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Abstract 

We propose an algorithm for computing the inverses of rational matrices and in particular the inverses of polynomial 
matrices. The algorittrm is based on minimal state space realizations of proper rational matrices and the matrix inverse 
lemma and is implemented as a MATLAB 1 function. Experiments show that the algorithm gives accurate results for typical 
rational matrices that arise in analysis and design of linear multivariable control systems. Illustrative examples are given. 
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1. Introduction 

Computation of inverses of rational matrices is needed in many linear multivariable feedback systems 
analysis and design problems. For example, it is needed in analysis and design using the inverse Nyquist 
array method [11, 14], in parametrization and design of decoupling controllers [5, 10], and in design using the 
QFT methods [9, 11 ]. 

When a rational raatrix is expressed as a ratio of a numerator polynomial matrix and a denominator scalar 
polynomial, computation of its inverse essentially reduces to computation of the inverse of a polynomial 
matrix. Many algorithms for computing the inverses of polynomial matrices has been proposed. The methods 
proposed in [2, 6, 12, 15] compute the inverse by Cramer's rule in the sense that both the determinant and 
the adjoint matrix are explicitly computed. In [2, 6] the determinant and adjoint matrix are computed using a 
generalized Faddeev's recursive formula, while in [12, 15] they are computed by solving a set of interpolation 
equations. As noted in [15] a careful choice of the base points (for interpolation) is necessary to avoid ill- 
conditioned equations. In [12] the base points are chosen to be equally spaced points on the unit-circle to 
take advantage of file FFT algorithm. This then requires complex computations which may not be desirable 
for matrices with real coefficients. Another problem with the interpolation method is that the degrees of the 
determinant and the adjoint are usually not available, only upper bounds are. The interpolation thus involves 
redundant equations and polynomials with unnecessarily high degrees. In [3, 16], a division algorithm for 
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polynomial matrices is used to compute the inverse in irreducible form at the cost of increased computational 
complexity. 

In this paper, we propose an algorithm for computing the inverses of rational matrices and in particular 
inverses of  polynomial matrices. The algorithm computes neither the determinant nor the adjoint matrix. The 
algorithm is based on minimal state space realizations of proper rational matrices and the matrix inverse 
lemma [7, p. 656]. The algorithm is implemented as a MATLAB function that can be used with the associated 
Control System Toolbox [4]. Experiments show that the algorithm gives accurate results for typical rational 
matrices that arise in analysis and design of linear multivariable control systems. 

The paper is organized as follows. In Section 2 we consider inversion of nonsingular proper rational ma- 
trices whose numerator polynomial matrices are either row-reduced or column-reduced to show the main 
idea of the approach and propose an algorithm. The result is then extended to general rational matrices 
including polynomial matrices in Section 3. Simple examples are given in Section 4 followed by a brief 
conclusion. 

1.1. Notations and definitions 

[~[s](~(s), Np(S), resp.) denotes the set of  polynomials (rational functions, proper rational functions, resp.) 
in s with real coefficients. For a,b E N[s], alb denotes that a is a factor of b. The relative degree of h E 
N(s) is defined as the degree of its denominator polynomial minus the degree of its numerator polynomial. 
The relative degree of H(s) = [hi(s) -. .  hm(s)]TE N(s) m is defined as the lowest relative degree of hi(s), 
1 ~< i ~< m. The ith column relative degree of an m x m rational matrix is the relative degree of its ith 
column. 

2. Inverses of proper rational matrices 

Suppose P(s) E ~p(S)  mxm is nonsingular. Write P(s) = N(s)/d(s) where d(s) is the monic least common 
denominator of  the entries of  P(s) and N(s) E ~[s] mxm is the numerator polynomial matrix. Assume that 
N(s) is column-reduced [7, p. 382]. Let ri be the ith column relative degree of P(s). Since P(s) is proper, 
ri  90. Let ~i(s) be monic polynomials of degrees r i which have no common factor with d(s). Define 

1 
Q(s) := P(s) diag(~l (s) . . . .  , ~Zm(S)) = 1-77~N(s) diag(cq (s) . . . . .  ~m(S)). 

ats) 
(2.1) 

Note that in (2.1) we multiply the ith column of P(s) by the polynomial ~i(s) so that Q(s) is proper and 
each column of Q(s) contains at least one entry that is not strictly proper. 

