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Based on the microcanonical ensemble theory in statistical mechanics, we devise a method that can be used
to enhance the capability of numerical calculation on statistical models with large lattice sizes. In our method,
we take the expectation value of the energy, as defined in quantum mechanics, instead of the eigenvalue as the
energy of a physical system. We show mathematically that the relevant physical quantities obtained in this way
are unchanged in the thermodynamical limit and we apply this method to numerical calculations. In this paper,
we present our numerical results with the one-dimensional spinless fermionic model as a first test of our
method. The numerical calculations are done to a 4096 lattice size using a computer with a speed of about 40
mflops. Our numerical data agree quite well with the exact values. Also, the fluctuation of data is small, in
contrast to that obtained using the quantum Monte Carlo method.@S0163-1829~96!06143-7#

I. INTRODUCTION

In recent decades, physicists have been forced to face
more and more complicated physical problems. The methods
used to solve these problems also get more and more diffi-
cult. Several important theoretical models devised in recent
years, such as thet- j model1–3 and the Hubbard model4,5 in
research on high-Tc superconductivity and the Anderson
model6,7 in research on heavy fermions, invite many people
to attempt a number of different methods to solve them.
Among all the various approaches to these models, the ana-
lytical methods, such as exact solutions or perturbation
theory, do give us some valuable insight into the physical
meanings hidden in complicated systems with nonnegligible
electron-electron interaction strength. But physicists still
confront many unsolved problems in these models. There-
fore, approximation methods play another important role in
recent research into these models. But, as is well known, the
results of approximation methods sometimes lead to doubtful
conclusions. It is difficult to confirm which results obtained
from approximation methods are reliable. To prevent these
drawbacks inherent in analytical and approximation meth-
ods, numerical methods are frequently used. The most often
used numerical skills at present are exact diagonalization
methods; for example, the Lanczos algorithm8 and quantum
Monte Carlo algorithms.3,9 But it is quite difficult to do cal-
culations on large lattices. The largest lattice sizes ever re-
ported in the literature on the calculation of the Hubbard
model are, respectively, 10 and 256~two-dimensional
16316 lattice! for exact diagonalization methods and quan-
tum Monte Carlo algorithms. Thus, in exact diagonalization
methods, such a small lattice size cannot give satisfactory
answers for most physicists. For Monte Carlo simulations,
the lattice size used is larger, but still it does not seem large
enough to ensure that the size effect can be safely neglected.
Besides, the well known ‘‘sign’’ problem in fermionic mod-
els in quantum Monte Carlo simulations still cannot be
treated satisfactorily, and this could affect the low-
temperature results.

In order to overcome the handicaps encountered in nu-
merical calculation, we propose a numerical microcanonical-
ensemble method. In our method, expected values of the
energy, instead of eigenvalues, are used in the calculation of
microcanonical-ensemble theory. The related definition of
entropy is also slightly modified. In a later section, we will
prove that these definitions of energy and entropy are valid at
the thermodynamical limit. With our method, we can do cal-
culations on a large lattice, for example a 4096-site lattice. In
this paper, our numerical calculations are done on a one-
dimensional spinless fermionic model as a test of our
method. The results that emerge seem quite reasonable. As to
two-dimensional models, we are now modifying and testing
the numerical program. Because the program is quite large,
we need a lot of time to complete two-dimensional testing.
We will present these results at a later time.

The primary requirements for our method to be usable on
computers are large disk memory space and fast cpu speed.
For one-dimensional models, the disk space needed is sev-
eral hundred megabytes. For two-dimensional models, the
disk space needed could be from several to 10 gigabytes. The
computational time is acceptable for one-dimensional mod-
els. For the one-dimensional spinless fermionic model, it
takes 2–3 cpu days to complete each calculation on a 40-
mflops computer. For the two-dimensional spinless fermi-
onic model, or bosonic model, the computational time may
be 7–10 cpu days.

The remainder of this paper is organized as follows. In
Sec. II, we prove our method mathematically. In Sec. III, we
give a detailed description of how to apply our method to
numerical calculation. In Sec. IV, we use exact results for the
one-dimensional spinless fermionic model to check our nu-
merical data. In Sec. V, we draw our conclusions.

