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Dynamical analysis of survival of Kosterlitz-Thouless pairs due to pinning
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We investigate the process of annihilation between vortices of opposite flux in superconducting thin films in
the presence of randomly distributed pinning centers. The number and distribution of pairs of vortex-antivortex
that avoid annihilation due to pinning on two pinning centers is estimated analytically and compared with
numerical simulations. The situation can be realized, for example, when the system is quenched from high
temperaturgabove or below the Kosterlitz-Thouless tempergturewhen the current is reduced abruptly.
Qualitatively two different cases can be distinguished. The simpler one is when the pairs are well separated. In
this case, the problem under mild assumptions can be solved analytically. When the vortex pairs are not very
rare, the situation is much more complicated because a great variety of processes become significant. We
isolate the important ones and construct an iteratigal-space renormalization-grougcheme to describe the
behavior of the interacting multivortex system. Some dynamical aspects of pinning and vortex motion are
discussed[S0163-182807)04402-G

[. INTRODUCTION the pairs upon cooling to the temperatures in which
quenched disorder exists, while thermal creation of addi-
The Berezinskii-Kosterlitz-Thoules&kT) phenomena in tional pairs is practically absent. The disorder will be ideal-
superconducting thin films have been studied intensely botized as random distribution of identical pinning centers, al-
theoretically >  and experimentally in lowF,  though generalization to other types of pinning including
superconductofsas well as in highF, materials> The basic  correlated disorder is simple.
object is the bounded KT pairs of @earl'$) vortex and Quite independently of the Hitachi group experiments, a
another vortex of opposite flux directidthe “antivortex”).  high-resolution scanning superconducting quantum interfer-
Their unbinding by current in the low-temperature phase creence devicdSQUID) microscopg SSM) technique has been
ates nonlineat-V characteristics, while the thermal unbind- developed recentl§1° This allows, in principle, direct ob-
ing causes the KT phase transition. Above the critical temservation of KT pairs. Indeed, some of the published
perature Ty of this phase transition, Ohmic flux-flow magnetic-field distributions on the surface of thin Y-Ba-
resistivity with typical KT temperature dependence has beeiCu-O films look like KT pairdsee Ref. 8, Fig. &) in which
observed. The dc and ac transport experiments however meapparently “black” and “white” regions contain a fluxon
sure effects of KT pairs only indirectly through their statis- and an antifluxoh These experiments were carried out at
tical, macroscopic effect. (liquid-helium) temperatures which is even smaller com-
In a remarkable series of experiments, using thepared to the correspondinigit~90 K. Therefore, the possi-
Aharonov-Bohm effect of electron beams scanning the magpility of thermal excitation should be completely excluded.
netic field on the surface of a superconducting fillomog-  Most likely pinning is the only explanation for the survival
raphic pictures of some apparent KT pairs were obtainedof the pairs.
One clearly sees a unit of flux leaving the Pb superconduct- A priori the probability that a pair will survive due to
ing film and returning back at a distance of abouufh.  pinning seems rather small. Most of the KT pairs are tightly
According to the Boltzmann distribution there should bebound close pairs. In order to be pinned it is not enough to
practically no such large KT pairs since the experimentakencounteonepinning center. If only one member of a pair is
temperature was that of liquid He, which is far belGyyr pinned the second member will simply approach the same
(by a factor of about 2 Moreover, when a small magnetic pinning center and the pair will annihilate at the center. It is
field was applied the pair was found among many singlenecessary that a second pinning center will trap the second
vortices oriented along the field. The author’s interpretdtion member ofthe same pairt simultaneouslylt is not obvious
is that the pair survived cooling because the vortex and thbow large is the probability that this will happen. We will
antivortex were trapped by two pinning centers and was noshow that, while only some events were spotted in the Hita-
allowed to move closer to annihilate. This picture has notchi experiments, which did not attempt to measure how often
been made more quantitative since then. In this note we corthese events occur, the probability is large enough and is
sider quantitatively the dynamical problem of the survival of consistent with the above observations. The picture that we
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get is that a quenched superconductor film surface has magthere3B=1/kT. The fugacity of the pair ig=e?*, whereu
netic dipoles of quite constant size. The number of dipoles iss the chemical potential for creating a vortex but not con-
very sensitive to the density of the pinning centers and théaining the contributions from the vortex interaction. The
conditions that determine the density of vortices. It is notcutoff scale { is close to the coherence length of a
strongly dependent on dynamical effects like vortex mobilitysuperconductot. The chemical potential is related, but not
unless the dynamical system is pushed to extreme situationsqual to thecore energyE .~ w£d(H 2/87), whered is the

The presentation is organized as follows. First in Secswidth of the film andH. is the thermodynamic critical field.
[I-1V we investigate the pinning of well separated KT pairs There are other “geometrical” factors reflecting the short-
after quenching. In this case one can neglect the influence @nge structure of the vorté%.The “charge” q is obtained
other pairs on a given pair and, as we show, dynanfteal  from the asymptotic form of the interaction of Pearl’s vorti-
ing) effects are small. In Sec. Il, we formulate the problemces. The force between a vortex and an antivortex separated
by defining a surviving distribution function: a probability by distanceR; is®
that a single KT pair initially separated by distariRewill be
pinned when they are at distanRe. In Sec. lll, attraction of q°
a single vortex by a pinning center in the presence of con- F= ﬁl &)
stant external forcd- applied by an antivortex is studied.
This is the basic elementary process. We find a simple rulewith g?=2d® 3/(47\?)? where\ is the penetration depth
the vortex pinning cross sectienis zero ifF <F,,, where  and®,=hc/2e.
Fmax is the maximal force exerted by a pinning center, while  The distribution can be rewritten in terms of the KT tran-
o~2a (a is the radius of the pinning cenjevhenF>F,,.  sition temperature since approximatel;=q%4 up to
In Sec. IV, we calculate the survival distribution function. small RG corrections of order (in superconducting films
This is done analytically in the low pinning density case byis small?):
reducing the model to one dimensional. The results of nu-
merical simulations for this problerffor any density are 2z (R 4Tkt /T
given. We then compute the surviving fraction in the case of N;i(Rj)= ? (?)
qguenching from the temperature beldvy; .

