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Dynamical analysis of survival of Kosterlitz-Thouless pairs due to pinning
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We investigate the process of annihilation between vortices of opposite flux in superconducting thin films in
the presence of randomly distributed pinning centers. The number and distribution of pairs of vortex-antivortex
that avoid annihilation due to pinning on two pinning centers is estimated analytically and compared with
numerical simulations. The situation can be realized, for example, when the system is quenched from high
temperature~above or below the Kosterlitz-Thouless temperature! or when the current is reduced abruptly.
Qualitatively two different cases can be distinguished. The simpler one is when the pairs are well separated. In
this case, the problem under mild assumptions can be solved analytically. When the vortex pairs are not very
rare, the situation is much more complicated because a great variety of processes become significant. We
isolate the important ones and construct an iterative~real-space renormalization-group! scheme to describe the
behavior of the interacting multivortex system. Some dynamical aspects of pinning and vortex motion are
discussed.@S0163-1829~97!04402-0#
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless~KT! phenomena in
superconducting thin films have been studied intensely b
theoretically1–3 and experimentally in low-Tc
superconductors4 as well as in high-Tc materials.

5 The basic
object is the bounded KT pairs of a~Pearl’s6! vortex and
another vortex of opposite flux direction~the ‘‘antivortex’’!.
Their unbinding by current in the low-temperature phase c
ates nonlinearI -V characteristics, while the thermal unbin
ing causes the KT phase transition. Above the critical te
perature TKT of this phase transition, Ohmic flux-flow
resistivity with typical KT temperature dependence has b
observed. The dc and ac transport experiments however m
sure effects of KT pairs only indirectly through their stat
tical, macroscopic effect.

In a remarkable series of experiments, using
Aharonov-Bohm effect of electron beams scanning the m
netic field on the surface of a superconducting film,7 tomog-
raphic pictures of some apparent KT pairs were obtain
One clearly sees a unit of flux leaving the Pb supercond
ing film and returning back at a distance of about 1mm.
According to the Boltzmann distribution there should
practically no such large KT pairs since the experimen
temperature was that of liquid He, which is far belowTKT
~by a factor of about 2!. Moreover, when a small magnet
field was applied the pair was found among many sin
vortices oriented along the field. The author’s interpretati7

is that the pair survived cooling because the vortex and
antivortex were trapped by two pinning centers and was
allowed to move closer to annihilate. This picture has
been made more quantitative since then. In this note we c
sider quantitatively the dynamical problem of the survival
550163-1829/97/55~2!/1162~11!/$10.00
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the pairs upon cooling to the temperatures in wh
quenched disorder exists, while thermal creation of ad
tional pairs is practically absent. The disorder will be ide
ized as random distribution of identical pinning centers,
though generalization to other types of pinning includi
correlated disorder is simple.

Quite independently of the Hitachi group experiments
high-resolution scanning superconducting quantum inter
ence device~SQUID! microscope~SSM! technique has been
developed recently.8–10 This allows, in principle, direct ob-
servation of KT pairs. Indeed, some of the publish
magnetic-field distributions on the surface of thin Y-B
Cu-O films look like KT pairs@see Ref. 8, Fig. 3~a! in which
apparently ‘‘black’’ and ‘‘white’’ regions contain a fluxon
and an antifluxon#. These experiments were carried out
~liquid-helium! temperatures which is even smaller com
pared to the correspondingTKT'90 K. Therefore, the possi
bility of thermal excitation should be completely exclude
Most likely pinning is the only explanation for the surviva
of the pairs.

A priori the probability that a pair will survive due to
pinning seems rather small. Most of the KT pairs are tigh
bound close pairs. In order to be pinned it is not enough
encounteronepinning center. If only one member of a pair
pinned the second member will simply approach the sa
pinning center and the pair will annihilate at the center. It
necessary that a second pinning center will trap the sec
member ofthe same pair11 simultaneously. It is not obvious
how large is the probability that this will happen. We w
show that, while only some events were spotted in the H
chi experiments, which did not attempt to measure how of
these events occur, the probability is large enough an
consistent with the above observations. The picture that
1162 © 1997 The American Physical Society
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55 1163DYNAMICAL ANALYSIS OF SURVIVAL O F . . .
get is that a quenched superconductor film surface has m
netic dipoles of quite constant size. The number of dipole
very sensitive to the density of the pinning centers and
conditions that determine the density of vortices. It is n
strongly dependent on dynamical effects like vortex mobi
unless the dynamical system is pushed to extreme situat

The presentation is organized as follows. First in Se
II–IV we investigate the pinning of well separated KT pa
after quenching. In this case one can neglect the influenc
other pairs on a given pair and, as we show, dynamical~tim-
ing! effects are small. In Sec. II, we formulate the proble
by defining a surviving distribution function: a probabilit
that a single KT pair initially separated by distanceRi will be
pinned when they are at distanceRf . In Sec. III, attraction of
a single vortex by a pinning center in the presence of c
stant external forceF applied by an antivortex is studied
This is the basic elementary process. We find a simple r
the vortex pinning cross sections is zero ifF,Fmax, where
Fmax is the maximal force exerted by a pinning center, wh
s'2a ~a is the radius of the pinning center! whenF.Fmax.
In Sec. IV, we calculate the survival distribution functio
This is done analytically in the low pinning density case
reducing the model to one dimensional. The results of
merical simulations for this problem~for any density! are
given. We then compute the surviving fraction in the case
quenching from the temperature belowTKT .

