns from precursors (pre-mRNAs) in a

process called RNA splicing. RNA splicing is required for typical

eukaryotes that produce mature mRNA before it can be used to

code a correct protein through translation. The eukaryotic RNA

splicing is done in a series of reactions that are catalyzed by the

spliceosome, which is a collection of small nuclear RNAs (snRNAs)

and proteins recruited to pre-mRNAs for carrying out intron

excision [14,15]. With the comprehensively biochemical and

genetic studies in a variety of biological systems, spliceosomes have

been revealed to contain five essential snRNAs, each of which

functions as an RNA–protein complex called a small nuclear

ribonucleoprotein (snRNP) [16,17]. RNAs and proteins cooperate

extensively in ribonucleoproteins (RNPs) to bring about the

biological functions of splicing machinery [11]. Two types of

spliceosomes have been identified for eukaryotes: one is U2-type

spliceosome, which consists of U1, U2, U4, U5, and U6 snRNPs;

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27567



the other is U12-type spliceosome, which is composed of U11,

U12, U4atac, U5, and U6atac snRNPs [16]. The U2-type

spliceosome catalyzes the removal of most introns and U12-type

spliceosome recognizes less than 1% of human introns [18].

Regulation of pre-mRNA splicing is achieved through the

interaction of RNA sequence elements and a variety of RNA-

splicing related proteins (splicing factors) [19,20]. Within the

assembled spliceosome, intron excision contains two major

chemical steps: the first step refers to the 59 splice site cleavage

and lariat formation; the second step refers to the 39 splice site

cleavage and exon ligation [14]. The initial event of RNA splicing

is the recognition of specific sequences located at the 59 and 39

splice sites by splicing factors [21], which determines the intron

boundaries. One of the well-known protein families of splicing

factors in terms of serine- and arginine-rich carboxy-terminal

domains is the SR proteins. This protein family consists of at least

five different proteins with molecular masses of 20, 30, 40, 55, and

75 kD [15]. However, although the introns are excised with a high

degree of precision, the splice site sequences are weakly conserved

[16,22]. The alternative selection of splice sites (alternative

splicing) present within a pre-mRNA, leads to the production of

multiple mRNAs from a single gene [13].

Due to the multiplicity of protein–protein and protein–RNA

interactions that modulate the associations between splicing factors

and pre-mRNAs, the first mass spectrometry-based analysis of in

vitro-derived spliceosomes was limited to species visible in stained

2D-gels. This analysis was able to identify 17 previously known

splicing factors (including hnRNP proteins) and 23 novel splicing-

related proteins [23]. Although previous works have identified

more than 200 human splicing factors based on comprehensive

proteomic analysis [24,25], many of the newly identified proteins

have not yet been experimentally verified to function in pre-

mRNA splicing [16]. Without functional validation, it would be

premature to label all of these proteins as bona fide splicing

factors. A previous work by Jurica and Moore [14] have manually

conducted about 180 human splicing factors by literature survey.