II. THEORETICAL BACKGROUND

In statistical mechanics, when we use the microcanonical-
ensemble method to evaluate physical quantities, we must
first derive the relationship between entropyS and energyE.
There are three equivalent ways10 to calculateS: ~1! to
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evaluate the density of statesD(E); ~2! to evaluateP(E),
which is defined as the total number of eigenstates whose
energies are betweenE andE1d, d being a small value;~3!
to evaluateS(E), which is defined as the total number of
eigenstates whose energies are less thanE. The definitions of
entropy in these three cases areS[k ln D(E),
S[k ln P(E) andS[k ln S(E), respectively. At the ther-
modynamical limit, these three definitions are equivalent.
Nevertheless, definition~3! is more often used because it is
easier to evaluateS(E) than eitherP(E) or D(E). But in
practiceS(E) can be calculated only in very few statistical
models, which means that the microcanonical-ensemble
method is rarely used.

The difficulty encountered in evaluatingS(E) is that we
must calculate all the eigenvalues of a complete many-
particle system, but the number of eigenvalues is too large to
be treated by any analytical or numerical methods. For ex-
ample, there are about 1018 eigenstates in a 64-site lattice.
So, our method is aimed at simplifying the way in which
S(E) is evaluated. Since the calculation of eigenvalues is
always difficult, in our method we do not calculate eigenval-
ues directly. Rather, we hope that the expectation value of
the energyE5^cuHuc& may be used to defineS(E). In the
following paragraphs, we will show that it is valid to do this
at the thermodynamical limit.

Now we give our proof. In Fig. 1 we define

*0
EcED~E!dE

*0
EcD~E!dE

[Eb , ~1!

whereD(E) is the density of states. The scheme of our proof
is first to show that the maximum number of states obeying
the condition ^wuHuw&5Eb is *0

EcD(E)dE, and then to

prove thatEb'Ec and ln *0
EbD(E)dE' ln *0

EcD(E)dE.
In our proof, we will make use of the following lemma:
Lemma: If w1, w2, w3 ,...,wn , are orthonormal eigenstates

of the HamiltonianH, then we can combine these eigenstates
linearly to construct new orthonormal statesw18 , w28 ,
w38 ,...,wn8 that obey the condition

^w i8uHuw i8&5Ē, i51,2,3,...,n,

where

Ē[
( i51
n ^w i uHuw i&

n
.

The above lemma may be proved by the induction
method. First, we consider that there are only two orthonor-
mal states, saywa and wb with expected values of energy
Ea5^wauHuwa& and Eb5^wbuHuwb&. Then it is simple to
show algebraically that we can always combinewa andwb

linearly to form new orthonormal stateswa8 andwb8 , so that

^wa8uHuwa8&1^wb8uHuwb8&5Ea1Eb ~2!

and

Emin<^wa8uHuwa8&, ^wb8uHuwb8&<Emax, ~3!

whereEmin is the minimum ofEa andEb andEmax is the
maximum ofEa andEb . The above proof is valid whether or
not wa and wb are eigenstates of the HamiltonianH. So,
when there are only two eigenstates, the lemma can be
proved. Now we will prove that if the lemma is true for the
number of eigenstatesn, then it also holds for then11 case.
Consider that there aren orthonormal statesw1, w2,
w3 ,...,wn , whose expected energy values are all equivalent
to Ē. Then, when a new orthonormal state, saywn11, with
the expected energy valueEn115^wn11uHuwn11&, is in-
cluded in thesen orthonormal states, the new average en-
ergy, defined asĒ8, will be

Ē85
nĒ1En11

n11
. ~4!

As shown in the proof for Eqs.~2! and~3!, we can combine
w1 andwn11 linearly to form new orthonormal statesw18 and
w n11

(1) so that ^w18uHuw18&5Ē8 and ^w n11
(1) uHuw n11

(1) &
5En111Ē2Ē8. Then, we combinew n11

(1) andw2 linearly to
form new orthonormal statesw n11

(2) and w28 so that
^w28uHuw28&5Ē8 and ^w n11

(2) uHuw n11
(2) &5En1112(Ē2Ē8).