In Secs. V–VII we address the more complicated case
pinning involving many vortices and pinning centers. If o
quenches from a temperature close to or aboveTKT or con-
siders a case of current flowing in the film,2,3 one encounters
a situation that vortices initially are not obviously separa
into closely bound pairs. Instead, there is a constant den
of vortices and antivortices. After quenching they start
move and annihilate with each other. Some of them
pinned, depinned... . Unlike the previous problem, the ti
dependence~dynamics! is important here. We outline in Sec
V an iterative@renormalization-group~RG!# scheme to un-
derstand these processes. The RG step requires investig
of another elementary process: motion of a vortex through
near a pinned KT pair which is given in Sec. VI. In Sec. V
the diagrammatic representation of various processes is
posed. In Sec. VIII numerical simulation results are p
sented and compared with the model. Finite-size effects
briefly discussed. Section IX contains concluding remar
The characteristic quenching time~determining the therma
depinning process! is estimated. A nonthermal mechanism
produce a population of vortices, like external current at l
temperature, is also briefly discussed. In this case quenc
is an abrupt disappearance or reduction of the external
rent so that it cannot depin the surviving pairs.

II. SURVIVAL DISTRIBUTION FUNCTION
FOR PINNING OF KT PAIRS

Assume at some initial time we have some initial dist
bution of vortex pairsNi(R). For example, if the KT pairs
are generated thermally well below the KT phase-transit
point, this is given by a Boltzmann’s factor:1,3,12

Ni~Ri !5
2z

z4
e2bq2 ln Ri /z, ~1!
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whereb51/kT. The fugacity of the pair isz[e2m, wherem
is the chemical potential for creating a vortex but not co
taining the contributions from the vortex interaction. Th
cutoff scale z is close to the coherence lengthj of a
superconductor.3 The chemical potential is related, but n
equal to thecoreenergyEc'pj2d(H c

2/8p), whered is the
width of the film andHc is the thermodynamic critical field
There are other ‘‘geometrical’’ factors reflecting the sho
range structure of the vortex.12 The ‘‘charge’’ q is obtained
from the asymptotic form of the interaction of Pearl’s vor
ces. The force between a vortex and an antivortex separ
by distanceRi is

6

F5
q2

Ri
~2!

with q252dF 0
2/(4pl2)2 wherel is the penetration depth

andF0[hc/2e.
The distribution can be rewritten in terms of the KT tra

sition temperature since approximatelyTKT5q2/4 up to
small RG corrections of orderz ~in superconducting filmsz
is small12!:

Ni~Ri !5
2z

z4 SRi

z D 24TKT /T

. ~3!

Note thatN has dimensions of 1/cm4, but due to translationa
and rotational symmetries it depends on single quan
Ri[uRi u only.

After quenching fromT ~,TKT! to a very low tempera-
ture ~taken to be zero throughout the discussion! the vortices
inside the pairs start moving towards each other. IfT is not
very close toTKT , vortex pairs are well separated. In th
case the mean separation between the pairs,1

D2'
z2

2pz S 2TKTT
21D , ~4!

is larger then the mean dipole size'z~TKT/T21!21. This
means that the dipole ‘‘electric’’ field from other KT pair
@which, in two dimensions~2D! falls off as 1/r 2# is very
small and practically does not deflect the particles from
straight line motion towards each other. If not for the pinni
centers, the KT pairs would have all annihilated very so
~see an estimate in Sec. IX!. But if the pinning density is
large enough there exists a possibility that both particles
be pinned at some distanceRf from each other. We call this
probability density the survival distributionP~Rf ,Ri!. The
final distribution of the surviving pair will be given by

Nf~Rf !5E dRiP~Rf ,Ri !Ni~Ri !. ~5!

Due to rotational symmetry the survival distribution depen
only on three out of four variables: the lengthsRi andRf and
the relative angle between them~translational symmetry had
already been taken into account in the definition of the fu
tion!. Before calculating this function we discuss an ide
ized model of pinning of a vortex in the external homog
neous field. This field is produced by the antivort
companion of the vortex.
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FIG. 1. Attraction of a vortex to ‘‘inverted
Gaussian’’ type pinning center under influence
forceF. The two fixed points are intersections o
the constant force line with the potential. Cas
of small and large force are shown.
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III. PINNING OF A VORTEX IN HOMOGENEOUS FIELD

The potentials profiles of ‘‘pointlike’’ pinning centers i
low and high-Tc superconductors are still not we
understood.13One estimates these potentials, or forces rat
applied on vortices using various indirect methods: flux flo
magnetic noise due to thermal depinnin
creep, . . . ,9,14 and, in some cases, direct observation of p
ning centers. There are several mechanisms of pinning.
important one is simply the advantage that vortices can t
by placing the core inside small~compared to relevant cor
size! regions of a sample in which superconductivity is d
stroyed. A popular choice of the short-range pinning pot
tial is the ‘‘inverted Gaussian’’ one:

U~r !52U0e
2r2/a2. ~6!

The typical value of the rangea is the coherence lengthj,
while the minimal energyU0 is of the order of condensatio
energypdj2(H c

2/8p). This leads to the maximal force ap
plied around distancea from the center to be of the orde
Fmax5pdj(H c

2/8p). We investigated several types of sho
range potentials and found that, in fact, for most purpo
exact shape is not important: just two characteristics
needed: the cross section, giving the effective range of
pinning center and the maximal force.

