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We propose a new method for Hybrid Monte Carlo (HMC) simulations with odd numbers of dynamical
fermions on the lattice. It employs a different approach from polynomial or rational HMC. In this
method, γ5 hermiticity of the lattice Dirac operators is crucial and it can be applied to Wilson,
domain-wall, and overlap fermions. We compare HMC simulations with two degenerate flavors
and (1 + 1) degenerate flavors using optimal domain-wall fermions. The ratio of the efficiency,
(number of accepted trajectories)/(simulation time), is about 3 : 2. The relation between pseudofermion
action of chirally symmetric lattice fermions in four-dimensional (overlap) and five-dimensional (domain-
wall) representation are also analyzed.
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1. Introduction

In hybrid Monte Carlo simulations [1], the positive-definiteness
of the action is essential to consider it as the statistical weight.
When a lattice Dirac operator D is given, a positive-definite ac-
tion of two degenerate flavors is easily constructed by using the
hermitian conjugate of D , namely D† D . The major difference of
two-flavor simulations and (2 + 1)-flavor simulations is that one
cannot easily write down the pseudofermion action for the one-
flavor sector. Polynomial or rational HMC methods [2,3], which
approximates the square root of D† D , are mostly used for odd fla-
vor simulations.

In this Letter, we provide a pseudofermion action for the one-
flavor sector of the lattice fermions with γ5 hermiticity without
invoking the square root approximation for D† D . The main idea is
very simple. For any lattice Dirac operators D with γ5 hermitic-
ity, P+D P+ and P−(1/D)P− are hermitian, and one can construct
a one-flavor pseudofermion action using these. The resultant ac-
tion has the same determinant as D without any approximations.
The non-trivial parts are to first check the positive-definiteness of
the pseudofermion action and the discussion of how to obtain the
pseudofermion action when there are mass preconditioners like
the one in Hasenbusch method.
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The construction of the Letter is as follows. In Sections 2–5,
the application to Wilson fermions, Wilson fermions with mass
preconditioner, domain-wall type fermions and overlap fermions
are demonstrated, respectively. In Section 6, the relation between
the pseudofermion action in four- and five-dimensional represen-
tations are presented. Numerical results are given in Section 7,
while a summary and conclusion are provided in Section 8.

2. Wilson fermions

In this section, we derive a pseudofermion action which will
yield the same determinant as the Wilson–Dirac operator,

DW (m) = (W + m)1 +
∑
μ

tμγμ

=
(

(W + m)12×2
∑

μ tμσμ∑
μ tμσ

†
μ (W + m)12×2

)
, (1)

where

W = −1

2

∑
μ

[
Uμ(x)δx+μ̂,y + U †

μ(x − μ)δx−μ̂,y
] + 4,

tμ = 1

2

[
Uμ(x)δx+μ̂,y − U †

μ(x − μ)δx−μ̂,y
]
,

γμ =
(

0 σμ
†

)
, σμ = (i12×2,σi),
σμ 0
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12×2 is two-by-two unit matrix and σi (i = 1, 2, 3) are Pauli matri-
ces. Throughout this work, we use chiral basis for gamma matrices.
To get positive-definite pseudofermion action, we use a determi-
nant relation which is valid for general matrix,

det DW (m) · det
(

P ′−DW (m)−1 P ′†
−
) = det

(
P ′+DW (m)P ′†

+
)

(2)

where P ′+/− are the projectors which reduce two chiral compo-
nents into one chiral sector, P ′+ = ( 1 0 ) , P ′− = ( 0 1 ). The oper-

ators (P ′−DW (m)−1 P ′†
−) and (P ′+DW (m)P ′†

+) are hermitian due to
γ5 symmetry. When the inverse of (W + m) is well-defined, the
determinant of (1) is written as

det DW (m) = det
(

P ′+DW (m)P ′†
+
) · det

(
1

P ′−DW (m)−1 P ′†
−

)
= det(W + m)2 det W H (m), (3)

such that W H (m) is the Schur complement of DW (m), i.e.,

W H (m) = 1

P ′−DW
−1 P ′†

−

= (W + m)12×2 −
∑
μ,ν

tμ
1

W + m
tνσ

†
μσν. (4)

Thus, the pseudofermion action for one-flavor Wilson fermions can
be written as

SPF = Φ
†
1(W + m)−2Φ1 + Φ

†
2

(
W H (m)

)−1
Φ2

= Φ
†
1(W + m)−2Φ1 − Φ

†
2 P ′−HW (m)−1 P ′†

−Φ2 (5)

where HW (m) = γ5 DW (m), Φ1 is a pseudofermion field without
a Dirac index, and Φ2 is a pseudofermion field with two spinor
components.

