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Numerical microcanonical ensemble method for calculation on statistical models
with large lattice sizes
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Based on the microcanonical ensemble theory in statistical mechanics, we devise a method that can be used
to enhance the capability of numerical calculation on statistical models with large lattice sizes. In our method,
we take the expectation value of the energy, as defined in quantum mechanics, instead of the eigenvalue as the
energy of a physical system. We show mathematically that the relevant physical quantities obtained in this way
are unchanged in the thermodynamical limit and we apply this method to numerical calculations. In this paper,
we present our numerical results with the one-dimensional spinless fermionic model as a first test of our
method. The numerical calculations are done to a 4096 lattice size using a computer with a speed of about 40
mflops. Our numerical data agree quite well with the exact values. Also, the fluctuation of data is small, in
contrast to that obtained using the quantum Monte Carlo meflsi1.63-182006)06143-7

[. INTRODUCTION In order to overcome the handicaps encountered in nu-
merical calculation, we propose a humerical microcanonical-
In recent decades, physicists have been forced to facensemble method. In our method, expected values of the
more and more complicated physical problems. The methodgnergy, instead of eigenvalues, are used in the calculation of
used to solve these prob|ems also get more and more difﬂnicrocanonical-ensemble theory. The related definition of
cult. Several important theoretical models devised in recengntropy is also slightly modified. In a later section, we will
years, such as thej model=3and the Hubbard mod&! in prove that these definitions of energy and entropy are valid at

research on high-Tc superconductivity and the Andersoihe thermodynamical limit. With our method, we can do cal-

modef” in research on heavy fermions, invite many pe0p|eculations; on a large lattice, for example a 4096-site lattice. In

to attempt a number of different methods to solve them.thIS paper, our numerical calculations are done on a one-

Among all the various approaches to these models, the anglmensmnal spinless fermionic model as a test of our
lytical methods, such as exact solutions or perturbatio ethod. The results that emerge seem quite reasonable. As to

theory, do give us some valuable insight into the physical wo-dimensional models, we are now modifying and testing

. . ) . . ~."“the numerical program. Because the program is quite large,
meanings hidden in complicated systems with nonnegligibl brog prog q 9

I | . . h B hvsici i e need a lot of time to complete two-dimensional testing.
electron-electron interaction strength. But physicists stillyo il present these results at a later time.

confront many unsolved problems in these models. There- g primary requirements for our method to be usable on
fore, approximation methods play another important role inomputers are large disk memory space and fast cpu speed.
recent research into these models. But, as is well known, thegr gne-dimensional models, the disk space needed is sev-
results of approximation methods sometimes lead to doubtfidral hundred megabytes. For two-dimensional models, the
conclusions. It is difficult to confirm which results obtained disk space needed could be from several to 10 gigabytes_ The
from approximation methods are reliable. To prevent thes@omputational time is acceptable for one-dimensional mod-
drawbacks inherent in analytical and approximation methels. For the one-dimensional spinless fermionic model, it
ods, numerical methods are frequently used. The most oftetakes 2—3 cpu days to complete each calculation on a 40-
used numerical skills at present are exact diagonalizatiomflops computer. For the two-dimensional spinless fermi-
methods; for example, the Lanczos algorithamd quantum onic model, or bosonic model, the computational time may
Monte Carlo algorithm&? But it is quite difficult to do cal- be 7—10 cpu days.

culations on large lattices. The largest lattice sizes ever re- The remainder of this paper is organized as follows. In
ported in the literature on the calculation of the HubbardSec. Il, we prove our method mathematically. In Sec. I, we
model are, respectively, 10 and 25@wo-dimensional give a detailed description of how to apply our method to
16X 16 lattice for exact diagonalization methods and quan-numerical calculation. In Sec. IV, we use exact results for the
tum Monte Carlo algorithms. Thus, in exact diagonalizationone-dimensional spinless fermionic model to check our nu-
methods, such a small lattice size cannot give satisfactorgnerical data. In Sec. V, we draw our conclusions.

answers for most physicists. For Monte Carlo simulations,

the lattice size used is Iarggr, but still it does not seem large Il. THEORETICAL BACKGROUND
enough to ensure that the size effect can be safely neglected.
Besides, the well known ‘‘sign” problem in fermionic mod- In statistical mechanics, when we use the microcanonical-

els in quantum Monte Carlo simulations still cannot beensemble method to evaluate physical quantities, we must
treated satisfactorily, and this could affect the low-first derive the relationship between entrdpgnd energyE.
temperature results. There are three equivalent wa{so calculateS: (1) to
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(¢![H|@/)=E, i=1,23...n,

where

E_E Ein—l<‘Pni|H|‘Pi>.