In the same way, we obtain final orthonormal statesw18 ,
w28 , w38 ,...,wn8 , w n11

(n) such that

^w i8uHuw i8&5Ē8, i51,2,3,...,n ~5a!

and

^wn11
~n! uHuwn11

~n! &5En111n~Ē2Ē8!. ~5b!

Using Eq.~4!, we can rewrite Eq.~5b! as

^wn11
~n! uHuwn11

~n! &5Ē8. ~5c!

So, the lemma is proven.
Besides the above lemma, we will also make use of the

fact that the density of statesD(E) is an increasing function
for almost all systems. The exceptional cases are finite-band
systems whoseD(E) may possess a maximum point. But
even in these cases, the behavior ofD(E) whenD(E) is a
decreasing function ofE is similar to ~like a mirror image!
that ofD(E) when it is an increasing function ofE. So, we
can simply considerD(E) as an increasing function ofE.

FIG. 1. Density of states as a function of energy.
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With this property and the above lemma, we can easily prove
the following statement: The ‘‘maximum’’ number of states
that obey the condition̂wuHuw&5Eb is *0

EcD(E)dE, where
Eb andEc are as defined in Eq.~1!, because the definition of
entropy isS(E)[k ln * 0

ED(E8)dE8. The key point to be
stressed is that ifEc and Eb , as defined above, are close
enough so that

uEc2Ebu
uEcu

!1 ~6a!

and

0!
ln@~*0

EcD~E!dE!/~*0
EbD~E!dE!#

ln~*0
EcD~E!dE!

!1, ~6b!

then these two definitions of entropy, Sc
[k ln *0

EcD(E)dE andSb[k ln *0
EbD(E)dE, are equiva-

lent at the thermodynamical limit. That is, we can takeEb
rather thanEc as the definition of energy and take the maxi-
mum number of states complying with the condition
^wuHuw&5Eb , denoted asS8(Eb), to define the new entropy
to beSb8[k ln S8(Eb). As shown in the above paragraphs,
Sb85Sc . Then, it is also reasonable to use the newly defined
Eb andSb8 to evaluate any statistical quantities. Nevertheless,
we must be aware that in most physical systems we are not
able to evaluate the maximum value of the number of states
obeying the condition̂wuHuw&5Eb . The value of the num-
ber of states we can actually calculate is always smaller than
its maximum valueS8(Eb). But due to the logarithmic func-
tion in the definition of the entropy, we know that as long as
the calculated value of the number of states is not much
smaller thanS8(Eb), the calculated statistical properties
should still be correct.

To give a clear illustration of the relationship between
Eb , Ec , S(Ec), andS(Eb), we use the classical ideal gas10

as an example, because the closed form ofS(E) is known. It
is

S~E!5C3N@~V/h3!~2mE!3/2#N, ~7!

whereC3N is a constant,m is the mass of one gas molecule,
V is the volume, andN is the number of gas molecules. The
density of states is

D~E!5]S~E!/]E5~3N/2E!S~E! ~8a!

and

E
0

E

eD~e!de5E
0

E

e
]S~e!

]e
de5

~3/2!N

~3/2!N11
ES~E!,

~8b!

E
0

Eb
~e2Eb!D~e!de5

21

~3/2!N11
EbS~Eb!, ~8c!

E
Eb

Ec
~e2Eb!D~e!de5

1

~3/2!N11
EbS~Eb!

1S ~3/2!N

~3/2!N11
Ec2EbDS~Ec!.

~8d!

If Eq. ~8c! plus Eq.~8d! is equal to zero, then the following
equation,

*0
EceD~e!de

*0
EcD~e!de

5Eb , ~9!

is correct, which meansEb is the average energy of all the
eigenstates whose eigenvalues are less thanEc . Because Eq.
~8c! plus Eq.~8d! equal zero, we get

Ec5EbS ~3/2!N11

~3/2!N D5Eb1
Eb

~3/2!N
. ~10!

Then,

S~Ec!5C3N@~V/h3!~2m!3/2#NEb
~3/2!NS 11

1

~3/2!ND ~3/2!N

→
N→`

eS~Eb!. ~11!