The positive-definiteness of the operator W H (m) are discussed
as follows. We note that for any background gauge field, the eigen-
values of W and (σ · t) satisfy the inequalities1: 0 � λ(W ) � 8, and
|λ(σ · t)| � 4. It then follows that W H (m) is positive-definite for
m > 4. Now, consider decreasing m from 4 to a smaller value. If
the operator W H (m) is not positive for some m, e.g. m′ , then there
must exist values of m at which det(W H (m)) is zero or singular
in the region m′ < m < 4. Among these values, if we denote the
largest one as mcr , then for m > mcr , the positive-definiteness of
W H (m) is assured.

The value mcr corresponds to the opposite sign of the smallest
eigenvalue of W . To see this, we use a relation,2

λmin(W ) � Re
(
λ
(

DW (0)
))

� λmax(W ). (6)

From this relation, one can see that the value of m which makes
det(W H (m)) singular (i.e. det(W +m) = 0) is larger than the value
of m which satisfies det(DW (m)) = det(W H (m)) = 0. There are no
values of m which satisfy det(W H (m)) = 0 or det(W H (m)) = ±∞
above that. The condition for the positive-definiteness of W H (m)

can then be written as

mcr = m∗
0 s.t. det

(
W + m∗

i

) = 0, m∗
0 > m∗

1 > m∗
2 > · · · ,

φ†W H (m)φ > 0 for any φ and for m > mcr . (7)

The smallest mass one can use in the one-flavor method here is re-
stricted by this bound. But it can be relaxed by using Hasenbusch’s
preconditioner as discussed in the next section.

1 Throughout this work, λ(X) means any one of the eigenvalues of an operator X .
2 The proof of this relation is given in Appendices A–D.
2.1. Generating pseudofermion fields

To generate the pseudofermion field Φ2 from a Gaussian ran-
dom noise field Ξ2, we need to take the square root of W H (m),
i.e., Φ2 = √

W H (m)Ξ2. This can be approximated by using the ra-
tional function of W H (m),

Φ2 = fapp
(
W H (m)

)
def=

(
p0 +

Napp∑
l=1

pl

(ql + W + m)12×2 − ∑
μ,ν tμ

1
W +m tνσ

†
μσν

)
Ξ2

� √
W H (m)Ξ2, (8)

where p0, pl and ql are expressed in terms of Jacobian elliptic
functions. At first glance, the operations in (8) look formidable.
However, since W H (m) is the Schur complement of DW (m), the
inversion of the operator within the summation, in Eq. (8) can be
obtained by the inversions of the operator (DW (m) + ql P−), i.e.,(

0
Φ2

)
= P−

(
p0 +

Napp∑
l=1

pl
(

DW (m) + ql P−
)−1

)(
0

Ξ2

)
. (9)

Note that one cannot apply the multi-shift solver in Eq. (9), since
P− does not commute with DW (m). However, for a given Napp
number of inversions, the total number of iterations in the solver
can be reduced by using the same idea as the chronological in-
version method [4]. When one solves a set of linear equations
(DW (m) + ql P+)ηl = Ξ2 (1 � l � Napp) with a given Ξ2 serially
from smaller l by using the iterative method, one can set a bet-
ter initial guess η

(0)

l for the iterative method to solve (DW (m) +
P+)ηl = Ξ2 (2 � l) by using a linear combination of the solutions
η j ( j < l) which have already been calculated i.e. η

(0)

l = ∑
j<l cljη j .

The coefficients clj are determined according to the prescription
written in Ref. [4].

In this one-flavor method, generating pseudofermions using the
approximation given by Eq. (8) makes the simulation not exact.
However, without using higher degrees of the approximation, one
can make the algorithm exact by adding an accept/reject step af-
ter generating the pseudofermion field. In the exact algorithm, the
pseudofermion field should be produced according to a probability

distribution proportional to e
−φ† 1

W H (m)
φ

. This is obtained by mul-
tiplying the operator

√
W H (m) to a Gaussian noise field Ξ . In

practice, however, the operator one uses in the simulation is ap-
proximated by fapp(W H (m)) rather than

√
W H (m). This leads to

a probability distribution that is proportional to e
−φ† 1

fapp(W H (m))2 φ
.