~In Secs. V-VII we address the more complicated case ofjote thatN has dimensions of 1/chbut due to translational
pinning involving many vortices and pinning centers. If onegng rotational symmetries it depends on single quantity
quenches from a temperature close to or abbyeor con-  R.=|Ri| only.
siders a case of current flowing in the fifd one encounters After quenching fromT (<Ty;) to a very low tempera-
a situation that vortices initially are not obviously separatedyre (taken to be zero throughout the discussitire vortices
into closely bound pairs. Instead, there is a constant densityside the pairs start moving towards each othef I§ not

of vortices and antivortices. After quenching they start tOyery close toT,;, vortex pairs are well separated. In this
move and annihilate with each other. Some of them argase the mean separation between the pairs,

pinned, depinned... . Unlike the previous problem, the time

dependencédynamic$ is important here. We outline in Sec. 2 (2Tr

V an iterative[renormalization-grougRG)] scheme to un- 2~ ( - )
derstand these processes. The RG step requires investigation T

of another elementary process: motion of a vortex through oj larger then the mean dipole sizel(Ty/T—1)%. This

near a pinned K.T pair which is_ given in_Sec. Vl.In Sec..VII, means that the dipole “electric” field from other KT pairs
the diagrammatic representation of various processes is Pr®uhich, in two dimensiong2D) falls off as 1f2] is very

posed. In Sec. VIIl numerical simulation results are pré-gya ang practically does not deflect the particles from the

sented and compared with the model. Finite-size effects arg iy jine motion towards each other. If not for the pinning
briefly discussed. Section IX contains concluding remarkscenters, the KT pairs would have all annihilated very soon

The characteristic quenching tinidetermining the thermal (see an estimate in Sec. )XBut if the pinning density is

depinning processs estimated. A nonthermal mechanism 10,40 enough there exists a possibility that both particles will

produce a population of vortices, like external current at Iowbe pinned at some distange from each other. We call this

temperature, is also briefly discussed. In this case quenching aniity density the survival distributioR(R; ,R;). The
IS an abrupt_dlsappearanpe or redugt!on of .the external Cukq| distribution of the surviving pair will be given by
rent so that it cannot depin the surviving pairs.

()

4

27z

II. SURVIVAL DISTRIBUTION FUNCTION Nf(Rf):f dRiP(R¢,R)Ni(R;). ®)
FOR PINNING OF KT PAIRS

Due to rotational symmetry the survival distribution depends
only on three out of four variables: the lengfRsandR; and
the relative angle between thenanslational symmetry had
héllready been taken into account in the definition of the func-
tion). Before calculating this function we discuss an ideal-
ized model of pinning of a vortex in the external homoge-

o 2Z 2R neous field. This field is produced by the antivortex
Ni(R)=—ze i’e, (1) _

companion of the vortex.

Assume at some initial time we have some initial distri-
bution of vortex pairsN;(R). For example, if the KT pairs
are generated thermally well below the KT phase-transitio
point, this is given by a Boltzmann’s factbf:'?
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F(r) (in units of Fmax)

1
o\s FIG. 1. Attraction of a vortex to “inverted
Gaussian” type pinning center under influence of
. . force F. The two fixed points are intersections of
B — T r (in units of a) the constant force line with the potential. Cases
of small and large force are shown.
-0.5 \ /
gl VY
I1l. PINNING OF A VORTEX IN HOMOGENEOUS FIELD dx
. . T T . _:MFtota (9)
The potentials profiles of “pointlike” pinning centers in dt

low and highT, superconductors are still not well
understood? One estimates these potentials, or forces rathe
applied on vortices using various indirect methods: flux flow,

IWhere,u is mobility. The mobility is well known from the
flux-flow experiment. Of course one might doubt that, on
magnetic noise due to thermal depinning very short distances, this is still valid. However for a simple
creep. .. *and, in some cases, direct observation of pin’_rough estimate, one can assume that(@yis correct on all
ning centers. There are several mechanisms of pinning. AHI® scales with thi same ct_)efﬂfuqnt I;or Rmi“>i~§’ one q
important one is simply the advantage that vortices can tak§2N approximate the attractive force between the vortex an
by placing the core inside smattompared to relevant core antivortex by a constant. In that case, it is easy to analyze the

siz® regions of a sample in which superconductivity is de-Set of autonomous differential equations in £®). The so-

stroyed. A popular choice of the short-range pinning potenlution has two fixed pointdsee Fig. 1 (x,,0) and (x;,0),
tial is the “inverted Gaussian” one: X1<X,. They are on the axis, given by solving the equa-

tion:
U(r)=—Uge /& (6)
0 : Fio=0

The typical value of the ranga is the coherence lengthy  or, F=F(r)=—VU(r), see Fig. 1 for the inverted Gauss-
while the minimal energyJ is of the order of condensation ian case.
energywd&%(H 2/87). This leads to the maximal force ap-  The first one,x;, closer to the center, is a stable fixed
plied around distanca from the center to be of the order point, whilex,, close to the edge of the pinning potential, is
Fmax=md&(H 2/87). We investigated several types of short- unstable(Fig. 2. WhenF =0 obviously any vortex will be
range potentials and found that, in fact, for most purposepinned. In this case&;=0, while x,—o. At small F the at-
exact shape is not important: just two characteristics ar¢ractor moves a bit from zero, whibe, very quickly moves
needed: the cross section, giving the effective range of theo the periphery of the potential. Correspondingly the cross
pinning center and the maximal force.