Due to the importance of splicing factors in pre-mRNA splicing,

more attention is being paid to mass spectrometry-based

proteomic studies [19,24,25,26,27], which has been observed to

identify an increasing number of experimentally verified splicing

factors. However, experimental identification is proven to be time-

consuming and lab-intensive. Thus, in silico investigation has the

potential for characterizing splicing factors prior to experimental

verification. Over the last few years, several studies have been

proposed to computationally predict RNA-binding proteins

[28,29]. Additionally, many computational methods have been

developed to identify RNA-binding residues on protein sequences

[30,31,32,33,34,35,36,37,38,39]. In particular, SFmap [21], a web

server for predicting putative splicing factor binding sites in

genomic data, utilizes a modified Hamming distance formula to

define a match between a splicing factor sequence query and a

target sequence. The distance scores are then standardized and a

Z-score is obtained for calculating the significance of each query

relative to a background model which is then compared to a

threshold value in order to give a probable prediction. Another

work done by Barbosa-Morais et al. [16] presents a semi-

automated computational pipeline to aid in identifying and

annotating spliceosomal proteins. The proposed method utilizes

annotated human splicing factors grouped into families based on

full-length homology, functional domain, and Ensembl protein

family classification which are then transformed into phylogenetic

trees. Their work has revealed more than 200 proteins of multiple

organisms for which there is experimental evidence regarding its

involvement in splicing. Furthermore, a related work by Zheng

et al. [40] proposed a method which utilizes support vector

machine, a binary-class classification algorithm, to construct a

model for discriminating transcription factors (TFs) from non-TFs

using protein domain and functional site information. The authors

have also employed error-correcting output coding, a multi-class

classification algorithm, in order to classify the identified TFs

according to: basic-TFs, zinc-TFs, helix-TFs, and beta-TFs. These

published works have demonstrated their accuracy and stability;

however, there is no fully computational method developed to

identify splicing factors based on protein sequences so far.

Therefore, we are motivated to develop a novel method focusing

on the identification of human splicing factors using the

experimentally verified spliceosomal proteins and RNA-splicing

related proteins.

In this study, the experimentally validated human splicing

factors have been collected from two previously published

literatures [14,16]. This work not only investigates the composition

of amino acids on splicing factors, but also considers evolutionary

information through a position-specific scoring matrix (PSSM).

The explored features are used to construct a predictive model for

differentiating splicing factors from non-splicing proteins. A

support vector machine (SVM) is used to construct a predictive

model with various features. Moreover, the information of

functional domains extracted from InterPro [41] is also adopted

to improve the prediction scheme. Finally, an independent test set,

which is not included in the training set, is also constructed to

evaluate whether the predictive model is over-fitted to the training

set.

Materials and Methods

Figure 1 presents the system flow of the proposed method. It

consists of the following steps: data collection and pre-processing,

feature extraction, model learning and cross-validation, and

independent testing. The details of each process are described as

follows.

Data collection and pre-processing
The experimentally verified splicing factors in humans were

collected from published literatures [14,16]. Jurica and Moore

[14] have proposed about 180 manually curated splicing factors in

humans by literature survey. In addition, Barbosa-Morais et al.

[16] have proposed more than 200 splicing factors from multiple

organisms by an integrative method incorporating systematic

pipeline and experimental evidence. After the removal of

redundant protein entries, it resulted in a total of 283 human

splicing factors which are regarded as positive data for feature

investigation and model training. Furthermore, human proteins

which are not among the positive data obtained from literature

were extracted from the UniProt protein knowledge base [42] by

running a search on UniProt IDs using the keyword ‘‘HUMAN’’.

To construct the positive data of independent testing, only

experimentally verified splicing factors are obtained from the

resulting dataset by collecting protein entries annotated as ‘‘RNA

splicing’’, ‘‘spliceosome’’, or ‘‘splicing factors’’. UniProt uses such

annotations to define a protein entry that has been experimentally

identified to be essential for RNA splicing. This yielded 99 protein

sequences which are then regarded as positive data for

independent testing. In order to filter out potential noise data

for non-splicing proteins, the remaining proteins consisting of

keyword ‘‘RNA-binding’’ are removed. As a result, a total of

19512 proteins are regarded as negative data.

In classifying splicing factors and non-splicing proteins, there is

a possibility that the prediction performance of the constructed

Identification of RNA Splicing Factors in Humans
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models is overestimated due to an over-fit to the training set.

Therefore, an independent test set is used to estimate the actual

prediction performance. However, there may be a possible

overestimation in the prediction performance due to homologous

sequences found in the training data and independent test data.

With reference to the work by Panwar et al. [43], homologous

sequences from the collected data are removed by using CD-HIT.