That is, the maximum number of states complying with the
condition ^wuHuw&5Eb is eS(Eb), so that the entropy

Sc[klnS~Ec!5k ln@eS~Eb!#5k1klnS~Eb!'klnS~Eb!

[Sb . ~12!

In the above example, the primary reason that our definition
of energy and entropy is correct is thatS(E)}EbN; here,b
may be a constant or a function ofE, andN is the number of
particles, which is always a very large number. Because en-
tropy is an extensive thermodynamical quantity,b has a fi-
nite value andb/N must tend to zero whenN is very large.
So we can always find a macroscopically small but micro-
scopically large valued such that

udu
uEu

!1, ~13a!

where the ground-state energy is set equal to zero and

~E1d!bN@EbN. ~13b!

So,

S~E1d!@S~E!, ~14a!

D~E1d!@D~E!. ~14b!

It is just this property that makesEb andEc , as defined in
Eq. ~9!, very close, and makesS(Ec) not much larger than
S(Eb). The reason is that we can approximate Eq.~9! as

Ec@S~Ec!2S~Eb!#1EbS~Eb!

S~Ec!
>Eb . ~15!
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It can be seen that ifS(Ec)@S(Eb), the above equation
cannot be satisfied. In quantum systems, theS(E) may be of
a more complicated form, such asS(E)}[ f (E)] bN, where
f (E) is a function ofE, while the fact thatS(E) increases
very fast withE is similar to that in the classical ideal gas.
So, the proof in quantum systems follows straightforwardly.

III. ALGORITHM

In the numerical calculation, the primary scheme of our
method is to calculate exact eigenvalues and eigenvectors
when the lattice size is small, for example, a fermionic
model with eight lattice sites. At this step, the periodic
boundary condition is not suitable and the boundary condi-
tion we choose is that particles cannot hop outside the lattice.
The number of particles in the lattice can be from 0 to 8. In
each case, eigenstates and eigenvalues must all be calculated.
Besides, the hopping and interacting, matrix elements must
also be calculated in each case. These are, respectively,
^wn11,E8uCi

1uwn,E& and ^wn,E8uCi
1Ci uwn,E&, whereCi is an

annihilation operator andC i
1 is a creation operator,i de-

notes the lattice point near the boundary, andn is the number
of particles.uwn,E& is the eigenstate whose energy isE and
number of particles isn.

Then, the task is to merge two smaller lattices into a
larger one, for example, merging two 8-site lattices into a
16-site lattice. In this step, the situation in which the final
number of particles in a newly merged larger lattice is com-
posed of different combinations of number of particles in the
smaller lattices before merging must be taken into account.
For example, if the number of particles in a 16-site lattice is
10, then the number of particles in those two 8-site lattices
may be 2 and 8 or 3 and 7 or 4 and 6 or 5 and 5. Also, the
interaction between these newly constructed states must be
considered. For example, due to the hopping terms in the
Hamiltonian, the states composed of 2 and 8 particles in the
two smaller lattices before merging may interact with those
states composed of 3 and 7 particles in the two smaller lat-
tices. Similarly, through interacting terms in the Hamil-
tonian, the new states, whose numbers of particles in the two
smaller lattices are 3 and 7, will interact with each other. So,
at this step we also need to rediagonalize the new Hamil-
tonian matrices that result from the merging of lattices.

The subsequent work in the numerical calculation is to
use the hopping and interacting matrix elements to repeat the
above procedures to merge lattices until the lattice is large
enough. When merging proceeds, the total number of states
increases very fast, far beyond that which can be treated by
computer. Then we begin to collect those states with nearby
energy as a bundle of states, and we use such bundles of
states as quasistates to continue the process of merging lat-
tices. So, at each step of our numerical calculation the norm
of bundles of states,^wuw&, and the expected energy values of
bundles of states,E5^wuHuw&/^wuw&, must be evaluated.
Certainly,S(E) are also known.