Let {A,B, C,D} be a minimal realization of Q(s) where A E Nn×,, B E I~ n×m, C E Nmxn, and D E ~mxm. 
Since N(s) is column-reduced, the matrix D = l i m s ~  Q(s) is nonsingular. A minimal realization of Q(s) -I 
can be obtained by the following lemma. 

Lemma 2.1. Let {A,B,C,D} be a minimal realization of Q(s) E ~p(S)  m×rn. I f  D is nonsinyular, then 
{A -BD-1C,  BD -I, - D - t C ,  D -l } is a minimal realization of Q(s) - l .  

Remark. The proof can be found in [1]; an alternative proof is given here as it is very simple. 

Proof of  Lemma 2.1. Since Q(s) = C(sI - A ) - I B  + D ,  it follows from the matrix inverse lemma [7, p. 656] 
that {A - BD- 1 C, BD- 1, - D -  l C, D -  I } is a realization of Q(s)- I. We show that this realization is controllable 
and observable. Since 

[ °l [ s I - A + B D - 1 C  BD - 1 ] = [ s I - A  B] DI_Ic D_ l 
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and D -1 is nonsingular, r a n k [ s / - A  + B D - I C  BD -j]  = rank[s/ - A  B] for all s c C. Since {A,B} is 
controllable, it follows from PBH rank test [7, p. 366] that the realization is controllable. Observability can 
be similarly shown. Thus {A - B D - I C ,  BD -I ,  - D - 1 C ,  D - l  } is a minimal realization of  Q(s) -I .  [] 

For simplicity let A1 = A - BD-1C, B1 = BD -I ,  C1 = - D - I C ,  and DI = D - l ,  then we have Q(s) -1 
= D1 + C l ( S / - A 1 1 - I B 1  . Let us write 

Q(s)_ I _ IV(s) (2.2) 
det(,:I - A 1 ) 

where W(s) = D1 d e t ( s I - A I ) + C 1  ad j ( s I -AI )B1 .  Note that expression (2.2) is the form we get when we use 
s s 2 t f  in MATLAB to compute Q(s) -1 from AI, BI, CI, and DI. The following theorem is used to obtain 
P(s) - l  from (2.2). 

Theorem 2.2. For the Q(s) defined in (2.1) and Q(s) -1 given in (2.2), we have 
(a) ~im=l~i(s)ldet(sI - Al) ,  
(b) I~k~l,k~i~k(S) l mij(S), for i , j  = 1 . . . . .  m. 

Proof.  Let L(s) and R(s) E ~[s] m×m be unimodular matrices such that 

L(s)Q(s)R(s) =: diag(ea (s)/tpl (s) . . . . .  ~m(S)/~m(S)) (2.3) 

is the Smith-McMillan form of  Q(s), where for i = 1 . . . .  ,m - 1, ei(s) and ~ki(s) are monic and coprime and 

~i(s)]~i+l(S), ~li+l(S)[~li(s). 

Taking determinants of  (2.1) and (2.3) we have 

m m m 

d(s)ml~ei(s) = k det N(s)I-Io~i(s)I-[~i(s) (2.4) 
i = I  i - - I  i = 1  

m where the constant k = d e t  L(s)det  R(s). Since FIi=l c~i(s) and d(s) have no common factor, it follows that 

m m 

i~ ~i(s) i=l[I~i(s)" (2.5) 