Suppose on the way towards its companion antivorte
vortex encounters pinning center located at the origin. T
force that the antivortex applies on the vortex is given by E
~2!. First of all, if the maximal force that the pinning cent
can produce,Fmax, is smaller then this, pinning is impos
sible. This determines the minimal distance at which
problem becomes nontrivial:

Rmin5S q2

Fmax
D5Aj. ~7!

Typically the numerical constantA is larger than 1, but
should not be very large according to the above estimate
simulations and numerical estimates we will takeA55. We
choose it to be oriented in the positive direction along thx
axis. The overall force felt by the vortex is therefore

Ftot52¹U~r !1F. ~8!

Ignoring the Magnus-like force,15 the vortex motion is
approximately described by16,3
r,
,
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dx

dt
5mFtot , ~9!

wherem is mobility. The mobility is well known from the
flux-flow experiment. Of course one might doubt that,
very short distances, this is still valid. However for a simp
rough estimate, one can assume that Eq.~9! is correct on all
the scales with the same coefficientm. For Rmin@a;j, one
can approximate the attractive force between the vortex
antivortex by a constant. In that case, it is easy to analyze
set of autonomous differential equations in Eq.~9!. The so-
lution has two fixed points~see Fig. 1! ~x1,0! and ~x2,0!,
x1,x2 . They are on thex axis, given by solving the equa
tion:

Ftot50

or, F5Fpin(r )[2¹U(r ), see Fig. 1 for the inverted Gaus
ian case.

The first one,x1, closer to the center, is a stable fixe
point, whilex2, close to the edge of the pinning potential,
unstable~Fig. 2!. WhenF50 obviously any vortex will be
pinned. In this casex150, while x2→`. At small F the at-
tractor moves a bit from zero, whilex2 very quickly moves
to the periphery of the potential. Correspondingly the cro

FIG. 2. Pinning on the ‘‘inverted Gaussian’’ potential.~a! ~the
top picture!. The case of the small driving forceF. The gray lines
represent trajectories of the vortex~pinned or escaping the center!.
The black line is a separatrix.~b! ~the bottom picture!. The same
for the larger driving force.
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55 1165DYNAMICAL ANALYSIS OF SURVIVAL O F . . .
section very quickly stabilizes at about twice the pinni
center size, see Fig. 2~a!. For F close to the maximal force
Fmax, Fig. 2~b!, x1 approachesx2 ~see Fig. 1! and the cross
section grows very slowly. Finally, asF becomes stronge
than Fmax the pinning center is no longer able to trap t
fluxons, s will abruptly drop to zero, and no fixed poin
exists, see Fig. 3. The mild divergence atF50 ~large sepa-
rations! is due to the exponential tail of the pinning potent
and is insignificant. One can approximate the cross sec
s(F) for inverse Gaussian potential by a step function

s~F !5su~Fmax2F !, ~10!

where in the present cases'4a. If the potential has a clea
cut edge, thens will resemble a step function even more.

Upon investigating several potentials, we found that
finite ranged potentials, there seems to be a step func
behavior fors(F). There is a finite jump just atF5Fmax. If
the pinning forceFpin is not strong enough, simply none wi
get pinned, ands(r )50, this corresponds to ther,Rmin
case. Nevertheless, once it becomes strong enough to
something, essentially all the fluxons coming into the ran
of the potential could not escape. The pinning cross sec
does not grow slowly from zero but suddenly jumps to
finite value.

One example exhibiting this behavior can be done ana
cally. For the truncated parabolic potential defined by

U~r !52U01
U0

a2
r 2 ~11!

for r,a, and zero outside the circler5a, the dynamics is
easily solved. It can be shown that the trajectory of the p
ticle inside the circle is just a straight line. Particles are fi
moving parallel to the external field forr.a and then, once
entering the circle, change direction and follow straight lin
which intersect the x axis at x15a~F/Fmax!, where
Fmax52U0/a is the maximum pinning force at the edge, s
Fig. 4. In this case the second fixed point is located
x252a and the cross section is exactly 2a.

We therefore, as a first approximation, takes(F) to be a
step function with certains which plays the role of the ef
fective pinning range. This simplifies the calculation of t
survival distribution considerably.

FIG. 3. Pinning cross sections for the ‘‘inverted Gaussian’’
potential as function of the driving forceF.
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IV. REDUCTION TO A ONE-DIMENSIONAL MODEL

Using the step function as the pinning cross section,
problem reduces to one dimensional. Indeed the relative
rection of the dipole moment of the shrinking KT pair cann
change much. So

P~Rf ,Ri !5d~u i2u f !
1

Rf
p~Rf ,Ri !. ~12!

Hereui andui are polar angles andp(Rf ,Ri) is defined to be
the one-dimensional survival distribution. Factor 1/Ri is in-
troduced to later take into account the Jacobian of the tr
sition to polar coordinates. The one-dimensional density~of
dimension 1/cm3! is defined by

n~R![RN~R! ~13!

with the evolution given by

nf~Rf !5E
0

`

dRip~Rf ,Ri !ni~Ri !. ~14!