Suppose on the way towards its companion antivortex a

L7 i Impact parameter y/2a
vortex encounters pinning center located at the origin. The

force that the antivortex applies on the vortex is given by Eq. 32
(2). First of all, if the maximal force that the pinning center 3
can producef . IS smaller then this, pinning is impos- %&
sible. This determines the minimal distance at which the x/2a
problem becomes nontrivial: -2 -1 0 1 2

q2

Rmin= F_ =A¢. (7)

ma; Impact parameter y/2a
Typically the numerical constand is larger than 1, but o5
should not be very large according to the above estimates. In N
simulations and numerical estimates we will teke5. We ﬂ\\
choose it to be oriented in the positive direction alongsthe % x/2a
axis. The overall force felt by the vortex is therefore -2 -1 0 1 2

FIG. 2. Pinning on the “inverted Gaussian” potential(a) (the
top picturg. The case of the small driving forde. The gray lines
represent trajectories of the vortguinned or escaping the center

Ignoring the Magnus-like forc®, the vortex motion is  The black line is a separatrix.(b) (the bottom picture The same
approximately described (% for the larger driving force.
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FIG. 4. Attraction to the parabolic potential. Trajectories are

0 straight lines. The direction changes abruptly at the boundary of the
0 0.25 0.5 0.75 1 1.25 1.5 1.75 pinning center.

external force (in units of Fmax)
IV. REDUCTION TO A ONE-DIMENSIONAL MODEL

FIG. 3. Pinning cross sectionr for the “inverted Gaussian” Using the step function as the pinning cross section, the
potential as function of the driving forde. problem reduces to one dimensional. Indeed the relative di-

) ) - ) ~_ rection of the dipole moment of the shrinking KT pair cannot
section very quickly stabilizes at about twice the pinningchange much. So

center size, see Fig(&®. For F close to the maximal force
Fmax: Fig. 2b), x; approaches, (see Fig. 1 and the cross 1

section grows very slowly. Finally, a8 becomes stronger P(R¢,Ri)=6(6,— 0y) R P(R¢.Ri). (12)
than F,,, the pinning center is no longer able to trap the . .

fluxons, o will abruptly drop to zero, and no fixed point Hereé andé are polar angles ang(R;,R;) is defined to be
exists, see Fig. 3. The mild divergenceFat0 (large sepa- the one-dimensional survival distribution. FactoRlis in-
rations is due to the exponential tail of the pinning potential troduced to later take into account the Jacobian of the tran-
and is insignificant. One can approximate the cross sectiofition to polar coordinates. The one-dimensional dersity
o(F) for inverse Gaussian potential by a step function dimension 1/cri) is defined by

o(F) =7 0(F o= F), 10 NRI=RNR) 13

] . with the evolution given by
where in the present case~4a. If the potential has a clear

cut edge, therr will resemble a step function even more. o

Upon investigating several potentials, we found that for ni(Ry)= 0 dRp(R,R)N;(R;). (14)
finite ranged potentials, there seems to be a step function
behavior fora(F). There is a finite jump just & = F . If Consider a stripe of widtl. This is the only area where

the pinning force~ ;, is not strong enough, simply none will two pinning centers should be located in order to pin the two

get pinned, ands(r)=0, this corresponds to the<Rpi,  vortices. The one-dimensional density of pinning centers is
case. Nevertheless, once it becomes strong enough to pin

something, essentially all the fluxons coming into the range p=op, (15

of the potential could not escape. The pinning cross section . . . . . .
does not grow slowly from zero but suddenly jumps to awherep IS th'e 2[.) den_5|ty. It. IS u'seful to imagine a'lattlce
finite value. along thex direction with lattice sizé. A one-dimensional

o ; : lattice is bounded by two vortices at some initial distaRge
e e e o 27t bo he number fatice sies. The probabty f
having one pinning center on one site is given faybp,
with f<1, then
U(r)=—Ugt -2 12 11
(r=- o+¥r (11 1 R—R;
p(Rf,Ri>=5f2<1—f)<RiRﬂ’“(—b +1]
for r<a, and zero outside the circle=a, the dynamics is
easily solved. It can be shown that the trajectory of the par- X O(Ri—Ry) 0(R; — Rpin) (16)
ticle inside the circle is just a straight line. Particles are firs
moving parallel to the external field for>a and then, once
entering the circle, change direction and follow straight lines
which intersect thex axis at x;=a(F/F.), where _~2.~F(R-R)(p. _ _ _
Fmax=2U,/a is the maximum pinning force at the edge, see P(R R)=p%e "™ (R~ R (R~ Ro) 6(R Rm‘a’?)
Fig. 4. In this case the second fixed point is located at
X,=—a and the cross section is exactlg.2 This expression is valid for not too high pinning density, so
We therefore, as a first approximation, tak@F) to be a  that pinning centers do not overlap with each other. Also its
step function with certair which plays the role of the ef- precision is limited by the step-function approximation for
fective pinning range. This simplifies the calculation of thethe pinning cross section. In practice distance between strong
survival distribution considerably. pinning centers is much larger then the center’s gizBe-