CD-HIT firstly forms a cluster with a representative sequence

having the longest length which is then compared to the remaining

sequences. If the similarity between a target sequence and the

representative sequence is above the user-selected sequence

identity threshold which refers to the pairwise sequence identity

between two proteins, then the target sequence is considered

homologous to the representative sequence [44]. Different values

were tested for the sequence identity parameter as shown in

Table 1. The resulting dataset given a sequence identity parameter

of 30% contains 173 positive sequences of training set, 65 positive

sequences of independent test set, and 11113 negative sequences.

The negative data is then randomly divided into two sets – 5557

protein sequences are regarded as negative data for model

training, and 5556 protein sequences are regarded as negative

data for independent testing.

Feature extraction
Compositions of amino acids and amino acid dipep-

tide. Each protein sequence in the data set is represented using a

vector {xi, i = 1,…,n} labeled according to its corresponding

protein group (e.g. splicing factor or non-splicing protein). The

vector xi has 20 elements for the amino acid composition and 400

elements for the amino acid dipeptide composition. For amino

acid composition, the 20 elements specify the numbers of

occurrences of 20 amino acids normalized with the total number

of residues in the protein. On the other hand, for amino acid

dipeptide composition, the 400 elements specify the numbers of

occurrences of 400 amino acid dipeptides normalized with the

total number of dipeptides in the protein.

Statistically significant amino acid dipeptides. In further

exploring potential features for protein classification, various

methods aimed at selecting relevant sequence features given a

large set of features have been used [45]. In this work, the

importance of amino acid dipeptides in identifying splicing factors

is further investigated by means of measuring the statistical

significance of each dipeptide in the data set. For each amino acid

dipeptide, the number of splicing factors and non-splicing proteins

containing the target dipeptide is calculated separately. The

statistical significance of each dipeptide is then obtained by

examining a sample against a background set based on the

hypergeometric equation (P-value) [46]:

P(t)~
XT

t

CT
t
:CK{T

k{t

CK
k

ð1Þ

where K is the background set represented by the number of all

proteins and T is the sample set represented by the number of

splicing factors; k is the number of all proteins having the target

amino acid dipeptide and t is the number of splicing factors having

the target amino acid dipeptide. P-value is calculated for each

dipeptide based on the hypergeometric equation. A smaller p-value

corresponds to a greater statistical significance. Furthermore, the

positive and negative probabilities of each amino acid dipeptide

are computed by means of dividing the number of splicing factors

or non-splicing proteins having the target amino acid dipeptide by

the total number of splicing factors or non-splicing proteins,

respectively. The probability difference between the positive and

the negative probability is then obtained. In this work, amino acid

Figure 1. System Flow.
doi:10.1371/journal.pone.0027567.g001
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dipeptides having a p-value less than 0.05 and a probability

difference greater than 0 is considered as statistically informative

for the identification of splicing factors.

Evolutionary information. Several amino acid residues of a

protein can go through mutation without changing its structure,

and two proteins may share similar structures with different amino

acid compositions. In this work, evolutionary information is

obtained using position-specific scoring matrix (PSSM). PSSM

profiles have been extensively utilized in protein secondary

structure prediction, subcellular localization and other approa-

ches in bioinformatics [47,48,49]. The PSSM profiles of each

protein were obtained by using PSI-BLAST search against the

non-redundant database of protein sequences compiled by NCBI

[50]. Due to the fact that the data consists of protein sequences

with variable length, a weighted score of features is obtained by

summing up the position-specific scores of the same amino acids

occurring in a protein sequence to get a uniform number of

features. Figure 2 displays in detail how to generate a 400-

dimensional (20620 residue pairs) PSSM feature vector for each

splicing factor and non-splicing protein. PSSM profile is a matrix

of m620 elements where m represents the protein sequence length

and 20 represents the position specific scores for each type of

amino acid. Then, the PSSM profile is transformed to a 20620

matrix by summing up each row of same amino acid in the PSSM

profile and the variable is denoted as ‘‘x’’. Finally, every element of

400-dimensional PSSM vector is divided by the length of the

sequence and then is scaled by
1

1ze{x
for normalizing the values

between 0 and 1.