Consider a stripe of widths. This is the only area where
two pinning centers should be located in order to pin the t
vortices. The one-dimensional density of pinning centers

r̃[sr, ~15!

wherer is the 2D density. It is useful to imagine a lattic
along thex direction with lattice sizeb. A one-dimensional
lattice is bounded by two vortices at some initial distanceRi .
Let L[Ri /b be the number of lattice sites. The probability
having one pinning center on one site is given byf5br̃,
with f!1, then

p~Rf ,Ri !5
1

b
f 2~12 f !~Ri2Rf !/b22H Ri2Rf

b
11J

3u~Ri2Rf !u~Rf2Rmin! ~16!

by simple probability counting.
Now one takes the continuum~smallb! limit:

p~Rf ,Ri !5 r̃2e2 r̃ ~Ri2Rf !~Ri2Rf !u~Ri2Rf !u~Rf2Rmin!.
~17!

This expression is valid for not too high pinning density,
that pinning centers do not overlap with each other. Also
precision is limited by the step-function approximation f
the pinning cross section. In practice distance between str
pinning centers is much larger then the center’s sizez. De-

FIG. 4. Attraction to the parabolic potential. Trajectories a
straight lines. The direction changes abruptly at the boundary of
pinning center.
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1166 55DARWIN CHANG, BARUCH ROSENSTEIN, AND CHING-LONG WU
spite this the pinning density can be not very small, in p
ticular if the film is not very thin and short vortex line sti
can be pinned by few pinning centers.

Now assume that the initial pair distribution is given b
the Kosterlitz-Thouless formula Eq.~1!. The final distribu-
tion is

Nf~Rf !5
2z

z3Rf
~zr̃ !4TKT /T21er̃Rf$G~324TKT /T,r̃Rf !

2 r̃RfG~224TKT /T,r̃Rf !%u~Rf2Rmin!. ~18!

whereG is an incomplete gamma function. For very largeRf
compared toRpin one can show that the asymptotics
Nf(Rf) resembles the initial distribution since these pa
have actually a very large probability to be pinned. There
however very few such pairs to begin with under the con
tions of applicability of the Kosterlitz-Thouless distributio
formula. Smaller pairs which are very numerous disapp
very efficiently and quickly.

Let us estimate the number of surviving pairs larger th
a certain sizeR0. The size of the KT pairs directly observe
in Tonomura’s experiment7 is R0'1 mm. One can take
z;j;700 Å, s;2j, Rmin;5s, r;100~1/mm2!,9 z;0.1. We
integrate theNf(Rf) to get the density for surviving pair
which are larger thanR051 mm and found;0.1 ~pairs/mm2!
for initial T5TKT and 0.001~pairs/mm2! for T50.75 TKT ,
which corresponds to the average distance between pair
and 9.1mm, respectively. Note that the logarithmic intera
tion of vortices should be replaced by exponentially weak
ing one beyond distances of orderleff. This increases the
probability of pinning, but not significantly in the prese
case.

The minimal sizeR0 should be taken to be the resolutio
of the scanning SQUID microscope~SSM!,8,10 say R0'1
mm. Smaller loops produce very small magnetic fluxes ab
the sample and cannot be detected that way. For a Y-
Cu-O thin film with thickness;3000 Å, one can take
z;j;30 Å, s;2j, Rmin;5s, r;600 ~1/mm2!,9 z;0.1. As-
suming that quenching started fromT5TKT/2;40 K, one
gets a very small probability for such large loops accord
to the above formulas. However in this sample the den
may be too high for this simple formula to be correct and
addition some samples like in Ref. 8 are very small~hun-
dredsmm! which leads to large finite-size effects. Startin
from the next section we discuss the dense vortex pla
relaxation. We also briefly comment on the finite-size effe
in Sec. VIII.

V. QUENCHING OF VORTEX-ANTIVORTEX PLASMA

In previous sections we discussed the relatively sim
case when the system of vortices separates into well defi
vortex-antivortex pairs. At temperatures significantly belo
the KT phase-transition temperature,TKT , this is indeed the
case since pairs are not dense. However very close toTKT ,
the pairs become dense and this assumption breaks d
Above the transition, free vortices appear and one ha
plasma rather then a gas of vortex pairs. Even far below
temperature, if the current is present, it will unbind the pa
creating a situation which might be better described
weakly correlated plasma. The density of vortices and a
-
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vortices in these situations are typically much higher than
the previous case. This by no means leads to a larger num
of survivors, as we will see.

Quenching from plasma qualitatively proceeds as follow
At the initial stage the density of vortices is high and inte
action between vortices separated by relatively large
tances is very effectively screened. At this stage partic
which have very close neighbors separated by dista
smaller thanRmin of opposite charge approach each other a
annihilate. For more distant pairs, unlike the case of the
lute gas of vortex pairs considered earlier, the choice is
obvious and some spend time ‘‘choosing’’ between a f
options. Also other particles continuously influence the t
jectory which is now not a straight line. At this time most
these relatively close pairs annihilate, but few get pinned.
present circumstances this still does not ensure their surv
since~a! they can annihilate with remaining vortices of th
opposite charge or,~b! they can be depinned by remainin
free vortices of the same charge later.

After the first generation of fluxons annihilated or g
pinned, more distant vortices undergo ‘‘pairing.’’ They aga
most likely annihilate with each other, but occasionally cou
get pinned. They now move in an environment which co
tains not only empty pinning centers, but also centers w
pinned particles of the previous generation. Then again, a
this generation are pinned or annihilated, yet more dist
vortices pin or annihilate. If one takes the approximation t
while one generation is in motion, the vortices of later ge
erations are fixed in position, this can be thought of as
iterative process. This is reasonable as long as the time s
of each generation gets higher than the previous one. We
that, unlike the previous case, timing becomes importa
One of the events of this sort is shown in Fig. 5.