To adjust the difference, one can add an accept/reject step for φ

with the probability e
−φ†( 1

W H (m)
− 1

fapp(W H (m))2 )φ
. This factor should

be smaller than 1 and can be enforced by choosing fapp(x) >
√

x
for the whole eigenvalue region of W H (m). The discussion using
eigenvectors is given in Appendices A–D.

3. Wilson fermions with the Hasenbusch method

The idea of the Hasenbusch method [5] is to factorize the de-
terminant det(DW (m1)) into a product of determinants,

det DW (m1) = det
(

DW (m1)/DW (m2)
) · det

(
DW (m2)

)
(10)

and the pseudofermion force coming from det(DW (m1)/DW (m2))

is updated less frequently than the one coming from det(DW (m2))

in the molecular dynamics steps. The parameter m2 is chosen
such that the simulation cost is reduced. Furthermore, as already
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mentioned, in the one-flavor method for Wilson fermions pre-
sented here, the factorization of the determinant allows us to use
a smaller fermion mass in the simulation. For the second factor
det(DW (m2)), the same argument as in Section 2 can be applied.
Here, we assume that m1 < m2 and that m2 is large enough such
that the positive-definiteness of W H (m2) is always assured.

Now, we consider how to treat the first factor det(DW (m1)/

DW (m2)). Naively, one might consider the pseudofermion action
like,

φ
†
1

(
W + m2

W + m1

)2

φ1 + φ
†
2

(
W H (m2)

1

W H (m1)

)
φ2 (11)

but the second term is not hermitian in general, because
W H (m1)W H (m2) �= W H (m2)W H (m1) for m1 �= m2. To remedy this
situation, we rewrite the determinant det(DW (m1))/(DW (m2)) by
using an operator which has different masses for the chirality plus
and chirality minus sector, i.e.,[

det

(
DW (m1)

DW (m2)

)]−1

= det

((
DW (0) + P+m1 + P−m2

) 1

DW (m1)

)
· det

(
DW (m2)

1

DW (0) + P+m1 + P−m2

)
. (12)

One may note that the first and the second factor on the right-
hand side are the same as the determinant of,

1 + (m2 − m1)P ′−
1

DW (m1)
P ′†

−,

1 + (m2 − m1)P ′+
1

DW (0) + m1 P+ + m2 P−
P ′†

+, (13)

respectively. Then, the pseudofermion action is written as

SPF = Φ
†
3Φ3 + Φ

†
4Φ4 + (m2 − m1)Φ

†
3 P ′−

1

DW (m1)
P ′†

−Φ3

+ (m2 − m1)Φ
†
4 P ′+

1

DW (0) + m1 P+ + m2 P−
P ′†

+Φ4 (14)

where Φ3 and Φ4 are pseudofermion fields with two spinor com-
ponents.

The condition for the positive-definiteness is given as follows.
When m1 = m2, the operators in Eq. (13) are the identity operators
and their positive-definiteness is trivial. When one decreases m1
with m2 fixed, the positive-definiteness will be lost only if either
of the determinants in Eq. (12) becomes zero or singular. Thus, up
to the largest m1 which satisfies det(DW (0) + m1 P+ + m2 P−) = 0,
the positive-definiteness of the operators in Eq. (13) are assured.
Note that this mass value is smaller than the limit given in Eq. (7).
This can be seen by using the eigenvalue relation which is similar
to Eq. (6),

λmin(W + m1) � Re
(
λ
(

DW (0) + m1 P+ + m2 P−
))

� λmax(W + m2). (15)

The largest m1 which yields det(DW (0)+m1 P+ +m2 P−) = 0 is
larger than the largest m which yields det DW (m) = 0. This can be
understood from

γ5
(

DW (0) + m1 P+ + m2 P−
) = HW

(
m1 + m2

2

)
+ m1 − m2

2

(16)
and the properties of spectral flows of HW (m) [6]. Moreover, for
some gauge configurations, det(DW (m)) may not be zero for any
value of m. But there must exist m1 which satisfies det(DW (0) +
m1 P+ + m2 P−) = 0 for any gauge configurations.