tby simple probability counting.
Now one takes the continuufsmall b) limit:
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spite this the pinning density can be not very small, in par- N S y
ticular if the film is not very thin and short vortex line still S , © .1:",
can be pinned by few pinning centers. O \}‘\O © ) © & o
Now assume that the initial pair distribution is given by 4 - O\oO
the Kosterlitz-Thouless formula Eq@l). The final distribu- O W
tion is O ! O
1
2z ‘7 \
Ni(R)= z3g- (£5) 1 T 2P (3= 4Tyt /TRy v _ ©
f A,
—pRi['(2=4Tyr /T, pR)}IO(R —Rpyin) . (18) R
wherel is an incomplete gamma function. For very lafe ”.f I}‘[ .
compared toR;;, one can show that the asymptotics of “\ A A :\k
N;:(R¢) resembles the initial distribution since these pairs o - X
have actually a very large probability to be pinned. There are OO O
however very few such pairs to begin with under the condi- Q ey kel O

tions of applicability of the Kosterlitz-Thouless distribution

formula. Smaller pairs which are very numerous disappear FIG. 5. Typical event in simulation. Gray circles are pinning

very efficiently and quickly. centers. Solid lines are trajectories of vortices, while the dashed
Let us estimate the number of surviving pairs larger tharPnes are trajectories of antivortices.

a certain sizd,. The size of the KT pairs directly observed vortices in these situations are typically much higher than in

in Tonomura’s experimehtis Ry~1 um. One can take ; :
{~£~700 A, 0~2¢ R ~50, p~100(1/um?)® 2~0.1. We g}esﬁi\?i\cgf; c;a;svev.eTVCilﬁ ggerfo means leads to a larger number
integrate theN(Ry) to get the density for surviving pzairs Quenching from plasma qualitatively proceeds as follows.
which are larger thaR,=1 um and found~0.1 (pairsm®) At the initial stage the density of vortices is high and inter-
for initial T=Tyr and 0.001(pairsum®) for T=0.75Txr,  action between vortices separated by relatively large dis-
which corresponds to the average distance between pairs 3#nces is very effectively screened. At this stage particles
and 9.1um, respectively. Note that the logarithmic interac- which have very close neighbors separated by distance
tion of vortices should be replaced b%/ exponentially weakensmaller tharR,,;, of opposite charge approach each other and
ing one beyond distances of ordef". This increases the annihilate. For more distant pairs, unlike the case of the di-
probability of pinning, but not significantly in the present lute gas of vortex pairs considered earlier, the choice is not
case. obvious and some spend time ‘“choosing” between a few
The minimal sizeR, should be taken to be the resolution options. Also other particles continuously influence the tra-
of the scanning SQUID microscop@&SM),81° say Ry~1  jectory which is now not a straight line. At this time most of
um. Smaller loops produce very small magnetic fluxes abovéhese relatively close pairs annihilate, but few get pinned. At
the sample and cannot be detected that way. For a Y-Baresent circumstances this still does not ensure their survival
Cu-O thin film with thickness~3000 A, one can take since(a) they can annihilate with remaining vortices of the
{(~&~30 A, 0~2¢ Ryy~50, p~600 (1/um?),® z~0.1. As-  opposite charge oi(p) they can be depinned by remaining
suming that quenching started frof=T,/2~40 K, one free vortices of the same charge later.
gets a very small probability for such large loops according After the first generation of fluxons annihilated or got
to the above formulas. However in this sample the densityinned, more distant vortices undergo “pairing.” They again
may be too high for this simple formula to be correct and inmost likely annihilate with each other, but occasionally could
addition some samples like in Ref. 8 are very snthlin-  get pinned. They now move in an environment which con-
dreds um) which leads to large finite-size effects. Starting tains not only empty pinning centers, but also centers with
from the next section we discuss the dense vortex plasmpinned particles of the previous generation. Then again, after
relaxation. We also briefly comment on the finite-size effectghis generation are pinned or annihilated, yet more distant

in Sec. VIII. vortices pin or annihilate. If one takes the approximation that
while one generation is in motion, the vortices of later gen-
V. QUENCHING OF VORTEX-ANTIVORTEX PLASMA erations are fixed in position, this can be thought of as an

iterative process. This is reasonable as long as the time scale

In previous sections we discussed the relatively simpleof each generation gets higher than the previous one. We see
case when the system of vortices separates into well definatlat, unlike the previous case, timing becomes important.
vortex-antivortex pairs. At temperatures significantly belowOne of the events of this sort is shown in Fig. 5.
the KT phase-transition temperatuig, this is indeed the Now, in addition to the basic process of a vortex moving
case since pairs are not dense. However very cloSg#o  towards antivortex and encountering a pinning center, there
the pairs become dense and this assumption breaks dowappears the second elementary process: the vortex encoun-
Above the transition, free vortices appear and one has gring a previously pinned KT pair. Such pairs can be easily
plasma rather then a gas of vortex pairs. Even far below Kidestroyed. In the next section we study these processes and
temperature, if the current is present, it will unbind the pairsthen propose a quantitative way to describe the evolution of
creating a situation which might be better described ashe system.
weakly correlated plasma. The density of vortices and anti- When a vortex passes close to a pinned pair multitudes of