Because of our use of bundles of states, people may won-
der if our numerical algorithm is a mean-field method. We
must stress that the use of bundles of states is due to the
finite capability of computers. The situation is similar to that
when we do numerical integration, where we can only divide
the integration range into finite, but not infinite, small sec-

tions and sum the average function value in each small sec-
tion to obtain the final integration value. Collecting states
into bundles certainly introduces a mean-field effect, but
such an effect is very much like that introduced in numerical
integration. So the number of bundles of states used in our
method controls the degree of accuracy that we can acquire.
The numerical data shown in later sections are obtained with
numbers of bundles of states at 65–80, and the energy de-
viation of our data from the exact value is about 2%, just as
expected.

One point we want to stress is that, owing to the use of
bundles of states, the number of statesS(E) evaluated in our
numerical algorithm is not the same as theS(Ec) in the
proof of the preceding section. Nevertheless, theS(Ec) is a
limiting value. As long as the number of bundles of states
used is increased, theS(E), which is calculated in our nu-
merical method, will get closer and closer to the limiting
valueS(Ec).

In this algorithm, another problem that must be faced is
that, in the process of merging two smaller lattices into a
bigger one, we must know all the hopping and interacting
matrix elements of those two smaller lattices, which are cal-
culated for all cases of different numbers of particles in the
lattices, before merging. For example, when we merge two
256-site lattices into a 512-site lattice, we must calculate all
the hopping and interacting matrix elements of those two
256-site lattices within which the particle number ranges
from 0 to 256. This is beyond the capability of the computer
at the present time, so we use the root-mean-square
deviation,11 as defined in statistical mechanics, as a judgment
of how to choose a cutoff value to reduce the range of par-
ticle numbers needed. See Fig. 2, in which

^ni
2&2^ni&

2'n̄i , ~16!

where n̄i is the mean particle number. So, in the numerical
algorithm, we calculate the matrix elements with a particle
number ofn̄i6An̄i /2. In our calculation,n̄i is set to the value
which is decided in the final step of the merging.

FIG. 2. Probability distribution function as a function of number
of particles.n̄i is the most probable number of particles.
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Now we give a more detailed discussion of how to calcu-
late the energy of each bundle of states and the maximum
value of S(E) as demanded in the proof in the preceding
section. The procedure is simply to make the variation

dS ^wuHuw&

^wuw& D50, ~17!

where^wuw& need not be 1. So, the mathematical manipula-
tion is identical to that of eigenvalue problems. The eigen-
value problem directly implies that the evaluatedS(E) is a
maximum value in our numerical scheme. The reason is that
if we sum the lowestn eigenvalues to evaluate their average
energy asĒn , then the maximum number of randomly cho-
sen eigenstates with their average energy equivalent toĒn
must ben.

As we have mentioned above in the second paragraph of
this section, at each step of the merging lattice, we must also
rediagonalize the new Hamiltonian matrix. But, at later steps
of the process of merging lattices, the norm^wuw& of bundles
of states increases very fast with increasing energy of the
bundles of states. So, in order to evaluate the energies of
bundles of states as accurately as possible, we must construct
the new Hamiltonian suitably and evaluate the energies of
bundles of states. For example, consider the merging of two
32-site lattices to a 64-site lattice. We assume that the num-
ber of bundles of states to be used is 100; then there will be
10 000 new states formed each time two smaller 32-site lat-
tices, which each have 100 bundles of states, are connected
to a 64-site lattice. Different combinations of numbers of
particles in the two smaller 32-site lattices may correspond to
the same final number of particles in the 64-site lattice. So,
for a given final number of particles, say 28, in the 64-site
lattice, there may be as many as 105 new states formed in
total. The Hamiltonian of these new states needs to be diago-
nalized to evaluate new eigenstates. But it takes a lot of
computer time to diagonalize a matrix with dimensions as
large as 105. Furthermore, the subsequent work in evaluating
the new hopping and interaction matrix elements consumes
even more cpu time. So, we need to make some approxima-
tions. We rearrange and collect these newly constructed 105