Table 1. Data abundancy after using CD-HIT.

Sequence identity Positive data of training set Positive data of independent test set Negative data

100% (original) 283 99 19512

90% 274 94 18897

80% 268 94 18447

70% 256 94 17727

60% 242 88 16710

50% 226 82 15255

40% 202 80 13333

30% 173 65 11113

doi:10.1371/journal.pone.0027567.t001

Figure 2. The detailed process of generating 400-dimensional PSSM vector by the PSSM profile.
doi:10.1371/journal.pone.0027567.g002
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Figure 3. Percent composition of 20 amino acids between positive data (splicing factors) and negative data (non-splicing proteins).
doi:10.1371/journal.pone.0027567.g003
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Information of functional domains. Previous works on

protein prediction have exhibited the ability of distinguishable

domain regions in the classification of proteins [45]. In this work,

domain information is investigated as a feature for classifying

splicing factors from non-splicing proteins. To investigate the

preference of functional domains in splicing factors, this study

referred to the annotations in InterPro [41]. InterPro is an

integrated resource, which was developed initially as a means of

rationalizing the complementary efforts of the PROSITE [51],

PRINTS [52], Pfam [53], and ProDom [54] databases, for

providing protein ‘‘signatures’’ such as protein families, domains

and functional sites. The domain information of each splicing

factor in the training data is collected by referring to its

corresponding InterPro ID in the UniProt database. The

collected domains are then analyzed in order to identify the

most distinguishable domains in splicing factors. For this work,

functional domains present in more than five splicing factors are

considered as significant domains.

Feature Combination. A hybrid approach is investigated in

this work by combining different sets of feature vectors with the goal

of improving splicing factor prediction performance. Three types of

hybrid combinations are explored. In the first combination, the

effect of combining PSSM with the composition-based features is

explored. In the second combination, the effect of combining

domain information with the composition-based features is

explored. In the third combination, the effect of combining both

PSSM and domain information with the composition-based

features is explored.

Model learning and cross-validation evaluation
Support vector machine (SVM) is applied to generate

computational models that incorporate the encoded set of features.

Based on binary classification, the concept of SVM is to map the

input samples into a higher dimensional space using a kernel

function, and then to find a hyper-plane that discriminates

between the two classes with maximal margin and minimal error.

A public SVM library, LibSVM [55], is used to train the predictive

model with positive and negative training sets, which are encoded

with reference to various training features. The radial basis

function (RBF) K(Si,Sj)~ exp ({c Si{Sj

�� ��2
) is selected as the

kernel function of SVM. Cross-validation is important to the

application of the predictor [56]. The predictive performance of

the constructed models is evaluated by performing k-fold cross

validation. The training data is divided into k groups by splitting

each dataset into k approximately equal sized subgroups. In this

work, k is set to five. During cross-validation, each subgroup is

regarded as the validation set in turn, and the remainder is

regarded as the training set. Next, the following measures of

predictive performance of the trained models are defined:

Sensitivity (Sn)~
TP

TPzFN
, ð2Þ

Specificity (Sp)~
TN

TNzFP
, ð3Þ

Accuracy (Acc)~
TPzTN

TPzFNzTNzFP
, ð4Þ

where TP, TN, FP and FN represent the numbers of true positives,

true negatives, false positives and false negatives, respectively.

Additionally, the parameters of the predictive model, cost and

gamma value of the SVM models are optimized to maximize

predictive accuracy. In optimization of SVM parameter C and

RBF kernel parameter gamma, the grid search is applied to obtain

the parameters that achieve the best accuracy during k-fold cross-

validation. Then, the hybrid combinations of features that yield

the highest accuracy are employed to construct predictive models

for independent testing. Finally, the SVM model trained with the

combined features and the selected parameters (C and gamma) are

evaluated the predictive performance using independent testing

data.