55 DYNAMICAL ANALYSIS OF SURVIVALOF ... 1167

Impact Parameter (R ;)
Cross Section (R.;)
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210 2.'2 ’ 2:4 2f6 2.8 3.0 3.2
x (in units of R_, ) (a) A (in units of R ;)

FIG. 6. Motion of a vortex under the influence of both a con-
stant force and the force of a dipole. Solid lines correspond to the
o, scattering, in which the incoming vortex annihilates with the
pinned antivortex, while its companion remains pinned. Dashed
lines denote trajectories of the, scattering events in which the
incoming fluxon kicks the pinned fluxon, depins it causing annihi-
lation. The fluxon itself though continues to move towards its com-
panion. Dotted lines correspond to trajectories for which scattering
did not cause any effect: trajectory just bended a little bit.

Cross Section (R_;)

possibilities exist. They are listed in order of decreasing im- 2
portance. For definiteness our vortex will be “positive.” ] e

(i) The vortex annihilates with pinned antivortex, while 0 A

the other pinned vortex remains pinnéske trajectories de- 4 6 8 10 12 14 18

noted by solid lines in Fig. )6 (b) R (in units of R
(ii) The vortex passes by triggering the recombination of

the pinned paiftrajectories marked by dashed lines in Fig.  FIG. 7. (a) Cross section of a vortex scattering of a pinned KT

min)

6). pair as a function of dipole size. Solid line iso4, the vortex ends
(iii ) It causes recombination and itself gets pinifgnis is  up pinned, while the dashed lineds, in which case it continues to
not a frequent evet move towards its companion antivortex(b) Cross sections; and

(iv) It annihilates with the antivortex, while another vor- o, as functions of the external forde=g%R for A=2R .
tex gets depinnethis is also very rane

As far as the net result is concernéd and (i) are trajectories of the vortices under the influence of external
equivalent: one pinned vortex left. Proceségsand(iv) are ~ force F applied by the second member of the KT pair at a
also equivalentone free vortex so we have to find two relatively large distanc® away. We wish to investigate the
cross sections. One can define a cross sectignwhich ~ dynamics of the vortex and the dipole occupying two pinning
describes events in which the recombination happened, arggnters and interactions between the three participating vor-
another cross sectiam, to describe events in which not only tices. A typical event is shown in Fig. 6.
annihilation happened, but, in addition, the remaining par- It turns out that although the angle that the dipole moment
ticle escaped pinning. makes with the direction of motion is importafat; is larger

Before we present the result of the simulation in the nextvhen the pinned antivortex is closer to the incoming vortex,
section, let us now qualitatively discuss interaction with awhile in the opposite case, is dominant, due to rotational
dipole. It becomes significant in the area in which the dipoleSymmetry we will need only cross sections integrated over
field is comparable with external forde. The dipole field —angles. We again approximate the influence of the second
applies a force of ordeg?\/o3, where\ is the distance member of a KT pair by constant forée The cross sections
between the pinned vortex and antivortex angis the ef- 01 and o, can, in principle, depend on four variables:
fective range of their dipole field. The “external” force is F=0"/R, the anglef that the dipole moment makes with the
q%R. Thereforeaq=RX. The cross section for the pro- direction ofF, dipole sizex and distancéRp, which char-
cesses inii) and (iv) are apparently small because their cterizes the size of the pinning force. The fofcis roughly

cross section is of the ord&,;;<\<R. constant becaug®>\. These angle-integrated cross sections
o, and o, as functions oR for fixed N and as function of
VI. SECOND ELEMENTARY PROCESS: for fixed R are plotted in Figs. (&) and 1b), respectively.
VORTEX PASSES A PINNED PAIR One observes that, f&® and\ which are not very small,

o is much larger. Only for smal\ the cross sectionr,
The method we use to study interaction of a vortex with adominates. It leads to an effective depinning and annihilation
pinned pair is very similar to one used in Sec. lll. We follow of pairs with small binding energg close toR;;).
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— o _ around this point. The probability that a particle travels a
distancex and encounters a pinning center in the interval
(X, x+dx) is
a b _
D,(x)=poe P, (20

The second propagatdFig. 8b)] denotes the probability
that a particle travels a distancewithout encountering a
—e —_—O— pinning center. It is just an exponent:

. 4 Bp(x)ze*”p‘”‘. (21

Note that whileD ,(x) has a dimension of 1/cn5p(x) is
FIG. 8. Elements of the diagrams(a) Propagation with pin-  dimensionless.
ning at some point.. (b) Propagatign wit.hout.pinning. (c) Scatter- . The o, type and ther, type interactions of a vortex with
ing on a pinned dipole at a certain point with resulting destructlonpinned dipoles can be graphically represented also by Figs.

of the dipole and pinning of the vortex.(d) Scattering on a pinned 8(c) and 8d), respectively. The corresponding expressions
dipole at a certain point with resulting destruction of the dipole, butare '

the vortex is not pinned, it continues to move.