4. Domain-wall fermions

The domain-wall type fermion operator [7] can be expressed as,

Ddwf(m) = ωDW (−m0)
(
1 + cL(m)

) + (
1 − L(m)

)
(17)

with L(m) = P+L+(m) + P−L−(m) such that,

L+(m)s,s′ =
{

δs′,s−1, 1 < s � Ns,

−mδs′,Ns , s = 1,

L−(m)s,s′ =
{

δs′,s+1, 1 � s < Ns,

−mδs′,1, s = Ns,
(18)

where m is the (bare) fermion mass, and m0 ∈ (0,2) is a parame-
ter called the “domain-wall height”. The label s is the coordinate
in the fifth dimension. Throughout this work, we assume that
the number of sites in the fifth dimension Ns is even. The con-
stant c and the diagonal matrix ω = diag{ωs} specify the type of
domain-wall fermion. The operator Ddwf(m) is the conventional
domain-wall fermion for c = 0 and ωs = 1. It becomes an opti-
mal domain-wall fermion when c = 1 and ωs ’s are tuned such that
maximal chiral symmetry is obtained.

To obtain the pseudofermion action for one-flavor, we modify
the operator Ddwf(m) by multiplying 1/(1 + cL) from the right.

D′
dwf(m)

def= Ddwf(m)/(1 + cL) = ωDW (−m0) + M(m, c) (19)

with

M(m, c) = 1 − L(m)

1 + cL(m)

= 1 − L+(m)

1 + cL+(m)
P+ + 1 − L−(m)

1 + cL−(m)
P−

= M+(m, c)P+ + M−(m, c)P−. (20)

In the following, we suppress the argument c of M±(m, c) for
simplicity. Using the Schur decomposition, the determinant of the
operator D′

dwf(m) can be written as

det D′
dwf(m) = det

[
ω(W − m0) + M+(m)

]2
det W H (m)

= det
[
ω(W − m0) + M−(m)

]2
det W H (m), (21)

where

W H (m) = R5

([
ω(W − m0) + M−(m)

]
12×2

− tμ
1

ω(W − m0) + M+(m)
tνσ

†
μσν

)
, (22)

W H (m) = R5

([
ω(W − m0) + M+(m)

]
12×2

− tμ
1

ω(W − m0) + M−(m)
tνσμσ

†
ν

)
. (23)

Here R5 is the reflection operator in the fifth dimension, (R5)s,s′ =
δs,Ns+s′−1, which is introduced such that W H (m) and W H (m)

are hermitian. For optimal domain-wall fermions, one still can
choose ωs ’s which maintain maximal chiral symmetry and satisfies
ωNs+1−s = ωs . After incorporating the contributions of the Pauli–
Villars fields, the fermion determinant for domain-wall fermions
becomes,
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det Ddwf(m)

det Ddwf(1)
= det[ω(W − m0) + M+(m)]2 det W H (m)

det[ω(W − m0) + M+(1)]2 det W H (1)
. (24)

In principle, one can use a pseudofermion action like,

S(separate)
PF

= Φ
†
1

[
ω(W − m0) + M+(1)

] 1

[ω(W − m0) + M+(m)]2

× [
ω(W − m0) + M+(1)

]
Φ1 + Φ

†
2

1

W H (m)
Φ2

+ Φ
†
3 W H (1)Φ3. (25)

But it is known that in the two-flavor simulation of domain-wall
fermions, it is effective when a pseudofermion action uses a single
set of pseudofermion field to estimate both the light fermion and
Pauli–Villars terms [8]. Then, we use the same technique used in
Hasenbusch method for Wilson fermions, i.e., to use a lattice Dirac
operator which has different masses on chirality plus and chirality
minus sectors.

Using the Schur decomposition of [Ddwf(1) − (M+(1) −
M+(m))P+], we obtain the relation

det
[
ω(W − m0) + M+(m)

]2 · det
[

W H (m) + �−(m)
]

= det
[
ω(W − m0) + M−(1)

]2 · det
[

W H (1) − �+(m)
]
, (26)

where[
�+(m)

]
s,s′ = [

R5
(
M+(1) − M+(m)

)]
s,s′ ,[

�−(m)
]

s,s′ = [
R5

(
M−(1) − M−(m)

)]
s,s′ . (27)

The properties of these matrices are given in Appendices A–D. Us-
ing (26), we can write the inverse of (24) as

det

[
1 + �−(m)

1

W H (m)

]
· det

[
1 + �+(m)

1

W H (1) − �+(m)

]
,

(28)

and it can be used to construct the pseudofermion action. Using
(B.6), we can simplify (28) to

det A · det B (29)

where,

A def=
(

1 + g′(m,1, c)
(

v† R5
)

s

[
1

W H (m)

]
s,s′

(R5 v)s′
)