The above lemma may be proved by the induction
method. First, we consider that there are only two orthonor-
mal states, say, and ¢, with expected values of energy
Ea=(@aH|ea) and E,=(pp|H|¢p). Then it is simple to
show algebraically that we can always combipgand ¢,
linearly to form new orthonormal states, and ¢;,, so that

(@alHlea) +(ep|H|ep) =Ea+Ey 2

D(E)

and

Emins<‘P;|H|@é>i <‘PI;|H|QDG>$Emax1 ()]

whereE,;, is the minimum ofE, and E, and E,,, is the

. . maximum ofE, andE,, . The above proof is valid whether or
evaluate the density of stat€y(E); (2) to evaluateP(E), not ¢, and ¢, are eigenstates of the Hamiltonidh. So,

which is defined as the total number of eigenstates Whosvevhen there are onlv two eigenstates. the lemma can be
energies are betwedhandE+ &, § being a small valug(3) nly get ’ .
to evaluateS (E), which is defined as the total number of proved. Now we will prove that if the lemma is true for the

eigenstates whose energies are less Eharhe definitions of numb_er of eigenstates then it also holds for tha+1 case.
; _ Consider that there aren orthonormal statese,, ¢,
entropy in these three cases ar&=k In D(E),

S=k In P(E) andS=k In 3(E), respectively. At the ther- ¢3....,¢,, Whose expected energy values are all equivalent

modynamical limit, these three definitions are equivalent.t0 E. Then, when a new orthonormal state, sgy., with

Nevertheless, definitiof8) is more often used because it is the expected energy valug,,1=(¢n;1|H|¢ni1), is in-

easier to evaluats (E) than eitherP(E) or D(E). But in cluded in thesen_lorthonormal states, the new average en-

practiceX, (E) can be calculated only in very few statistical ergy, defined a&’, will be

models, which means that the microcanonical-ensemble — nE+E

method is rarely used. o — L (4)
The difficulty encountered in evaluatig(E) is that we n+1

must calculate all the eigenvalues of a complete manyas shown in the proof for Eqg2) and(3), we can combine

particle system, but the nymber of eige_nvalues is too large t®, and¢, . , linearly to form new orthonormal states, and
be treated by any analytical or numerical methods. For ex: (1) oy hat (@}[H| ,>:E and (@ ,|H|e @)
ample, there are about foeigenstates in a 64-site lattice. fEl TE_E Th(Pl ol Gy Pkl Pnit
o RS . = =E,,;+E—E'. Then, we combine =/, and ¢, linearly to
So, our method is aimed at simplifying the way in which form new orthonormal statess @. and o so that
2 (E) is evaluated. Since the calculation of eigenvalues is™, = @) S‘fz”)“ #2 =0 —
always difficult, in our method we do not calculate eigenval-{¥2/H|¢2)=E’ and (¢?1|H|@i71)=Eq 1 +2(E~E).
ues directly. Rather, we hope that the expectation value d\“/ the, same way, we obtain final orthonormal staieis
the energyE=(y|H|¢) may be used to definB(E). Inthe  ¢2, ¢3,---,¢n; ¢, such that
following paragraphs, we will show that it is valid to do this ) =
at the thermodynamical limit. (¢f|H[¢{)=E', i=123...n (5a)
Now we give our proof. In Fig. 1 we define

FIG. 1. Density of states as a function of energy.

and

JEED(E)dE (1IH| @) =Eqs 1 +N(E—E'). (5b)
IECD(E)dE =Ep, (1) Using Eq.(4), we can rewrite Eq(5b) as
0

. . (o 1H oM ) =E". (50
whereD (E) is the density of states. The scheme of our proof

is first to show that the maximum number of states obeyingsoéth‘?dlemtrﬂa isbprovlen. o al ‘ ‘i
the condition (¢|H|¢)=E, is [5°D(E)dE, and then to esides the anove femma, We WIT a'so make use ot e