Independent testing
In order to further evaluate the trained models, an independent

test set from humans is obtained as discussed previously, resulting

in 65 positive data and 5556 negative data shown in Table 1. In

addition, this work also investigates the ability of the predictive

model to identify splicing factors from other mammalian species

(File S1).

Results and Discussion

Investigation of amino acid composition in splicing
factors

The difference between splicing factors and non-splicing

proteins is analyzed in terms of its amino acid composition as

shown in Figure 3. It can be observed that splicing factors are

significantly distinguishable from non-splicing proteins at the

amino acid composition level. For instance, Arginine (R), Aspartic

Acid (D), Glutamic Acid (E), Glycine (G), Leucine (L), and Lysine

(K) residues all exhibit a remarkable difference between splicing

factors and non-splicing proteins. The dominance of these amino

acid residues indicates its contribution in RNA-protein and

protein-protein interactions. Among these residues, the abundance

of R and K in splicing factors is reasonable because these positively

charged residules can easily interact with negatively charged RNA.

Another abundant amino acid group observed in splicing factors is

D and E which are negatively charged residues and are easily

located on surface area of a protein for interacting with other

splicing factors. Interestingly, the small size and flexibility of G

residue is probably responsible for making it suitable for the

structural adjustments required during the protein-protein inter-

actions [37]. Furthermore, Leucine (L) is observed to be the most

prominent among all under-representated residues. In order to

examine the effectiveness of amino acid composition in identifying

splicing factors, an SVM model is trained using a 20-dimensional

vector consisting of the composition scores for twenty amino acids.

The amino acid composition-based model is evaluated by means

of five-fold cross-validation. As shown in Table 2, the model

Table 2. Five-fold cross validation performance of basic
features.

Features Sensitivity Specificity Accuracy

Amino acid composition 76.90% 80.33% 80.22%

Dipeptide composition 78.62% 78.53% 78.53%

Statistically significant
dipeptides

76.31% 79.07% 78.98%

PSSM 79.81% 79.48% 79.49%

Functional domain 38.75% 93.82% 92.16%

doi:10.1371/journal.pone.0027567.t002
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achieved 76.90% sensitivity, 80.33% specificity, and 80.22%

accuracy.

Investigation of amino acid dipeptide composition in
splicing factors

Previous studies have exhibited that dipeptide composition-

based methods can yield a better performance as compared to

amino acid composition-based methods [43,57]. In order to

investigate this claim in terms of identifying splicing factors, an

SVM model is trained using amino acid dipeptide composition as

features. Firstly, the composition of all possible amino acid pairs is

calculated in splicing factors and non-splicing proteins, respec-

tively. Thus, each protein sequence can be encoded as a 400-

dimensional vector consisting of the composition scores for 20620

amino acid pairs. Using the resulting 400-dimensional dipeptide

vectors, an SVM model is trained and is evaluated by means of

five-fold cross-validation. The dipeptide composition-based model

achieved 78.62% sensitivity, 78.53% specificity, and 78.53%

accuracy as shown in Table 2. It can be observed that the amino

acid composition-based method yields higher accuracy in

Figure 4. Probability difference of 20620 amino acid pairs between splicing factors and non-splicing proteins. The amino acid pair
with red box indicates an over-representation in splicing factors; on the other hand, green box means an under-representation.
doi:10.1371/journal.pone.0027567.g004
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identifying splicing factors. However, using dipeptide composition

yields a more balanced sensitivity and specificity.