Now, in addition to the basic process of a vortex movi
towards antivortex and encountering a pinning center, th
appears the second elementary process: the vortex enc
tering a previously pinned KT pair. Such pairs can be ea
destroyed. In the next section we study these processes
then propose a quantitative way to describe the evolution
the system.

When a vortex passes close to a pinned pair multitude

FIG. 5. Typical event in simulation. Gray circles are pinnin
centers. Solid lines are trajectories of vortices, while the das
ones are trajectories of antivortices.
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55 1167DYNAMICAL ANALYSIS OF SURVIVAL O F . . .
possibilities exist. They are listed in order of decreasing
portance. For definiteness our vortex will be ‘‘positive.’’

~i! The vortex annihilates with pinned antivortex, whi
the other pinned vortex remains pinned~see trajectories de
noted by solid lines in Fig. 6!.

~ii ! The vortex passes by triggering the recombination
the pinned pair~trajectories marked by dashed lines in F
6!.

~iii ! It causes recombination and itself gets pinned~this is
not a frequent event!.

~iv! It annihilates with the antivortex, while another vo
tex gets depinned~this is also very rare!.

As far as the net result is concerned~i! and ~iii ! are
equivalent: one pinned vortex left. Processes~ii ! and~iv! are
also equivalent~one free vortex!, so we have to find two
cross sections. One can define a cross section,s1, which
describes events in which the recombination happened,
another cross sections2 to describe events in which not onl
annihilation happened, but, in addition, the remaining p
ticle escaped pinning.

Before we present the result of the simulation in the n
section, let us now qualitatively discuss interaction with
dipole. It becomes significant in the area in which the dip
field is comparable with external forceF. The dipole field
applies a force of orderq2l/s d

2, wherel is the distance
between the pinned vortex and antivortex andsd is the ef-
fective range of their dipole field. The ‘‘external’’ force i
q2/R. Thereforesd5ARl. The cross section for the pro
cesses in~iii ! and ~iv! are apparently small because the
cross section is of the orderRmin,l!R.

VI. SECOND ELEMENTARY PROCESS:
VORTEX PASSES A PINNED PAIR

The method we use to study interaction of a vortex wit
pinned pair is very similar to one used in Sec. III. We follo

FIG. 6. Motion of a vortex under the influence of both a co
stant force and the force of a dipole. Solid lines correspond to
s1 scattering, in which the incoming vortex annihilates with t
pinned antivortex, while its companion remains pinned. Das
lines denote trajectories of thes2 scattering events in which th
incoming fluxon kicks the pinned fluxon, depins it causing anni
lation. The fluxon itself though continues to move towards its co
panion. Dotted lines correspond to trajectories for which scatte
did not cause any effect: trajectory just bended a little bit.
-
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trajectories of the vortices under the influence of extern
force F applied by the second member of the KT pair at
relatively large distanceR away. We wish to investigate the
dynamics of the vortex and the dipole occupying two pinnin
centers and interactions between the three participating v
tices. A typical event is shown in Fig. 6.

It turns out that although the angle that the dipole mome
makes with the direction of motion is important~s1 is larger
when the pinned antivortex is closer to the incoming vorte
while in the opposite cases2 is dominant!, due to rotational
symmetry we will need only cross sections integrated ov
angles. We again approximate the influence of the seco
member of a KT pair by constant forceF. The cross sections
s1 and s2 can, in principle, depend on four variables
F5q2/R, the angleu that the dipole moment makes with the
direction ofF, dipole sizel and distanceRmin which char-
acterizes the size of the pinning force. The forceF is roughly
constant becauseR@l. These angle-integrated cross section
s1 ands2 as functions ofR for fixed l and as function ofl
for fixed R are plotted in Figs. 7~a! and 7~b!, respectively.

One observes that, forR andl which are not very small,
s1 is much larger. Only for smalll the cross sections2
dominates. It leads to an effective depinning and annihilatio
of pairs with small binding energy~l close toRmin!.

e

d

-
-
g

FIG. 7. ~a! Cross section of a vortex scattering of a pinned KT
pair as a function of dipole sizel. Solid line iss1, the vortex ends
up pinned, while the dashed line iss2, in which case it continues to
move towards its companion antivortex.~b! Cross sectionss1 and
s2 as functions of the external forceF5q2/R for l52Rmin .
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VII. THE RG ITERATION: DIAGRAMS
AND COMPARISON WITH SIMULATION

Having classified and studied the elementary process
volved, we are in a position to convert the iterative proc
outlined in Sec. V into a recursion equation forn(R), the
distribution of surviving KT pairs of sizeR. To define the
RG step, we first divide the vortices at the quenching ti
into classes. The precise definition is as follows. For a gi
initial configuration ~see Fig. 5! we first find the closes
vortex-antivortex pair, then, considering the rest of the v
tices only, one find the second closest pair, etc. The pro
continues until all the vortices and antivortices are distr
uted as pairs. We define a pair to belong to thei th ‘‘genera-
tion’’ if the pair’s size is betweenl i and l i11. It is natural to
define larger intervals for larger pairs. The division is rath
arbitrary and we checked that the results are not very se
tive to it.