E e fact that the density of stat&(E) is an increasing function
prove thatE,~E. andIn [*D(E)dE~In [,*D(E)dE. for almost all systems. The exceptional cases are finite-band
In our proof, we will make use of the following lemma: systems whosd®(E) may possess a maximum point. But

Lemmalf ¢;, ¢, ¢3,...,¢n, are orthonormal eigenstates even in these cases, the behavior(fE) whenD(E) is a
of the HamiltoniarH, then we can combine these eigenstatesiecreasing function of is similar to (like a mirror image
linearly to construct new orthonormal states;, ¢, that of D(E) when it is an increasing function &. So, we
®3,...,¢, that obey the condition can simply consideD(E) as an increasing function d.
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With this property and the above lemma, we can easily prove g,

the following statement: The “maximum” number of states . (e—Ep)D(e)de= (BDNT1L Ep2(Ep)
that obey the conditiofig|H|¢)=Ej, is [;°D(E)dE, where b
Ey, andE, are as defined in Eql), because the definition of (3/2N
entropy isS(E)=k In f§D(E’)dE’. The key point to be + GINT1 Ec—Ep|2(Eo).
stressed is that iE. and E,, as defined above, are close
enough so that (8d)
If Eq. (8¢) plus Eq.(8d) is equal to zero, then the following
|Ec—Ep| equation,
v<l (6a) £
¢ Jo°eD(e)de
T =Ep, 9
and JoD(e)de °
is correct, which meang,, is the average energy of all the
In[(fECD(E)d E)/(f(E)bD(E)d E)] eigenstates whose eigenvalues are less EhaBecause Eq.
< <1, 6b .
in(JED(E)dE) (6b)  (80) plus Eq.(8d) equal zero, we get
(3/2N+1 E,
then these two definiions of entropy, S ¢= =0l T (32N =Ept (3/2N° (10

=k In [5D(E)dE and S,=k In [§*D(E)dE, are equiva-
lent at the thermodynamical limit. That is, we can tdke
rather thark as the definition of energy and take the maxi- (

Then,

mum number of states, complying with the condition 3 (E¢) = Canl (V/h®)(2m)¥2NER2N
(¢|H|¢)=E,, denoted a& ' (E,), to define the new entropy
to beS,=k In 3'(E). As shown in the above paragraphs, e
S, =S . Then, it is also reasonable to use the newly defined — e3(Ep). (12)
E, andS;, to evaluate any statistical quantities. Nevertheless,
we must be aware that in most physical systems we are ndthat is, the maximum number of states complying with the
able to evaluate the maximum value of the number of stategondition{e|H|¢)=E, is eX(Ey), so that the entropy
obeying the conditiof¢|H|¢)=E, . The value of the num-
ber of states we can actually calculate is always smaller tharse=KINX(Ec) =k In[€Z (Ep)]=k+kInX(E,) ~kInX (Ep)
its maximum valu&,’(E,). But due to the logarithmic func- =s,. (12)
tion in the definition of the entropy, we know that as long as
the calculated value of the number of states is not muclin the above example, the primary reason that our definition
smaller than3'(E,), the calculated statistical properties of energy and entropy is correct is tH&(E)=EPN; here, 3
should still be correct. may be a constant or a function &f andN is the number of

To give a clear illustration of the relationship between particles, which is always a very large number. Because en-
Ep. E., S(E,.), and3(E,), we use the classical ideal g&s tropy is an extensive thermodynamical quantjyhas a fi-
as an example, because the closed for® @) is known. It nite value and3/N must tend to zero wheN is very large.