,

B def=
(

1 + g′(m,1, c)
(

v†)
s

[
1

W H (1) − �+(m)

]
s,s′

vs′
)

. (30)

The constant g′ and vector v are given in Eq. (B.6) and (B.4). In
the following, the arguments of g′ are suppressed for simplicity
(g′ = g′(m,1, c)). Note that the five-dimensional matrix in Eq. (28)
is reduced to a four-dimensional matrix in this expression. Thus
we can write the pseudofermion action for one-flavor domain-wall
fermions as

SPF = Φ
†
1 AΦ1 + Φ

†
2 BΦ2

= Φ
†
1Φ1 − g′Φ†

1 P ′−
(

v† R5
)

s

[
1

γ5 R5 D′
dwf(m)

]
s,s′

× (R5 v)s′ P ′†
−Φ1 + Φ

†
2Φ2 + g′Φ†

2 P ′+
(

v†)
s

×
[

1

γ R D′ (1) − � (m)P

]
′
vs′ P ′†

+Φ2 (31)

5 5 dwf + + s,s
where Φ1 and Φ2 are the pseudofermion fields (on the four-
dimensional lattice) with two spinor components.

Now we assert that the operators in (29) are positive-definite
for 0 < m � 1. At m = 1, they are equal to the identity op-
erator, and thus are positive-definite. As m is decreased, the
operators in (29) will cease to be positive-definite only if ei-
ther of the determinants in (29) becomes zero or singular. Us-
ing [W , 1√

ω
M−(1) 1√

ω
] = [W , 1√

ω
M+(m) 1√

ω
] = 0, and the fact that

the eigenvalues of 1√
ω

M−(1) 1√
ω

and 1√
ω

M+(m) 1√
ω

are not real3

for 0 < m � 1. We immediately see that (ω(W − m0) + M−(1))

and (ω(W − m0) + M+(m)) cannot have a zero eigenvalue for
0 < m � 1. Thus the operators in (29) are well-defined for 0 <

m � 1. Furthermore, since (28) is equal to the determinant of the
four-dimensional Dirac operator with the approximation for the
sign function of Hkernel = γ5 DW (2 + (1 − c)DW )−1, the determi-
nant cannot be zero and it follows that the operators in (29) are
positive-definite for 0 < m � 1.

4.1. Generating pseudofermion field

We now discuss how to approximate the inverse square root
of the operators Â and B̂ when one generates the pseudofermion
fields Φ1 and Φ2 from the Gaussian noise. Focusing on Eq. (35),
we start from the inverse relation of five-dimensional operators,[(

W H (m) + α�̂+
)
/
(

W H (m) + β�̂+
)]−1

= (
W H (m) + β�̂+

)
/
(

W H (m) + α�̂+
)
, (32)(

1 + (β − α)�̂+
1

W H (m) + β�̂+

)−1

= 1 + (α − β)�̂+
1

W H (m) + α�̂+
. (33)

Multiplying by S† from the left and S from the right, one obtains(
1 + (β − α)g′ diag(0, . . . ,0,1)̂S† 1

W H (m) + β�̂+
Ŝ

)−1

= 1 + (α − β)g′ diag(0, . . . ,0,1)̂S† 1

W H (m) + α�̂+
Ŝ

def= M.

(34)

Here, Mss′ = 0 for s < s′ . Then, the relation, Eq. (34), also holds
for the sub-block (s, s′) = (Ns, Ns),(

1 + (β − α)g′v† 1

W H (m) + β�̂+
v

)−1

= 1 + (α − β)g′v† 1

W H (m) + α�̂+
v. (35)

One can obtain a similar equation for W H (m) and �− .
For the square root of a general positive-definite operator A,

the rational approximation can be used.

√
A ∼ p0 +

n∑
i=1

pi

qi + A
. (36)

In the case of A, one has to calculate

3 The eigenvalues of L±(m) are (m)1/Ns exp(iπ(2k + 1)/Ns) with integer k, 0 �
k � (Ns − 1). Then, the eigenvalues of M(m) are not real for c �= −1.
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φ1 =
(

1 + g′v† R5

[
1

W H (m)

]
R5 v

)− 1
2

Ξ1

=
(

1 − g′v† R5

[
1

W H (m) + �−

]
R5 v

) 1
2

Ξ1. (37)

Each term of the summation in Eq. (36) is

pi

qi + 1 − g′v† R5
1

W H (m)+�− R5 v

= pi

1 + qi

[
1 + 1

1 + qi
g′v† R5

1

W H (m) + qi
1+qi

�−
R5 v

]
(38)