Now since diag(~m~S)/em(S) . . . . .  ~l(s)/sl(s))  is the Smith-McMillan form of  Q(s) -1 and, by Lemma 2.1, 
{AI,B1, CI,DI} is a minimal realization of  Q(s) -1, we have [7, p. 513] 

m 
det(sI - AI ) = 1-I~3i(s). (2.6) 

i=1 

Assertion (a) follows from (2.5) and (2.6). To prove (b), let g(s) be the greatest common divisor o f  det N(s)  
and d(s). Write 

det N(s)  = y(s)g(s) (2.7) 

so that y(s) and d(s) are coprime, then (2.4) becomes 

m m m 

d(s)ml-I~(s)  = kg(s)~(s)Fl~(s)l-I¢~(s).  (2.8) 
i - - ¿  i = 1  i - -1  

m Since 7(s)l--L= l ~i(s) and d(s) are coprime, it follows from (2.8) and (2.6) that 

m 

y(s) l ~ i ( s )  det(sI - Ai ). (2.9) 
f_-q 



50 C.-A. Lin et al./Systems & Control Letters 27 (1996) 47-53 

Now from (2.1) and (2.7) 

Q ( s ) - l =  , d i a g  ai(s) . . . . .  ai(s) adjN(s). (2.10) 
g(s )7(S )l li=l ai~,s ) 

Thus from (2.2) and (2.10) it follows that 

(,.__.2 ) d(s)det(sI -- Ai ) ,. m 

W ( s ) =  m alag ai(s) . . . . .  ai(s) adj N(s). (2.11) 
g(S )y(s )l~i=l ai(S ) 

Since 7(s)I]im_lai(s)ldet(sl- A l) and that g(s) (being a divisor of d(s))  and ai(s) are coprime, assertion (b) 

follows. [] 

Let us consider the computation of the inverse of P(s). From (2.1) and (2.2) 

W(s) (2.12) 
P(s ) -  I = diag( a j (s) . . . . .  am (s) ) det(sI - A 1 )" 

From Theorem 2.2 and (2.12), it follows that 

P(s) - l  = W(s)/v(s) (2.13) 

where ~ '(s)  E N[s] mxm, v(s) E N[s] are given by 

( ( i~  2 mi~ll -, -~--1 m W ( s ) =  diag 7i(s) . . . . .  a i ( s ) ) )  W(s) and v ( s ) = d e t ( s I -  A1)/~ai(s)._i=, (2.14) 

We note that the divisions of polynomials in (2.14) are actually removals of polynomial factors. We summarize 
the procedure developed so far into the following algorithm. 

Algorithm 2.3. 
data: P(s) = N(s)/d(s) ,  where d(s) is the monic least common denominator of the entries of P(s) and N(s)  

is column-reduced. 
stepl: Determine the column relative degrees, ri, of P(s) and choose monic polynomials ai so that ai(s) and 

d(s) are coprime and compute Q(s) by (2.1). 
step2: Compute a minimal realization {A,B, C,D} of Q(s). 
step3: Compute A1, B1, C1 and Di as defined and compute Q(s) -1 from {AI,BI,CI,D1} to get Q(s) -I = 

W(s)/det(sI - A1 ). 
step4: Compute (2.14) by extracting polynomial factors from d e t ( s I -  Al) and each row of W(s) to get 

t ' ( s )  -1  = YC(s ) / v ( s ) .  
step5: Remove common factors that still remain in v(s) and W(s) to obtain an irreducible form expression 

for P(s) -I  . 

Comments 
* All the computations involved in this algorithm can be carried out by using functions in MATLAB and 

the associated Control System Toolbox. Minimal realizations of Q(s) can be obtained by using t f 2 s s  and 
min rea l ;  the rational matrix Q(s) - l  can be computed by s s 2 t f ;  deconv can be used to remove factors 
from a polynomial. 

• To reduce numerical problems that may occur in computations (especially for high-order case), the poly- 
nomials ai(s) should be chosen so that its zeros are not close to any of the zeros of d(s). 