1+

(312N
(3/2N )

is So we can always find a macroscopically small but micro-
scopically large valué such that
3 (E)=Can[(V/h®)(2mE)¥N, (7) B
E<1, (139

whereCjy is a constantmn is the mass of one gas molecule,

V is the volume, andN is the number of gas molecules. The where the ground-state energy is set equal to zero and
density of states is

(E+ 8)PNs>EAN, (13b)
D(E)=¢2(E)/dE=(3N/2E)X(E) (8a) So,
and S (E+68)>3(E), (143
_ c s . D(E+8)>D(E). (14b)
jo eD(e)de= Jo € — - de= (BI)NT1 EX(E), It is just this property that make&, andE,, as defined in

(8b) Eq. (9), very close, and makes(E.) not much larger than
3 (Ep). The reason is that we can approximate &j.as

E -1 Ed2(Ec) —2(Ep) 1+ Ep2(Ep)
fo b(e—Eb)D(e)de=mEbE(Eb), (80 E(Ei) b S, . (15)
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It can be seen that i&(E.)>3(E,), the above equation
cannot be satisfied. In quantum systems 3ig&) may be of

a more complicated form, such &4E)«[f(E)]?N, where
f(E) is a function ofE, while the fact thaf (E) increases
very fast withE is similar to that in the classical ideal gas.
So, the proof in quantum systems follows straightforwardly.

Ill. ALGORITHM

In the numerical calculation, the primary scheme of our
method is to calculate exact eigenvalues and eigenvectors
when the lattice size is small, for example, a fermionic
model with eight lattice sites. At this step, the periodic
boundary condition is not suitable and the boundary condi-
tion we choose is that particles cannot hop outside the lattice.
The number of particles in the lattice can be from 0 to 8. In
each case, eigenstates and eigenvalues must all be calculated. _
Besides, the hopping and interacting, matrix elements must i
also be calculated in each case. These are, respectively,
<‘Pn+l,E/|Ci+|(Pn,E> and<‘Pn,E’|Ci+Ci|‘Pn,E>’ whereC; is an
annihilation operator an€;" is a creation operatoi, de-
notes the lattice point near the boundary, arid the number

Probability

FIG. 2. Probability distribution function as a function of number
of particles.n; is the most probable number of particles.

of particles.| ¢, g) is the eigenstate whose energyEsand tions and sum the average funqtlon value in each small sec-
: tion to obtain the final integration value. Collecting states

number of particles is. . ) . ;

Then, the task is to merge two smaller lattices into anto bundles certainly introduces a mean-field effect, but
larger o,ne for example, merging two 8-site lattices into asuch an effect is very much like that introduced in numerical
16-site lattice. In this step, the situation in which the final'Nt€gration. So the number of bundles of states used in our
number of particles in a newly merged larger lattice is com—methOd controls the degree_ of accuracy that we can acquire.
posed of different combinations of number of particles in theThe numerical data shown in later sections are obtained with

umbers of bundles of states at 65—-80, and the energy de-

smaller lattices before merging must be taken into accounf!" ! o
For example, if the number of particles in a 16-site lattice jsviation OJ our data from the exact value is about 2%, just as
10, then the number of particles in those two 8-site lattice$*Pected. ) .

One point we want to stress is that, owing to the use of

may be 2 and 8 or 3 and 7 or 4 and 6 or 5 and 5. Also, th dl ¢ h ber of | di
interaction between these newly constructed states must ndies of states, the number o Staldf) eva uated in our
pumerical algorithm is not the same as théE.) in the

considered. For example, due to the hopping terms in th f of th di ion. N hel E) i

Hamiltonian, the states composed of 2 and 8 particles in th roof of t Ie pri\cellng sectlﬁn. evgrt efess,ﬁjl( ) :cs a

two smaller lattices before merging may interact with thos Imiting value. As long as the number of bundles of states
ﬂ:lsed is increased, the(E), which is calculated in our nu-

states composed of 3 and 7 particles in the two smaller la . : L
tices. Similarly, through interacting terms in the Hamil- mencgl method, will get closer and closer to the limiting
' lue3 (E,).

tonian, the new states, whose numbers of particles in the tw}f)aI his alaorith h bl h be faced i
smaller lattices are 3 and 7, will interact with each other. So,, '" this algorithm, another problem that must be Taced Is

at this step we also need to rediagonalize the new Hamilt—)hat' in the process Olf( mergllrllghtw?] sm_aller Iaétl_ces Into a
tonian matrices that result from the merging of lattices. 'ggeér one, we must know all the opping an _mteractlng
matrix elements of those two smaller lattices, which are cal-