states to about 1002 states. In these 1002 states, we arrange
the states with nearby energies, which are meant to be the
diagonal terms of the Hamiltonian matrix, so that they have
the same norms. The number of these states, which have the
same norms, is chosen to be about 100. We only diagonalize
the Hamiltonian matrix of these 100 states at each stage.
That is, we neglect the effect of the interaction of these 100
states with other states whose energies are beyond some cut-
off value. After each stage of diagonalization calculation, we
collect those states with eigenvalues near the lowest eigen-
value in that stage as the output to form the final bundles of
states. Those states that are not chosen as the output of each
diagonalization stage will be put into the next stage of cal-
culation with other states whose energies are higher. There-
fore, our numerical procedures for evaluating energies and
norms of bundles of states are separated into many stages,
and these stages are followed one by one over the whole
energy range. So, besides the final number of bundles of
states that we use, the dimension of the matrix used in each
stage of the numerical diagonalization constrains the accu-

racy. The computational time grows as the fourth power of
the dimension of the matrix. The dimension of the matrix
that we use in the present work is about 100. If, in the future,
the dimension of the matrix can be extended to several hun-
dreds, the accuracy will be much better.

In our method, because the number of bundles of states
and the dimension of the matrix used in evaluating the en-
ergy must be finite, some truncation effect exists. So, the
two-particle correlation function cannot be calculated at too
long a distance. In the future, when the speed of computers
increases, the two-particle correlation function can be calcu-
lated at a longer distance also. In the one-dimensional spin-
less fermionic model, we find that the two-particle correla-
tion function can be calculated up to about 20 lattice points
apart.

IV. COMPARISON WITH EXACT RESULTS

To check the reliability of our numerical method, we cal-
culate the statistical properties of the exactly solvable, one-
dimensional, spinless fermionic model whose Hamiltonian is

H5 (
u i2 j u51

tCi
1Cj , ~18!

where the hopping parametert is set to be 1 eV.C i
1 andCj

are fermionic operators. The exact values of the specific heat
and the density correlation functions^n0nr&, which are used
as a check of our numerical results, are obtained from the
canonical-ensemble calculations with lattice size equivalent
to 105.

Our numerical data are described below. In these data the
lattice size is 4096.

~1! In Figs. 3 and 4, the low-temperature data of our nu-
merical calculation are shown and compared with exact val-
ues. The procedure that we use to get the low-temperature
properties of this model is to gradually discard the higher
energy states as the merging of lattices proceeds. In Figs.
3~a! and 3~b!, the data are obtained with a number of par-
ticles equivalent to 1024. Figure 3~a! shows the specific heat
versus temperature behavior. The numerical scheme, which
we use to evaluate the specific heat and temperature, is that
first we use polynominals to fit the energy and entropy data
and then take first and second derivatives of these polynomi-
nals to evaluate the temperature and specific heat. Figure
3~b! shows the behavior of the ground-state density correla-
tion ^n0nr&. Because the density correlation does not show
apparent change at low temperatures, we only show the
ground-state density correlation data. In Fig. 3~a!, the
ground-state energy we get is21.77053 eV per particle and
the exact value is21.80044 eV per particle.

In Figs. 4~a! and 4~b!, the number of particles is 2048.
The ground-state energy we get is21.25 291 eV per particle
and the exact value is21.27 306 eV per particle.

From these results we know that the energy deviation of
our numerical data from exact values is 1.5–2 %; that is just
as expected, because the number of bundles of states used in
the calculation is about 85. In Fig. 4~a!, the deviation of data
is larger than that in Fig. 3~a! because the slope of the line in
Fig. 4~a! is only one-third that in Fig. 3~a!. Such a small
slope means that the numerical calculation is about at the
boundary of reasonable accuracy that we can acquire because
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the hopping parameter is 1 eV and the particle number is
2048 and the number of bundles of states is about 85, which
all constrain the accuracy in Fig. 4~a!. Actually, when we
calculate the data of Fig. 4~a! we focus on lower-energy
states than when we calculate the data of Fig. 3~a!. Further-
more, owing to the use of bundles of states, the norms of
higher-energy states are larger than those of lower-energy
states. The mean-field effect introduced is also larger in
higher-energy states. Therefore, the lower-energy states can
be evaluated more accurately. But the uncertainty principle
tells us that the acceptable energy uncertainty is larger in
higher-energy states, which means that the calculated high-
temperature statistical properties may be more stable. So, it
is reasonable to expect the larger data deviation to appear at
the intermediate temperature range between about 200 and
300 K. The low-temperature data are nevertheless more
stable. The first five data points in Fig. 4~a! change slightly,
whether we use second-order or third-order polynominals to
fit the corresponding energy and entropy data.