VIl. THE RG ITERATION: DIAGRAMS V1:J dhoi(N,R)N(N) (22
AND COMPARISON WITH SIMULATION Rmin

Having classified and studied the elementary process in@nd

volved, we are in a position to convert the iterative process w0

outlined in Sec. V into a recursion equation fiofR), the Vl:J dho,(N,R)N(N). (23
distribution of surviving KT pairs of siz&k. To define the Rmin

RG step, we first divide the vortices at the quenching timeH
into classes. The precise definition is as follows. For a give
initial configuration (see Fig. % we first find the closest
vortex-antivortex pair, then, considering the rest of the vor
tices only, one find the second closest pair, etc. The proce
continues until all the vortices and antivortices are distrib-
u_teq, as pairs.. We _define a pair to belong to itj’ne“genera— of events in a systematic way.
tion” if the pair's size is betweem; andl, ;. It is natural to As a simplest example, neglecting the interactions with
define larger intervals for larger pairs. The division is rather !

. reviously pinned pairs, the survival probability of Sec. IV
fil\r/kgt:gri)t/ and we checked that the results are not very Sens@orresponds only to diagram Fig(a (also this is the only

L contribution at the first stage of RG, since no pinned dipoles
_ The dlstr|b.ut|on.of Igngths for the overall vortéand an- were considered in Sec. )V
tivortex) densityN is given by

ere we integrate over all possible pinned dipole sizgs,
Mnd n(\) is the current distribution of these sizes. Note also
that the cross sections dependRiiwhich is the distance of
‘the moving dipole to its distant companjoiso using Feyn-

ann diagrams language the vertex has many “flavoxs”
and is nonlocal. Diagrams represent nonintersecting classes

I1 R-r
no(r)=Jr de(R)[ Jo dx[Dp(x)Dp(R—r—x)]},
(24)

where c is a numerical constant. This was discovered byfor r >R.,,. The expression in the curly brackets, after he
simulation and probably can be proven mathematically. Thentegration is performed, coincides with the survival kernel
normalization is fixed by the requirement that the total denp(R,r) found in Sec. IV without diagrams. Note that propa-
sity should be equal toN. One can check that gators depend on the density of unoccupied pinning centers
Jof(R)dR=N. The dimensionless constant is found to beand therefore should be “updated” at each RG step:
c~9.5.
At the beginning of step one has distributiom; _;(R) of 0
pinned KT pairs from the previous step, density Pi:Pi—l_Zf Ni—g(r)dr. (25)
pi=p—2f3ni_1(R)dR of the empty pinning centers and mn
distribution f(R) (for I;<R<I;, ;) of the new KT pairs that Note also that the density of free pinning centgrenters the
start their attempts to annihilate. The difference between thexpressioronly via propagatord ,(x). Since scattering off
old distributionn; _;(R) and the new one;(R) will contain  pinned dipoles is a rather rare event, it is reasonable to ex-
few positive and negative contributions which are convenienpand ino; and a». All the interactions with empty pinning
to write using diagrams somewhat similar to Feynman diacenters are however summed up to all ordergrinThis is
grams in many-body problems. the origin of the exponentials in the propagators. In this pa-
One first defines “propagators.” There are two kinds of per we limit ourselves to the first order i, and o, only.
these. The first onfsee Fig. 8a)] is the probability density The complete list of diagrams is given in Fig. 9. Now we
that a vortex moves past a distancavithout encountering turn to a description of these processes and the explicit de-
any pinning center or pinned pair and then gets pinnedails for various contributions.

f(R)=cN2Re V°NR (19)
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li R—r
0 x x4 R Aﬁ(r):fl de(R)J dxD, (X)D, (R—r—x)
0 i-1 i—-1

a XH(R_I’). (26)

The interaction with dipoles described by the cross section
o1, Fig. 9b) with subsequent pinning of both vortices on
— @ - — e o— different pinning centers adds both positive and negative
contributions to the survivors distribution. The positive one:
b the incoming vortex gets pinned itself by some other pinning
center at distance. We sum over all possible dipole sizes
Another one is negative: while the interactions might not
always cause a pinning, as (o), it does always cause de-
0 Y x x4z R struction of the dipole, and we focus on those of size
summing over all possible final distancasof incoming
pairs. Note that the range of integration ofstarts from 0
instead ofR;,;,, which means that the case when the incom-
ing vortex fails to survive is taken into accoythose end up
with ze (R, ,R) survive, while those witlz e (0,R,,) fail to

0 X R 0 x R survive):
[ R R [
(b) _ i -z i-1 o~
q . A; Zﬁilde(R) memdzfO dfommd)\Dpi_l(x)
X (a1(N,RIN(N)[S8(z—1)O(R—=T)—S(A—T)]
0 y x R A = xDpi_l(R—z—x). (27)

The o, part of the correction is constructed in a similar
f manner{Figs. §c)]. It is of higher order in pinning density
than theo; part:
FIG. 9. Diagrams for the RG step, y, z andR denote coor-
. . . N I R R-z R-z
dinate$: (a) Propagation with pinning at two centers(b) One A-(C)(I’)If ' de(R)f dzf dxf dy
interaction of theo; type and pinning on another centerc) One ' li 1 Rmin 70 0
interaction of theo, type with subsequent pinning of both vorti-
ces. (d) Both vortices finally got pinned and annihilated on a site % f
where previously a smaller KT pair was destroye¢e) A small
pair is destroyed via the-, process and vortices annihilate(f)
One interaction of ther, type occurs and the pair is subsequently X[8(z—r)O(R—r)—S6(\— r)]Dpi_l(R—z—x).
annihilated on the pinning center.
(28)