The subsequent work in the numerical calculation is to lated for all £ diff b » icles in th
use the hopping and interacting matrix elements to repeat thg" ated for all cases of different numbers of particles in the

above procedures to merge lattices until the lattice is larg ttlce's, befpre merging. For_ example, when we merge two
enough. When merging proceeds, the total number of stat 6-site lattices into a 512-site lattice, we must calculate all
increases very fast, far beyond that which can be treated b 586 hppp:ng_ and |r_1tr(1e_ractlﬂg hmar;trlx ele_rr:ents ofbthose two
computer. Then we begin to collect those states with nearb site lattices within which the particle number ranges
energy as a bundle of states, and we use such bundles pm O to 256. This is beyond the capability of the computer

states as quasistates to continue the process of merging Irﬁll the pirlesent time, so we use the root-mean-square
tices. So, at each step of our numerical calculation the nor eviation, as defined in statistical mechanics, as a judgment
of bundles of stategy|¢), and the expected energy values of of how to choose a cutoff value to reduce the range of par-
bundles of statesE=(g|H|¢)/(¢|¢), must be evaluated. ticle numbers needed. See Fig. 2, in which
Certainly,> (E) are also known. o

Because of our use of bundles of states, people may won- (n?)—(ny2~n;, (16)
der if our numerical algorithm is a mean-field method. We o
must stress that the use of bundles of states is due to thwheren; is the mean particle number. So, in the numerical
finite capability of computers. The situation is similar to thatalgorithm, we calculate the matrix elements with a particle
when we do numerical integration, where we can only dividenumber ofn; = Jni/2. In our calculationn; is set to the value
the integration range into finite, but not infinite, small sec-which is decided in the final step of the merging.
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Now we give a more detailed discussion of how to calcu-racy. The computational time grows as the fourth power of
late the energy of each bundle of states and the maximurthe dimension of the matrix. The dimension of the matrix
value of 3 (E) as demanded in the proof in the precedingthat we use in the present work is about 100. If, in the future,
section. The procedure is simply to make the variation the dimension of the matrix can be extended to several hun-

dreds, the accuracy will be much better.
(¢|H| @) In our method, because the number of bundles of states
5( )= : (17)  and the dimension of the matrix used in evaluating the en-
ergy must be finite, some truncation effect exists. So, the
two-particle correlation function cannot be calculated at too
long a distance. In the future, when the speed of computers
increases, the two-particle correlation function can be calcu-
@ted at a longer distance also. In the one-dimensional spin-
ess fermionic model, we find that the two-particle correla-
tion function can be calculated up to about 20 lattice points
apart.

(ele)

where(¢|¢) need not be 1. So, the mathematical manipula
tion is identical to that of eigenvalue problems. The eigen
value problem directly implies that the evaluag¢E) is a
maximum value in our numerical scheme. The reason is th
if we sum_the lowesh eigenvalues to evaluate their average
energy asE,,, then the maximum number of randomly cho-
sen eigenstates with their average energy equivalei,to
must ben.

As we have mentioned above in the second paragraph of IV. COMPARISON WITH EXACT RESULTS

this section, at each step of the merging lattice, we must also 14 check the reliability of our numerical method, we cal-

rediagonalize the new Hamiltonian matrix. But, at later stepgyjate the statistical properties of the exactly solvable, one-
of the process of merging lattices, the nofalp) of bundles  yimensional, spinless fermionic model whose Hamiltonian is
of states increases very fast with increasing energy of the

bundles of states. So, in order to evaluate the energies of .

bundles of states as accurately as possible, we must construct H= ‘._;71 tCi Gy, (18)

the new Hamiltonian suitably and evaluate the energies of I

bundles of states. For example, consider the merging of twahere the hopping parameteis set to be 1 eVC;" andC,;
32-site lattices to a 64-site lattice. We assume that the numare fermionic operators. The exact values of the specific heat
ber of bundles of states to be used is 100; then there will band the density correlation functiofsgn,), which are used

10 000 new states formed each time two smaller 32-site latas a check of our numerical results, are obtained from the
tices, which each have 100 bundles of states, are connectednonical-ensemble calculations with lattice size equivalent
to a 64-site lattice. Different combinations of numbers ofto 1C.

particles in the two smaller 32-site lattices may correspond to Our numerical data are described below. In these data the
the same final number of particles in the 64-site lattice. Solattice size is 4096.