The distribution of lengths for the overall vortex~and an-
tivortex! densityN is given by

f ~R!5cN2Re2AcNR, ~19!

where c is a numerical constant. This was discovered
simulation and probably can be proven mathematically. T
normalization is fixed by the requirement that the total d
sity should be equal toN. One can check tha
* 0

` f (R)dR5N. The dimensionless constant is found to
c;9.5.

At the beginning of stepi one has distributionni21(R) of
pinned KT pairs from the previous step, dens
r i5r22* 0

`ni21(R)dR of the empty pinning centers an
distribution f (R) ~for l i<R< l i11! of the new KT pairs that
start their attempts to annihilate. The difference between
old distributionni21(R) and the new oneni(R) will contain
few positive and negative contributions which are conveni
to write using diagrams somewhat similar to Feynman d
grams in many-body problems.

One first defines ‘‘propagators.’’ There are two kinds
these. The first one@see Fig. 8~a!# is the probability density
that a vortex moves past a distancex without encountering
any pinning center or pinned pair and then gets pinn

FIG. 8. Elements of the diagrams:~a! Propagation with pin-
ning at some point. ~b! Propagation without pinning. ~c! Scatter-
ing on a pinned dipole at a certain point with resulting destruct
of the dipole and pinning of the vortex.~d! Scattering on a pinned
dipole at a certain point with resulting destruction of the dipole,
the vortex is not pinned, it continues to move.
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around this point. The probability that a particle travels
distancex and encounters a pinning center in the interv
(x,x1dx) is

Dr~x!5rse2rsx. ~20!

The second propagator@Fig. 8~b!# denotes the probability
that a particle travels a distancex without encountering a
pinning center. It is just an exponent:

D̃r~x!5e2rpsx. ~21!

Note that whileDr(x) has a dimension of 1/cm,D̃r(x) is
dimensionless.

Thes1 type and thes2 type interactions of a vortex with
pinned dipoles can be graphically represented also by F
8~c! and 8~d!, respectively. The corresponding expressio
are

V15E
Rmin

`

dls1~l,R!n~l! ~22!

and

V15E
Rmin

`

dls2~l,R!n~l!. ~23!

Here we integrate over all possible pinned dipole sizesl,
andn~l! is the current distribution of these sizes. Note a
that the cross sections depend onR ~which is the distance of
the moving dipole to its distant companion!. So using Feyn-
mann diagrams language the vertex has many ‘‘flavors’l
and is nonlocal. Diagrams represent nonintersecting cla
of events in a systematic way.

As a simplest example, neglecting the interactions w
previously pinned pairs, the survival probability of Sec.
corresponds only to diagram Fig. 9~a! ~also this is the only
contribution at the first stage of RG, since no pinned dipo
were considered in Sec. IV!:

n0~r !5E
r

l1
dR f~R!H E

0

R2r

dx@Dr~x!Dr~R2r2x!#J ,
~24!

for r.Rmin . The expression in the curly brackets, after thex
integration is performed, coincides with the survival kern
p(R,r ) found in Sec. IV without diagrams. Note that prop
gators depend on the density of unoccupied pinning cen
and therefore should be ‘‘updated’’ at each RG step:

r i5r i2122E
Rmin

`

ni21~r !dr. ~25!

Note also that the density of free pinning centersri enters the
expressiononly via propagatorsDr(x). Since scattering off
pinned dipoles is a rather rare event, it is reasonable to
pand ins1 ands2. All the interactions with empty pinning
centers are however summed up to all orders ins . This is
the origin of the exponentials in the propagators. In this
per we limit ourselves to the first order ins1 ands2 only.
The complete list of diagrams is given in Fig. 9. Now w
turn to a description of these processes and the explicit
tails for various contributions.
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The expression of the contribution in Fig. 9~a! for arbi-
trary stepi ~lowest order in interaction with pinned pairs! is
just the contribution studied in Secs. II–V. It is positive, in
sense that it always adds pinned pairs. In terms of propa
tors with updated pinning densities it reads

FIG. 9. Diagrams for the RG step~x, y, z andR denote coor-
dinates!: ~a! Propagation with pinning at two centers.~b! One
interaction of thes1 type and pinning on another center.~c! One
interaction of thes2 type with subsequent pinning of both vort
ces. ~d! Both vortices finally got pinned and annihilated on a s
where previously a smaller KT pair was destroyed.~e! A small
pair is destroyed via thes2 process and vortices annihilate.~f!
One interaction of thes2 type occurs and the pair is subsequen
annihilated on the pinning center.
a-

D i
a~r !5E

l i21

l i
dR f~R!E

0

R2r

dxDr i21
~x!Dr i21

~R2r2x!

3u~R2r !. ~26!

The interaction with dipoles described by the cross sec
s1, Fig. 9~b! with subsequent pinning of both vortices o
different pinning centers adds both positive and nega
contributions to the survivors distribution. The positive on
the incoming vortex gets pinned itself by some other pinn
center at distancer . We sum over all possible dipole sizesz.
Another one is negative: while the interactions might n
always cause a pinning, as in~c!, it does always cause de
struction of the dipole, and we focus on those of sizer ,
summing over all possible final distancesz of incoming
pairs. Note that the range of integration ofz starts from 0
instead ofRmin , which means that the case when the inco
ing vortex fails to survive is taken into account@those end up
with zP~Rmin ,R! survive, while those withzP~0,Rmin! fail to
survive#:

D i
~b!52E

l i21

l i
dR f~R!E

Rmin

R

dzE
0

R2z

dxE
Rmin

l i21
dlD̃r i21

~x!