The amino acid dipeptide composition of splicing factors and non-

splicing proteins is further analyzed by means of selecting statistically

significant dipeptides among the 400 amino acid pairs. Figure 4

shows the probability difference of 400 amino acid pairs between

splicing factors and non-splicing proteins. In the 20620 matrix,

amino acid pairs marked in red indicates over-representation in

splicing factors while amino acid pairs marked in blue indicates

under-representation. It can be observed in Figure 4 that DD pairs

are over-represented in splicing factors as well as D residues paired

with E, R, and K. Also, KK pairs are observed to be over-

represented in splicing factors. Furthermore, it can also be observed

that Cysteine (C) residues paired with other resides are under-

represented in splicing factors. The P-value and the probability

difference of each amino acid dipeptide is calculated as discussed

previously. After ranking the dipeptides according to P-value, each

amino acid pair having a P-value,0.05 and a probability difference

.0 is considered as a statistically significant pair. A total of 64 pairs

are selected among the 400 amino acid pairs. Interestingly, it is found

that these observations in Figure 4 coincide with the selected 64

significant pairs based on P-value (File S2).

An SVM model is trained using a 64-dimensional vector

consisting of the composition scores for the selected 64 statistically

significant amino acid dipeptides. The model is evaluated by means

of five-fold cross-validation. As shown in Table 2, the statistically

significant dipeptide-based model achieved 76.31% sensitivity,

79.07% specificity, and 78.98% accuracy. It can be concluded that

the method used for selecting statistically significant dipeptides was

able to select the features that mostly distinguish splicing factors

from non-splicing proteins. Also, the method was able to maintain a

performance similar to that yielded by using all 400 amino acid

composition features. In line with this, it can be assumed that the

dipeptides not selected by the method do not significantly

distinguish splicing factors from non-splicing proteins.

Investigation of evolutionary information
It has been shown in previous works that using evolutionary

information encapsulated in a PSSM profile provides a more

comprehensive information as compared to single sequence features

[37]. In this work, the application of evolutionary information is

investigated in terms of identifying splicing factors by training an

SVM model using a 400-dimensional vector derived from the

PSSM profile of each protein sequence. A PSSM profile is the

probability of the occurrence of each type of amino acid residues at

each position along with insertion/deletion. Hence, PSSM is

regarded as a measure of residue conservation in a given protein

sequence. As shown in Table 2, the PSSM-based model achieved

79.81% sensitivity, 79.48% specificity, and 79.49% accuracy.

Investigation of functional domain information in
splicing factors

In order to analyze functional domain information in splicing

factors, the experimentally verified domains of each splicing

factor in the training data is collected by referring to the

‘‘InterPro’’ field in UniProt. This resulted to a a total of 252

functional domains existing in splicing factors. In order to capture

the representative functional domains in splicing factors,

functional domains which are present in more than 5 splicing

factors are selected as distinguishable domains. This resulted to

15 functional domains as shown in Table 3. It is observed that the

most distinguishable functional domain is the ‘‘Nucleotide-bd a/b

plait’’ with InterPro ID: IPR012677 which exists in 46 splicing

factors. Another distinguishable functional domain is the ‘‘RRM’’

domain with InterPro ID: IPR000504 which exists in 45 splicing

factors. In order to evaluate the performance of using the selected

distinguishable domains, an SVM model is trained using a 15-

dimensional vector consisting of the 15 distinguishable domains

represented by a binary score: 1 if present and 0 otherwise. As

shown in Table 2, the domain-based model achieved 38.75%

sensitivity, 93.82% specificity, and 92.16% accuracy. It can be

observed that using domain information alone is not sufficient to

correctly identify all splicing factors as seen in the low sensitivity

of the prediction model. As discussed previously, only those

functional domains present in more than 5 splicing factors are

considered by the model. This affected the prediction of true

positives due to the fact that many splicing factors are not

annotated with the selected functional domains. This may later

improved given a more comprehensive InterPro annotation on

the dataset. On the other hand, the high specificity yielded by the

model signifies that the selected functional domains are

meaningful since they do not exist in most of the non-splicing

proteins.

Cross-validation performance using hybrid features
The composition-based features are combined with PSSM

and domain information in order to investigate the effects of

incorporating evolutionary information and domain informa-

tion. Three types of hybrid combinations are explored in this

study: the first type refers to the combination of basic sequence

information with evolutionary information; the second type

refers to the combination of basic sequence information with

domain information; and the third type refers to the combina-

tion of basic sequence information with both evolutionary

information and domain information. An SVM model is trained

using each set of hybrid feature combination. As shown in

Table 4, the amino acid composition-based model improved

Table 3. Statistics of InterPro functional annotations in 173
splicing factors.