~2! Figures 5 and 6 show the high-temperature behaviors.
TheCv/k-versus-T figures show that larger deviations from
exact values should result from the numerical differentiation
scheme because, as we have mentioned above, when we
evaluateCv data we must take second derivatives of the
polynominals that are used to fit the energy and entropy data.
The second derivatives are sensitive and prone to introducing
larger deviations. Besides, the use of polynominals does not
seem the best choice because some part of the data may be

FIG. 3. ~a! Specific heat overk as a function of temperature; the
line shows the exact value and the squares show our data.~b!
Ground-state density correlation̂n0nr& as a function ofr ; the
crosses show exact values and the triangles show our data. The
particle densitŷ n& is 1

4 in ~a! and ~b!.

FIG. 4. Same as Fig. 3 except that particle density^n&5
1
2 .

FIG. 5. ~a! Specific heat overk as a function of temperature, the
line shows the exact value and the squares show our data.~b! Den-
sity correlation̂ n0nr& for r51,2,3 as a function of temperature; the
lines show exact values and our data are marked by triangles
(r51), crosses (r52), and squares (r53). The particle density
^n& is 1

4 in ~a! and ~b!.
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fitted well by lower-order polynominals but another part of
the data may need higher-order polynominals to obtain a
good fit. The reason we still use polynominals is that poly-
nominals are sensitive enough for our data.

In Fig. 5~a!, the deviation of data is larger than that in Fig.
6~a!. The reason is that the slope of the curve in Fig. 5~a!
changes quickly at about 2000 K, which tends to cause the
wavy behavior of fitted polynominals.

~3! In Figs. 7~a! and 7~b!, the data show the changes of
ground-state density correlation functions as a function of
lattice sizeL, which increases when the numerical steps of
merging lattices proceed. These two figures are used to illus-
trate that our method really can reflect the effect of lattice
size when the lattice gets larger and larger.

V. CONCLUSIONS AND REMARKS

Through the comparisons in one-dimensional data given
in the preceding section, it seems that the outcomes of our
numerical method agree well with exact values. This is pow-
erful evidence that our numerical algorithm is trustworthy.
Also, the lattice size that we use in the calculations is large
enough to suggest that the size effect is not of practical im-
portance. Besides, in all our numerical calculations, we find
that the results obtained from our method are stable. For
example, when evaluating the data of Fig. 4~a!, if we make a
cruder calculation, that is, if we use the same number of
bundles of states to calculate the thermal properties at a
wider range of temperatures, we still get the linear behavior

of Cv-versus-T data with the slope at about 80% that of the
exact values. So, it seems that our method at least qualita-
tively shows the correct physical properties even when nu-
merical results obtained from our method are quantitatively
not so satisfactory.

Because the proof given in Sec. II is correct for any di-
mension, our method can also be applied to two- and three-
dimensional models. Our plan for future work is to use this
numerical method on two-dimensional models. But, in order
to attain the same level of accuracy as in the one-
dimensional results, the number of bundles of states used in
the calculation on two-dimensional models must be larger.
This means that the computational time needed is also much
longer. So, for two-dimensional models, the numerical cal-
culation is not easy. Anyway, to our approximation, once the
speed of the computer is 10–20 times faster, the accuracy of
our numerical calculation for two-dimensional models
should be satisfactory. So, we think that in the future our
method should be a trustworthy and not too difficult method
for tackling one- and two-dimensional models.
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FIG. 6. Same as Fig. 5 except that particle density^n&5
1
2 . FIG. 7. ~a! Ground-state density correlation^n0nr& as a function

of lattice sizeL when our numerical steps of the merging lattice
proceed. The particle density^n& is 1

4. The triangles are forr51,
the crosses are forr52, and the squares are forr53. ~b! The same
as ~a! except that̂ n&5

1
2 .
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