• The accuracy of solutions computed by this algorithm is limited mainly by the accuracy that can be achieved 
in computing a minimal realization of Q(s). Computing minimal realizations by tf2ss and minreal usually 
gives reliable answer for McMillan degree ~< 12. I f  the zeros of d(s) are distinct and known, accurate 
minimal realizations of  much higher dimensions can be obtained by diagonal realization [7, p. 137] (modified 
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to account for complex-conjugate poles) in which the rank of the residue matrices are determined through 
singular value decomposition. 

• If  N(s)  is not column-reduced but is row-reduced, then N(s)  v is column-reduced and the algorithm can be 
used to compute (P(s) r )  -1 = (P(s) - l )x .  

If  N(s)  is neither column-reduced nor row-reduced, then there exists a unimodular matrix U(s) such that 
N(s) := N(s)U(s)  is column-reduced [7]. The inverse of /5(s)  := N(s) /d(s)  can then he computed and the 
inverse of  P(s) is obtained by P(s) - I  = U(s)P(s) - l .  An algorithm for computing U(s) is proposed in [8]. 
We note, however, that the algorithm proposed in [8] requires modifications and that it may suffer from large 
numerical error due to very small pivot elements. An alternative algorithm which is free from this small pivot 
induced problem is proposed in [13]. 

3. Extension to general rational matrices 

We now consider the computation of inverses of general rational matrices, in particular, inverses of poly- 
nomial matrices. Let us consider first the polynomial matrices. 

3.1. Inversion of  polynomial matrices 

Let P(s)E ~[s] mxm be nonsingular and without loss of generality assume that P(s) is column-reduced. Let 
7i ~< 0 be the ith column relative degree of P(s). Let tii(s) polynomials of degree -7 i  such that tii(s) and 
det(P(s)) is coprirne. Let 

Q(s) = P(s)diag(1/til(s),. . . ,  1~tim(S)). (3.1) 

Now Q(s) is a proper rational matrix whose numerator polynomial matrix is column-reduced. Thus Q(s) - l  
can be computed by Algorithm 2.3 with ai(s) = 1. So let Q(s) -1 = T(s)/v(s), where T(s) C ~[s] m×m and 
v(s) E ~[s]. From (3.1) we have 

. . . .  adj(P(s)) 
Q(s)-1 = diag(til (s) . . . . .  tim(s))P(s)-l = diag(til (s) . . . . .  pints)) ~ .  (3.2) 

Since tii(s) and de t P(s) are coprime, the ith row of Q(s) -1 contains the factor tii(s). Thus from (3.2) 

P(s) 1 = Tl(s)/v(s) (3.3) 

where Tl(s) is the polynomial matrix obtained from T(s) by removing the polynomial factor tii(s) from its 
ith row. In computations, the polynomials tii(s) are chosen to have distinct zeros so that an algorithm for 
computing diagonal minimal realizations of  Q(s) can be used. 

3.2. Inversion of  r:onproper rational matrices 

Let P(s) E ~(s) m×m be nonsingular. Write P(s) = N(s)/d(s) ,  where d(s) is the least common denominator 
of  the entries of  P(s)  and N(s)  E •[s] mzm. Again, without loss of  generality, assume that N(s)  is column- 
reduced. Let ci be the ith column relative degree of P(s). Let ?i := max(0, -ci) .  Choose tii(s) E ~[s], monie 
and of degree Yi such that det N(s)  and tii(s) are coprime. Again tii(s) are chosen to have distinct zeros for 
computational reasons. 

Let 

Q(s) = P(s)diag(1/ill(s) . . . . .  1~tim(S)). 

Now Q(s) is a prcper rational matrix, thus Q(s )  -1 can be computed by Algorithm 2.3. Let 

(3.4) 

Q ( s ) - l  ~- T(s) /v (s ) ,  
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where T(s) C R[s] m×m and v(s) E ~[s]. Then from (3.4) 

P(s)  -1 = Tl(S)/V(S), 

where Tl(s) E R[s] mxm is obtained from T(s) by removing the polynomial factor #i(s) from its ith row. 