InterPro ID Description
Number of
splicing factors

IPR012677 Nucleotide-bd a/b plait 46

IPR000504 RRM domain 45

IPR010920 LSM-related domain 11

IPR001163 LSM domain 11

IPR006649 LSM domain euk/arc 10

IPR015943 WD40/YVTN repeat-like domain 10

IPR001680 WD40 repeat 9

IPR011046 WD40 repeat-like domain 9

IPR019782 WD40 repeat 2 9

IPR017986 WD40 repeat domain 9

IPR019781 WD40 repeat sg 9

IPR015880 Znf C2H2-like 7

IPR019775 WD40 repeat CS 7

IPR020472 G-protein beta WD-40 repeat 6

IPR013083 Xnf RING/FYVE/PHD 6

InterPro classifies sequences at superfamily, family and subfamily levels and
annotates the occurrence of functional domains, repeats and important sites.
The annotations which occur in more than five splicing factors are presented
with the information of InterPro ID, description, and number of splicing factors.
doi:10.1371/journal.pone.0027567.t003
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with 77.47% sensitivity, 82.94% specificity, and 81.77%

accuracy when combined with the evolutionary information

from PSSM profiles. Both dipeptide composition and statisti-

cally significant dipeptides-based models also improved with

79.81% sensitivity, 78.46% specificity, and 79.47% accuracy

when combined with evolutionary information. With regard to

incorporating basic features with domain information, the

amino acid composition-based model yields a lower perfor-

mance with 75.15% sensitivity, 82.94% specificity, and 82.04%

accuracy. This is the same for the dipeptide composition-based

model which yields 75.76% sensitivity, 77.34% specificity, and

77.29% accuracy. The statistically significant dipeptides-based

model also yields a lower performance with 75.12% sensitivity,

76.96% specificity, and 76.91% accuracy. Furthermore, incor-

porating both domain and evolutionary information with

statistically significant dipeptides gives the highest performance

with 82.68% sensitivity, 81.78% specificity, and 81.81%

accuracy. It is interesting to find that the three models

converged at the same performance after incorporating both

evolutionary and domain information.

Independent testing
The method is further evaluated by using an independent data

set composed of collected human splicing factors and non-splicing

proteins as discussed previously. The independent data is first

tested on each model trained on single features as shown in

Table 5. It can be observed that the amino acid composition-based

model yields a lower performance with 68.07% sensitivity, 68.17%

specificity, and 68.17% accuracy as compared to the models based

on dipeptide composition and statistically significant dipeptides.

The dipeptide composition-based model performs with 69.61%

sensitivity, 69.64% specificity, and 69.63% accuracy while the

statistically significant dipeptides-based model performs slightly

higher with 69.61% sensitivity, 70.46% specificity, and 70.45%

accuracy. With regard to the use of evolutionary information, the

PSSM-based model achieved the highest performance among all

single feature-based models with 72.69% sensitivity, 72.20%

specificity, and 72.21% accuracy. On the other hand, similar to

its cross-validation performance, the domain-based model per-

formed with a low sensitivity of 21.53%, 93.63% specificity, and

92.79% accuracy.