The expression of the contribution in Fig@® for arbi-  The other three types of diagrams, Fig&d)8-8(f), are sim-
trary stepi (lowest order in interaction with pinned paiis  pler and are purely negative. They account for destruction of
just the contribution studied in Secs. II-V. It is positive, in a small KT pairs by vortices of the larger ones which pass by.
sense that it always adds pinned pairs. In terms of propags&ubsequently the large pair annihilates by one of three

li-1

d\D,, _ (X)(a2(X,R)N(N))

min

tors with updated pinning densities it reads mechanisms:
li R—Rmin li-1  ~ ~
A§d>(r)=—f de(R)f dxf d\D,, () (a1(\,RIN(A)S(N=T)D,,  (R—Rmin—X), (29
i-1 0 Rimin a =
|i R li* ~
Ai(e>(r):—f de(R)f dxj ld)\(oz()\,R)n(A))é()\—r)Dp, J(R=Rpin), (30
li—1 0 Rmin .

f li R=Rmin li-1 R=Rmin g
Al >(r)=—2ﬁ de(R)fo dyfR | dxfy dxD, _ (X)(a2(\,RIN(A\)SA—=T)D, (R=Ryn=x). (31)
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FIG. 10. Distribution of surviving KT pairs. Relatively small 4
pinning density p=0.2 RZ and relatively large pair density 0.0002 +
N=0.04R.2,. The dotted line is the infinite sample RG result, the 1
dashed line is the leading-order finite-size RG, while the solid line 0.0001
includes next-to-leading-order corrections.

At the first order ino; and o, the diagram(@ should be 0 5 ' 1'0 ' 1'5 , 2'0 ) 2[5 '
modified to take into account the possibility that, in addition
to avoiding pinning on centers, the vortex should avoid pin-
ning on dipoles. So there is an additional factor o o _ o
e_fd"("1”+"2”)~1—fd)\(crln+ o,n). But this contribution _ FIG_. 11. Dlsztrlbutlon of_survwlng KT pairs. Lgrge_r plnnlngzden-
precisely cancels with the positive parts of diagrdimnsand ;'ty' p _o't4t.R”“" and. rT:'.‘""t'vftl)y large pairs density=0.04 Ry
(c). Therefore we arrive at the conclusion that the interaction ame notafions as in Fg. 19.

30 35 40 45

r(inunits of R_, )

with vortices at first order gives negative contributiare- 0= 0.5R e~ O5F Rmin= 6. Rmin+ 17,
stroys pinned dipole pairs o

All these contributiongdiagramg add up to give the den-  The results are presented in Figs. 10 and 11 for small and
sity of dipoles at the beginning of the next step: large pinning densities and quite large vortex pair density.

The dotted line is the first-order RG result, for the infinite
sample. Direct comparison with the simulation results for
nn=ni_y(N+ > Ai(r). (32 relatively larger is impossible however, since finite-size ef-
all the diagrams fects are still important for the sample size we used. In the
Factors of 2 reflect the fact that some diagrams are symmeflext section we show that the RG method can be easily
ric with regard to vortex-antivortex exchange. It is assumecpdapted to take into account these effects. This enables us to
that the interaction with pinned dipole corrections are rea£laim that, despite the fact that we have not established the
sonably small. If this is not the case, probability conservatiorfdreement of thg .RG calculat|oq in the qontmuum_h(t‘rm .
would be violated and one would have to sum up all ther€quires a surprisingly large lattice and is impossible at this
orders inoy ando,. As we will see, the practical situations point, as we discuss ngxwe believe the RG scheme gives
46 not reqtire thig ' reliable results for large samples. _ _
: . . . Here we make few comments on the importance of dif-
We performed up to 60 such iterations steps numerlcaII)fer

. ent terms in the RG formula. The interaction with dipole
(so that sizes up to ¥y, are covereland compared the ;o rections seem to be unimportant in most cases except

result with direct numerical simulation of the system of sizeinqse at small distances. At small distanaesis very large
28Rmin X 28Rpin . The cross sections; ando, were approxi-  que to the instability of small dipoles and the major effect is
mated by the following fit. FOR>A>2R, we use the as- therefore the destruction of small pairs. On the other hand,
ymptotic form o, is important only for large pairs. Further, as the initial
density of pairsN gets larger, the peak df(R) shifts to-
wards smallelR, thus a larger fraction of pairs is inside the

o1(\,R)=2.3\AR,

while for \g<A<2R.;, we use Rmin region from the beginning. This reduces the total sur-
vival probability.
= : T —1)%35/\/R . —Ny/Ri
1N R)= 5.0 minl R Rmin = 17N R = Ao /R VIIl. NUMERICAL SIMULATION:
which gives correct asymptotics for smalk. Here THE EFFECT OF BOUNDARIES
M=[R/(R—1)]Ry,, is the lower bound fok, beyond which
o, vanishes andr, dominates. The cross section can be For low pinning densityp=0.2 R;,2, (see Fig. 19the RG

fitted in all regions that we are interested in by results and numerical simulation results agree very well even
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for the vortex pair density as large &=0.04 R.,2. The vortices and antivortices are dense and for a plasma. This
other simulation parameters are: the pinning center’s size isase is complicated due to multivortex processes and a more
a=0.2Ry,,. The location of pinning centers as well as of the complicated renormalization-group approach should be used.
vortices is randomly generatdd sample contains f@on- |t requires a study of the vortex interacting with an already
figurationg. We tried various boundary conditions. An at- pinned KT pair.

tempt to employ periodic boundary conditions ran into a Now we discuss a practical question of how fast the
problem. We found that for large vortex density the systemgyenching should be in order that pinned pairs survive. It
tends to reach some stable configuration with some vorticegnqid be fast enough so that the thermal depinning process