4. Examples 

An algorithm based on Algorithm 2.3 and the method discussed in the previous section for comput- 
ing inverses of  general rational matrices is implemented as a MATLAB function, ±nvratm, for use with 
MATLAB/Control  System Toolbox. Diagonal minimal realization is computed whenever it is reliable. The 
computation o f  a unimodular matrix for transforming a polynomial matrix into a column-reduced one is based 
on [8] with modifications and checks the pivot elements. The following examples are simple results obtained 
by using ±nvratm. The examples are chosen simple so that comparisons with the exact solutions obtained by 
hand calculations can be made without too much effort. 

Example 1. Let P(s)  = N(s ) /d (s )  where d(s) = (s + 1.2)(s - 2)(s + 3.5)(s + 4)(s + 0.5), Nil(s)  = 2s + 8, 
N21(s) = - 4 ,  N12(s) = 3s + 1.5, and N22(s) = s + 1.2. This is a proper rational matrix with McMillan degree 
10. The inverse o f  P(s)  computed by 5.nvratm is 

1 I 0.5s6 + 4 .2J  + 8.795s 4 - 7.83s 3 - 39.94s 2 - 37.32s - 10.08 
s 2 - 0 . 8 s + 1 . 8  [ - 2 s  5 -  14.4s 4 -  17.9s 3 + 5 2 . 8 s  2 + 9 6 . 4 s + 3 3 . 6  

--1.5s 6 -- 11.55s 5 + 18.825s 4 + 32.888s 3 + 92.10s 2 + 61.35s + 12.60] 
6 5 4 3 2 J s + l l . 2 s  +37 .75s  +9 .4s  - 1 5 3 . 8 s  - 2 0 9 . 6 s - 6 7 . 2  

Compared with the exact solution, the largest coefficient error in the denominator is 1.2 x 10 -12 and the 
largest coefficient error in the entries o f  numerator is 1.5 x 10 -10. For practical purposes the algorithm gives 
the exact solution. 

Example 2. Let P(s)  = diag((s + 2) 5, (s + 4) 5, (s + 5)5). Let the inverse computed by invratm be denoted 
by M(s)/a(s) .  The polynomial a(s) is monic and of  degree 15; the diagonal entries of  M(s)  are polynomials 
of  degree 10. The off-diagonal entries are: 

M21 = 3.0994 x 1 0 - 6 s  2 - 6.2227 x 10-Ss + 8.8477 x 10 -4, 

M31 = -1 .2368 x 10-6s 3 + 2.3469 x 10-5s 2 - 3.3104 x 10-4s + 3.9210 x 10 -3, 

MI2 = - 1 . 2 6 6 6  x 1 0 - 6 s  4 +2.2270  × 10-Ss 3 -  3.1271 x 10-4s2,+3.6679 x 1 0 - 3 s -  3.9086 x l0 -2, 

M32 = -1 .7136  × 1 0 - 6 s  3 + 3.3543 X 10-Ss 2 -- 4.7636 X 10-4s + 5.6687 x 10 -3, 

MI3 = 1.2442 x 10-6s 3 - 2.4330 x 1 0 - 5 s  2 + 3.4744 x 10-4S -- 4.1378 X 10 -3, 

M23 = 8.3447 x 10 -6 .  

Compared with the exact solution, the largest relative error (i.e. error/true value) in the coefficients of  a(s) 
is 3.9 x 1 0 - u ;  the largest relative error in the coefficients of  the diagonal entries o f  M(s)  is 1.8 x 10 -9 .  

5. Concluding remarks 

We have proposed and implemented an algorithm for computing inverses of  general nonsingular rational 
matrices and in particular the inverses of  polynomial matrices. The algorithm is based on minimal state space 
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realizations of  proper rational matrices. It is interesting to note that the inverse of  a polynomial matrix is 
obtained by first coraputing the inverse of  a proper rational matrix not the other way around as is usually 
done. 
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