The independent data is then tested on the models based on

hybrid feature combinations. As presented in Table 6, the amino

acid composition-based model improved in classifying the

independent data with 72.69% sensitivity, 72.16% specificity,

and 72.17% accuracy when combined with the evolutionary

information from PSSM profiles. Both dipeptide composition

and statistically significant dipeptides-based models also im-

proved with 72.69% sensitivity, 72.20% specificity, and 72.21%

accuracy when combined with evolutionary information. With

regard to incorporating basic features with domain information,

the amino acid composition-based model yields a slightly lower

performance on the independent data with 68.07% sensitivity,

68.10% specificity, and 68.10% accuracy. The statistically

significant dipeptides-based model also yields a lower perfor-

mance with 66.53% sensitivity, 66.57% specificity, and 66.57%

accuracy. On the other hand, the dipeptide composition-based

model slightly improved with 68.07% sensitivity, 70.53%

specificity, and 70.50% accuracy. Furthermore, incorporating

both domain and evolutionary information to the basic feature-

based models gives the highest performance with 74.23%

sensitivity, 73.64% specificity, and 73.65% accuracy. Similar to

the cross-validation performance, incorporating both domain

information and evolutionary information on the three basic

models allowed it to converge at the same prediction perfor-

mance.

Conclusion
Although the importance of splicing factors has been indicated

in pre-mRNA splicing and alternatively splicing, in vivo or in vitro

identification of splicing factors are subject to technical limitations.

Table 5. Predictive performance of basic features on an
independent testing data.

Features Sensitivity Specificity Accuracy

Amino acid composition 68.07% 68.17% 68.17%

Dipeptide composition 69.61% 69.64% 69.63%

Statistically significant dipeptides 69.61% 70.46% 70.45%

PSSM 72.69% 72.20% 72.21%

Functional domain 21.53% 93.63% 92.79%

doi:10.1371/journal.pone.0027567.t005

Table 4. Five-fold cross-validation performance of hybrid features.

Hybrid features Sensitivity Specificity Accuracy

Incorporating PSSM with

Amino acid composition 77.47% 82.94% 81.77%

Dipeptide composition 79.81% 78.46% 79.47%

Statistically significant dipeptides 79.81% 78.46% 79.47%

Incorporating Domain information with

Amino acid composition 75.15% 82.25% 82.04%

Dipeptide composition 75.76% 77.34% 77.29%

Statistically significant dipeptides 75.12% 76.96% 76.91%

Incorporating both PSSM and Domain with

Amino acid composition 82.68% 81.77% 81.79%

Dipeptide composition 82.68% 81.77% 81.79%

Statistically significant dipeptides 82.68% 81.78% 81.81%

doi:10.1371/journal.pone.0027567.t004
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Here we propose a computational method to identify splicing

factors on the basis of amino acid sequence of a protein. With

reference to two previously published works, a total of 283

experimentally verified human splicing factors have been obtained

in in this study. After the removal of homologous sequences, the

investigation of amino acid composition reveals that there are

remarkable differences between splicing factors and non-splicing

proteins. The most prominent feature is the abundance of

positively and negatively charged residues in splicing factors.

Another important characteristic is the slight enrichment of G

residues in splicing factors. A five-fold cross-validation evaluation

has demonstrated that using amino acid composition could

provide a promising prediction accuracy. Another basic feature,

amino acid dipeptide composition, is also examined that has

similar predictive performance to amino acid composition.

Moreover, this method has presented that the evolutionary

information could provide a balanced predictive performance,

but the domain information resulted in low sensitivity and high

specificity. However, the incorporation of evolutionary informa-

tion and domain information improve the predictive performance

compared to the models trained with basic features. Additionally,

the independent testing has demonstrated that the constructed

model can identify new splicing factors in human proteome, as

well as in mouse and rat (File S1). Although several approaches

have been proposed to computationally predict RNA-binding

proteins [28,29], these methods, such as the web server RNApred

[28], provide a high sensitivity but a very low specificity using the

collected human independent testing data.

The biological process of RNA splicing machinery has not yet

been fully elucidated, partly because splicing factors are not yet

exhaustively identified. The recent genome-wide sequencing

techniques [16,19,26] provide an opportunity to exhaustively

observe splicing factors in an organism. This work shows that the

in silico identification could be a feasible means of conducting

preliminary analyses as well as significantly reducing the number

of potential targets that require further in vivo or in vitro

confirmation.
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