3„s1~l,R!n~l!…@d~z2r !u~R2r !2d~l2r !#

3Dr i21
~R2z2x!. ~27!

The s2 part of the correction is constructed in a simil
manner@Figs. 8~c!#. It is of higher order in pinning density
than thes1 part:

D i
~c!~r !5E

l i21

l i
dR f~R!E

Rmin

R

dzE
0

R2z

dxE
0

R2z

dy

3E
Rmin

l i21
dlDr i21

~x!„s2~l,R!n~l!…

3@d~z2r !u~R2r !2d~l2r !#Dr i21
~R2z2x!.

~28!

The other three types of diagrams, Figs. 8~d!–8~f!, are sim-
pler and are purely negative. They account for destruction
small KT pairs by vortices of the larger ones which pass
Subsequently the large pair annihilates by one of th
mechanisms:
D i
~d!~r !52E

l i21

l i
dR f~R!E

0

R2Rmin
dxE

Rmin

l i21
dlD̃r i21

~x!„s1~l,R!n~l!…d~l2r !D̃r i21
~R2Rmin2x!, ~29!

D i
~e!~r !52E

l i21

l i
dR f~R!E

0

R

dxE
Rmin

l i21
dl„s2~l,R!n~l!…d~l2r !D̃r i21

~R2Rmin!, ~30!

D i
~ f !~r !522E

l i21

l i
dR f~R!E

0

R2Rmin
dyE

Rmin

l i21
dlE

y

R2Rmin
dxDr i21

~x!„s2~l,R!n~l!…d~l2r !D̃r i21
~R2Rmin2x!. ~31!
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At the first order ins1 ands2 the diagram~a! should be
modified to take into account the possibility that, in addition
to avoiding pinning on centers, the vortex should avoid pin
ning on dipoles. So there is an additional facto
e2*dl(s1n1s2n)'12*dl(s1n1s2n). But this contribution
precisely cancels with the positive parts of diagrams~b! and
~c!. Therefore we arrive at the conclusion that the interactio
with vortices at first order gives negative contribution~de-
stroys pinned dipole pairs!.

All these contributions~diagrams! add up to give the den-
sity of dipoles at the beginning of the next step:

ni~r !5ni21~r !1 (
all the diagrams

D i~r !. ~32!

Factors of 2 reflect the fact that some diagrams are symme
ric with regard to vortex-antivortex exchange. It is assume
that the interaction with pinned dipole corrections are rea
sonably small. If this is not the case, probability conservatio
would be violated and one would have to sum up all th
orders ins1 ands2. As we will see, the practical situations
do not require this.

We performed up to 60 such iterations steps numerical
~so that sizes up to 30Rmin are covered! and compared the
result with direct numerical simulation of the system of size
28Rmin328Rmin . The cross sectionss1 ands2 were approxi-
mated by the following fit. ForR.l.2Rmin we use the as-
ymptotic form

s1~l,R!52.3AlR,

while for l0,l,2Rmin we use

s1~l,R!55.05Rmin~R/Rmin21!0.35Al/Rmin2l0 /Rmin,

which gives correct asymptotics for smalll. Here
l0[[R/(R21)]Rmin is the lower bound forl, beyond which
s1 vanishes ands2 dominates. The cross sections2 can be
fitted in all regions that we are interested in by

FIG. 10. Distribution of surviving KT pairs. Relatively small
pinning density r50.2 Rmin

22 and relatively large pair density
N50.04Rmin

22 . The dotted line is the infinite sample RG result, the
dashed line is the leading-order finite-size RG, while the solid lin
includes next-to-leading-order corrections.
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s250.59Rmine
20.59R/Rmin26.7l/Rmin117.

The results are presented in Figs. 10 and 11 for small
large pinning densities and quite large vortex pair dens
The dotted line is the first-order RG result, for the infini
sample. Direct comparison with the simulation results
relatively larger is impossible however, since finite-size e
fects are still important for the sample size we used. In
next section we show that the RG method can be ea
adapted to take into account these effects. This enables
claim that, despite the fact that we have not established
agreement of the RG calculation in the continuum limit~this
requires a surprisingly large lattice and is impossible at t
point, as we discuss next!, we believe the RG scheme give
reliable results for large samples.

Here we make few comments on the importance of d
ferent terms in the RG formula. The interaction with dipo
corrections seem to be unimportant in most cases ex
those at small distances. At small distances,s2 is very large
due to the instability of small dipoles and the major effect
therefore the destruction of small pairs. On the other ha
s1 is important only for large pairs. Further, as the initi
density of pairsN gets larger, the peak off (R) shifts to-
wards smallerR, thus a larger fraction of pairs is inside th
Rmin region from the beginning. This reduces the total s
vival probability.

VIII. NUMERICAL SIMULATION:
THE EFFECT OF BOUNDARIES

For low pinning density,r50.2Rmin
22 ~see Fig. 10! the RG

results and numerical simulation results agree very well e

e

FIG. 11. Distribution of surviving KT pairs. Larger pinning den
sity. r50.4 Rmin

22 and relatively large pairs densityN50.04Rmin
22 .