for a given final number of particles, say 28, in the 64-site (1) In Figs. 3 and 4, the low-temperature data of our nu-
lattice, there may be as many as’ kew states formed in merical calculation are shown and compared with exact val-
total. The Hamiltonian of these new states needs to be diagates. The procedure that we use to get the low-temperature
nalized to evaluate new eigenstates. But it takes a lot oproperties of this model is to gradually discard the higher
computer time to diagonalize a matrix with dimensions asenergy states as the merging of lattices proceeds. In Figs.
large as 18 Furthermore, the subsequent work in evaluating3(a) and 3b), the data are obtained with a number of par-
the new hopping and interaction matrix elements consumetcles equivalent to 1024. Figurés shows the specific heat
even more cpu time. So, we need to make some approximaersus temperature behavior. The numerical scheme, which
tions. We rearrange and collect these newly constructéd 1@ve use to evaluate the specific heat and temperature, is that
states to about 16Gstates. In these 18Gtates, we arrange first we use polynominals to fit the energy and entropy data
the states with nearby energies, which are meant to be thend then take first and second derivatives of these polynomi-
diagonal terms of the Hamiltonian matrix, so that they havenals to evaluate the temperature and specific heat. Figure
the same norms. The number of these states, which have tlB&) shows the behavior of the ground-state density correla-
same norms, is chosen to be about 100. We only diagonalizéon (ngn,). Because the density correlation does not show
the Hamiltonian matrix of these 100 states at each stagapparent change at low temperatures, we only show the
That is, we neglect the effect of the interaction of these 10@round-state density correlation data. In Figi@3 the
states with other states whose energies are beyond some cgtound-state energy we get4sl.77053 eV per particle and

off value. After each stage of diagonalization calculation, wethe exact value is-1.80044 eV per particle.

collect those states with eigenvalues near the lowest eigen- In Figs. 4a) and 4b), the number of particles is 2048.
value in that stage as the output to form the final bundles oT he ground-state energy we get+#4.25 291 eV per particle
states. Those states that are not chosen as the output of eaxid the exact value is1.27 306 eV per particle.
diagonalization stage will be put into the next stage of cal- From these results we know that the energy deviation of
culation with other states whose energies are higher. Ther@ur numerical data from exact values is 1.5—2 %; that is just
fore, our numerical procedures for evaluating energies ands expected, because the number of bundles of states used in
norms of bundles of states are separated into many stagebg calculation is about 85. In Fig(&, the deviation of data
and these stages are followed one by one over the wholes larger than that in Fig.(8) because the slope of the line in
energy range. So, besides the final number of bundles d¥ig. 4a) is only one-third that in Fig. @. Such a small
states that we use, the dimension of the matrix used in eactlope means that the numerical calculation is about at the
stage of the numerical diagonalization constrains the accuoundary of reasonable accuracy that we can acquire because
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the hopping parameter is 1 eV and the particle number is
2048 and the number of bundles of states is about 85, which
all constrain the accuracy in Fig(a}. Actually, when we
calculate the data of Fig.(d we focus on lower-energy
states than when we calculate the data of Fig).3urther-
more, owing to the use of bundles of states, the norms of
higher-energy states are larger than those of lower-energy
states. The mean-field effect introduced is also larger in
higher-energy states. Therefore, the lower-energy states can
be evaluated more accurately. But the uncertainty principle
tells us that the acceptable energy uncertainty is larger in
higher-energy states, which means that the calculated high-
temperature statistical properties may be more stable. So, it
is reasonable to expect the larger data deviation to appear at
the intermediate temperature range between about 200 and
300 K. The low-temperature data are nevertheless more
stable. The first five data points in Figa# change slightly,
whether we use second-order or third-order polynominals to
fit the corresponding energy and entropy data.