(usually one of themnot sitting on any pinning center, while iy he ineffective to destroy the pairs. It is enough that just
all the others do. In these cases we do not know how to de ne member of the pair is depinned: the pair will very

W't.h It If_t_here are no pinnings, th's will not happen lDecausequickly annihilate. The time scale of annihilation of KT pairs
of instability to annihilation. This is the case for small vortex

. without pinning is very short. To be explicit, the time needed

density, but for large vortex density it dominates, and there IS0r vortex and antivotex separated Byto come to the dis-
simply no way to get reasonable data from it. We therefore P

used a confining boundary condition with a confining poten-tance Rmin after which they are sure to annihilate is

o R?—R2,)/4uq% Taking the mobility in Y-Ba-Cu-O films
tial introduced at the boundary. ( min//% A s
To describe the finite-size effects we still can use the itfom Refs. 17 and 18u=1/(7d)~5x10" s/kg, where

erative scheme, but the distributid@R) changes consider- d~3000 A is the thickness of the film. Then the annihilation

: : -5 _
ably for small samples. In addition to the exponentially de—t'm;:e scile |3v|18 S fqr R_lb'“m' letelv ineffecti
creasing “bulk” contribution there appears a very slowly O thermal depinning to be completely inefiective tem-

S " N -1 perature should be below pinning enerdy Therefore it is
Seicsresai\;len%f ltjr?eu rlsc;?%lecc’lﬂtrg%t'::mél\!‘é/:Lz)gRR ' W[lheers very difficult to completely avoid the loss due to thermal
* J min

account for half of the survivors. Performing the finite depinning. However when one starts at temperatures smaller

A ..~ thenU the thermal depinning is not large and cooling can be
samplg RG we get results denoted by the solid lines in I:'gsdone rather slowly Dpue togpinning tge distributiorﬁJ of KT
10 and 11. ’ ’

Furthermore, we have neglected the curvature of trajectopairs will not follow adiabatically the equilibrium distribu-

. . e . tion.

ries (see Fig. 5. In principle the curving of paths should be : .
considered either by using an effective pinning density or by | Agzt;ra\l,viﬁrtr(én%re'ragg v(?ar;e)g:nélt\)/r(]);teg pa:?tfi?:rills tl?) v?/p-
an effective propagator. Large bending is possible when y ' Y

i eaty < anniiaed. It may ot be e Dl mostof nde 2SS, e VS e case st ecuetor of
“initial pairs” as defined before are still well defined at the : b b

final stage of running. tlo?sdapipgly LO rt1h|s cf:ase. Orr1re r?tan r:\lsoT%onsgc(jterrrr]n(l)r(ranco;npiI;-
Numerically, take the situation in Y-Ba-Cu-QRef. 9 cated situations ot ac current, etc. The external magnetic

considered before, také~30 A, R,~5¢=150 A, and r'aetltchrgfr.ed.gddr:ggg \/Tohrgceg?trga_rgﬁte_dolr?éo Alggrlzoaszv_
p=600 um™*~0.1 R,,". We estimate the vortex density 'stsI alon ;qéltla tEese e .cess Vort'c)((es Irl1vth'sxsa ation ;1(0 -
using Eq.(4), D2=(£42mw2)(2T/T—1), whereD is the gs! X vortices. 1S stuation, now

mean distance between pairs at temperaluss mentioned 'ﬁ\\:errt’ t)?e an”nlr;illnadtlon Sr?fisf 'Sb grerz:lrt]li);“iactczlerated: the an-
before. FoIT = Ty1/2, D2=3&%2mz~R2/50z. If z~0.1, we °T € easl yd sa d° e| 0 de a b ale - ol
haveD?~R2/5 andN=1/D*~5R 2, this is too large com- 0 conclude, we ceveloped anaiytical and humerica

pared to the pinning density and we expect very few pin_methods to quantitatively describe the irreversible dynamics

nings, since essentially most of the pairs are already t081c vortex pinnings. The Aharc_:nov—Bohm experiments of di-
close to be pinned. For~0.01, we haveD?~2R2, and rect observation of the KT pair can be understood as a result
N=1/D?~0.5R -2. By numerica,I integration we fon&nd the of simultaneous pinning of both vortex and antivortex. The
total survivél denF1§ity to be roughly&10~° R ~2~0.1 um 2 methods can be applied to a great variety of other situations
As expected, the survival density in the gbservable region'n.vo!Vlng both point pinning and the vortex-antivortex anni-
i.e., larger than the size of the pickup loop, is small unleséﬁ'Iatlon Processes. The surviving Ko_sterhtz—Thongss pairs
the experiment with smaller pickup is feasible. In addition jtcan b(_a directly obsgrved using experllmental techn!ques like
is very likely that when the finite-size effect are taken intoscﬁgnm% SIEiQnUdIDlecrc;sc?pel. dlnf a(tjcijr'lt'gg’ KT t\rﬁo?lc(i:er? (rjnel
account properly, the survival probability of the large pairsSC € any ot topological detec » SO that dyna

might be large enough to explain the observed pinnings. cal Processes stu_d|ed here oceur n great v_arlety of S|m_|lar
systems(vortices in superfluid films, topological defects in

2D lattices, including the Abrikosov vortex lattice in thin
; 3
IX. CONCLUSION films, etc?).

In this paper we calculated the probability and size distri-
bution of the KT pair surviving after quenching. By ACKNOWLEDGMENTS
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