Same notations as in Fig. 10.
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for the vortex pair density as large asN50.04 Rmin
22 . The

other simulation parameters are: the pinning center’s siz
a50.2Rmin . The location of pinning centers as well as of t
vortices is randomly generated~a sample contains 104 con-
figurations!. We tried various boundary conditions. An a
tempt to employ periodic boundary conditions ran into
problem. We found that for large vortex density the syst
tends to reach some stable configuration with some vort
~usually one of them! not sitting on any pinning center, whil
all the others do. In these cases we do not know how to d
with it. If there are no pinnings, this will not happen becau
of instability to annihilation. This is the case for small vorte
density, but for large vortex density it dominates, and ther
simply no way to get reasonable data from it. We theref
used a confining boundary condition with a confining pote
tial introduced at the boundary.

To describe the finite-size effects we still can use the
erative scheme, but the distributionf (R) changes consider
ably for small samples. In addition to the exponentially d
creasing ‘‘bulk’’ contribution there appears a very slow
decreasing ‘‘boundary’’ contributionf'(Ar/L)R21, where
L is size of the sample. In our samples,L528Rmin , they
account for half of the survivors. Performing the fini
sample RG we get results denoted by the solid lines in F
10 and 11.

Furthermore, we have neglected the curvature of traje
ries ~see Fig. 5!. In principle the curving of paths should b
considered either by using an effective pinning density or
an effective propagator. Large bending is possible whe
pair nearby is annihilated. It may not be true that most of
‘‘initial pairs’’ as defined before are still well defined at th
final stage of running.

Numerically, take the situation in Y-Ba-Cu-O~Ref. 9!
considered before, takej'30 Å, Rm'5j5150 Å, and
r'600 mm22'0.1 Rm

22. We estimate the vortex densityN
using Eq. ~4!, D25(j2/2pz)~2TKT/T21!, whereD is the
mean distance between pairs at temperatureT as mentioned
before. ForT5TKT/2,D

253j2/2pz'Rm
2 /50z. If z'0.1, we

haveD2'Rm
2 /5 andN51/D2'5Rm

22, this is too large com-
pared to the pinning density and we expect very few p
nings, since essentially most of the pairs are already
close to be pinned. Forz'0.01, we haveD2'2Rm

2 and
N51/D2'0.5Rm

22. By numerical integration we found th
total survival density to be roughly 531025Rm

22'0.1mm22.
As expected, the survival density in the observable reg
i.e., larger than the size of the pickup loop, is small unl
the experiment with smaller pickup is feasible. In addition
is very likely that when the finite-size effect are taken in
account properly, the survival probability of the large pa
might be large enough to explain the observed pinnings.

IX. CONCLUSION

In this paper we calculated the probability and size dis
bution of the KT pair surviving after quenching. B
‘‘quenching’’ a reduction of temperature has been mea
There are two qualitatively different cases. The case of r
KT pairs which do not interfere with each other. This case
simple enough to be treated analytically after the basic p
cess of a single vortex attracted to a pinning center in a fi
of antivortex is studied. A more complicated case is wh
is
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vortices and antivortices are dense and for a plasma. T
case is complicated due to multivortex processes and a m
complicated renormalization-group approach should be u
It requires a study of the vortex interacting with an alrea
pinned KT pair.

Now we discuss a practical question of how fast t
quenching should be in order that pinned pairs survive
should be fast enough so that the thermal depinning pro
will be ineffective to destroy the pairs. It is enough that ju
one member of the pair is depinned: the pair will ve
quickly annihilate. The time scale of annihilation of KT pai
without pinning is very short. To be explicit, the time need
for vortex and antivotex separated byR to come to the dis-
tance Rmin after which they are sure to annihilate
~R22Rmin

2 !/4mq2. Taking the mobility in Y-Ba-Cu-O films
from Refs. 17 and 18,m51/(hd)'531013 s/kg, where
d;3000 Å is the thickness of the film. Then the annihilatio
time scale is;1025 s for R51 mm.

For thermal depinning to be completely ineffective tem
perature should be below pinning energyU. Therefore it is
very difficult to completely avoid the loss due to therm
depinning. However when one starts at temperatures sm
thenU the thermal depinning is not large and cooling can
done rather slowly. Due to pinning, the distribution of K
pairs will not follow adiabatically the equilibrium distribu
tion.

Another way to create vortex-antivortex plasma is to a
ply external current.2 This can be done at arbitrarily low
temperature. The quenching in this case is just a reductio
the external current. The formulas presented in previous
tions apply to this case. One can also consider more com
cated situations of ac current, etc. The external magn
field created additional vortices~organized into Abrikosov
lattice or liquid phases19!. The vortex-antivortex plasma ex
ists alongside these excess vortices. In this situation, h
ever, the annihilation process is greatly accelerated: the
tivortex easily finds a vortex to be annihilated.

To conclude, we developed analytical and numeri
methods to quantitatively describe the irreversible dynam
of vortex pinnings. The Aharonov-Bohm experiments of d
rect observation of the KT pair can be understood as a re
of simultaneous pinning of both vortex and antivortex. T
methods can be applied to a great variety of other situati
involving both point pinning and the vortex-antivortex ann
hilation processes. The surviving Kosterlitz-Thouless pa
can be directly observed using experimental techniques
scanning SQUID microscope. In addition, KT vortices d
scribe any kind of topological defect in 2D, so that dynam
cal processes studied here occur in great variety of sim
systems~vortices in superfluid films, topological defects
2D lattices, including the Abrikosov vortex lattice in thi
films, etc.3!.
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