(2) Figures 5 and 6 show the high-temperature behaviors.
The C,/k-versusT figures show that larger deviations from
exact values should result from the numerical differentiation
scheme because, as we have mentioned above, when we
evaluateC, data we must take second derivatives of the
polynominals that are used to fit the energy and entropy data.
The second derivatives are sensitive and prone to introducing
larger deviations. Besides, the use of polynominals does not
seem the best choice because some part of the data may be
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FIG. 7. () Ground-state density correlatidngn,) as a function
of lattice sizeL when our numerical steps of the merging lattice

. . .1 . —
fitted well by lower-order polynominals but another part of Proceed. The partli:Ie density) is 3. The triangles are for=1,
the data may need higher-order polynominals to obtain &€ ¢rosses arﬁ f“’r’f'land the squares are for-3. (b) The same
good fit. The reason we still use polynominals is that poly-2S (@ except tha{n)=3.

nomingls are sensitivg e_:nough for our data. .. of C,-versusT data with the slope at about 80% that of the
In Fig. 5(a), the deviation of data is larger than that in Fig. gyact values. So, it seems that our method at least qualita-
6(a). The reason is that the slope of the curve in Fi@ 5 tjely shows the correct physical properties even when nu-

changes quickly at about 2000 K, which tends to cause thgerical results obtained from our method are quantitatively
wavy behavior of fitted polynominals. not so satisfactory.

(3) In Figs. 1) and 7b), the data show the changes of  gecayse the proof given in Sec. Il is correct for any di-

ground-state density correlation functions as a function ofnension. our method can also be applied to two- and three-

lattice sizeL, which increases when the numerical steps Ofgimensjonal models. Our plan for future work is to use this
merging lattices proceed. These two figures are used 10 illugsymerical method on two-dimensional models. But, in order
trate that our method really can reflect the effect of lattice;y attain the same level of accuracy as in the one-

size when the lattice gets larger and larger. dimensional results, the number of bundles of states used in
the calculation on two-dimensional models must be larger.
This means that the computational time needed is also much
. . . . . _longer. So, for two-dimensional models, the numerical cal-
Through the comparisons in one-dimensional data 9V jation is not easy. Anyway, to our approximation, once the

in the _precedlng section, it seems that the outcomes of OLgpeed of the computer is 10—20 times faster, the accuracy of
numerical method agree well with exact values. This is POWLur numerical calculation for two-dimensional models

erful evidence that our numerical algorithm is trustworthy.Should be satisfactory. So, we think that in the future our

. . S 189 ethod should be a trustworthy and not too difficult method
enough to suggest that the size effect is not of practical im

) . ; . . Jor tackling one- and two-dimensional models.
portance. Besides, in all our numerical calculations, we fin
that the results obtained from our method are stable. For
example, when evaluating the data of Figp)4if we make a
cruder calculation, that is, if we use the same number of We would like to thank the National Science Council of
bundles of states to calculate the thermal properties at R.O.C. for financial support through Grants Nos. NSC 84-
wider range of temperatures, we still get the linear behavio112-M-009-902-PH and NSC 85-2112-M-009-029-PH.

FIG. 6. Same as Fig. 5 except that particle dengity= 3.

V. CONCLUSIONS AND REMARKS

ACKNOWLEDGMENTS




13642 JONE-ZEN WANG AND TZONG-JER YANG 54

M. Ogata, M. Luchini, S. Sorella, and F. F. Assaad, Phys. Rev. (1993.

Lett. 66, 2388(1991).

2Y. C. Chen, A. Moreo, F. Ortolani, E. Dagotto, and T. K. Lee,

Phys. Rev. B50, 655 (1994).

SE. Dagotto, Rev. Mod. Phy$6, 763 (1994).

4E. Dagotto, F. Ortolani, and D. Scalapino, Phys. Re¥633183
(1992.

5J. A. Riera and E. Dagotto, Phys. Rev5B, 452 (1994).

®R. M. Fye, Phys. Rev. B1, 2490(1990.

7Zs. Gulacsi, R. Strack, and D. Vollhardt, Phys. RevB 8594

8J. K. Cullum and R. A. WilloughbyLanczos Algorithms for
Large Symmetric Eigenvalue Computatiofiirkhauser, Bos-
ton, 19835.

9E. Manousakis, Rev. Mod. Phy83, 1 (1991).

10k, Huang, Statistical Mechanigs1st ed.(Wiley, New York,
1963; 2nd ed.(Wiley, New York, 1987. The notations that we
use are slightly different, with'—P andw—D.

11K, Huang, Statistical Mechanic§Ref. 10, 1st ed, Egs. (4.54
and(7.9).