= pi

1 + qi
+ pi

(1 + qi)
2

g′v† R5
1

W H (m) + qi
1+qi

�−
R5 v (39)

= pi

1 + qi
+ p̂i g′v† R5

1

W H (m) + q̂i�−
R5 v. (40)

Then, to obtain φ1 one needs to calculate√
1

A
Ξ1 ∼ p̂0Ξ1 +

n∑
i

p̂i g′v† R5
1

W H (m) + q̂i�−
R5 vΞ1 (41)

with,

p̂0 = p0 +
n∑
i

pi

1 + qi
, p̂i = pi

(1 + qi)
2
, q̂i = qi

1 + qi
. (42)

The same method can be used for the operator B.

5. Overlap fermions

In this section, we construct the pseudofermion action for one-
flavor overlap fermions [9],

Dov(m) = 1 + m + (1 − m)γ5 sign
(

HW (−m0)
)
. (43)

This operator satisfies Ginsparg–Wilson Relation (GWR) [10],

Dov(m)† Dov(m)

= (
1 − m2)(Dov(0)† + Dov(0)

) + 4m2

= 2
(
1 − m2)(P+Dov(0)P+ + P−Dov(0)P−

) + 4m2. (44)

The overlap fermion also possesses γ5 hermiticity, and so the ap-
plication is similar to Wilson fermions. We begin by breaking this
operator into its chiral components.

Dov(m) =
(

P ′+Dov(m)P ′†
+ P ′+Dov(m)P ′†

−
P ′−Dov(m)P ′†

+ P ′−Dov(m)P ′†
−

)
def=

(
D++(m) D+−(m)

D−+(m) D−−(m)

)
. (45)

The determinant is written as,

det
(

Dov(m)
)

= det
(

D++(m)
)

det

(
D−−(m) − D−+(m)

1

D++(m)
D+−(m)

)
.

(46)

By using GWR, one can show that the operators on the right-
hand side are positive-definite for 0 < m � 1, provided that Dov(m)

itself is well defined. The pseudofermion action is written as

φ
†
1

1
φ1 + φ

†
2 P ′−

1
P ′†

−φ2. (47)

D++(m) Dov(m)
Practically, one has to use a reflection/refraction [11] or topology
fixing term [12] to treat or avoid singularities in Dov(m) related to
the topological change.

The authors of [13] proposed a simulation method for one-
flavor with overlap fermions. We now highlight the differences
between their work and our work. In Ref. [13], the authors use
GWR, and factorize det Dov(m)† Dov(m) into two parts.

det Dov(m)† Dov(m)

= detP ′+Dov(m)† Dov(m)P ′†
+ · detP ′−Dov(m)† Dov(m)P ′†

− (48)

The difference of the first factor and second factor of the right-
hand side comes from the topological zero-mode of Dov(m). Then,
the one-flavor determinant is written as

detDov(m)

= detP ′+Dov(m)† Dov(m)P ′†
+ · m(N+−N−)

= detP ′−Dov(m)† Dov(m)P ′†
− · m(N−−N+). (49)

Here, N+/− are the numbers of topological zero-modes with a def-
inite chirality. By using GWR, one obtains the relation between
these operators and Schur complement,

P ′−Dov(m)† Dov(m)P ′†
−

= D−−(m)

(
D−−(m) − D−+(m)

1

D++(m)
D+−(m)

)
. (50)

In other words, in Eq. (46), the determinant is factorized as,

det
(

Dov(m)
)

= det
(

D++(m)
) · det

(
P ′−Dov(m)† Dov(m)P ′†

−
D−−(m)

)
= det

(
D++(m)

) · det

(
2(1 + m)D−−(m) − 4m

D−−(m)

)
. (51)

Later, we show that the second factor corresponds to the A term
in Eq. (31). Due to the cancellation between the numerator and the
denominator, the force for the A term in HMC is smaller than that
of the B term.

When one performs a HMC simulation with a topological fix-
ing term, it is apparent that using the pseudofermion action with
the factorization in Eq. (49) is more effective than the factorization
in Eq. (51). For the five-dimensional representation Eq. (31), using
only the B term and choosing the fermion mass parameter m′ to
satisfy (1−m′) = (1−m2)/m, one can perform the HMC simulation
respecting the factorization in Eq. (49).

6. The relation of the pseudofermion action with four- and
five-dimensional representations

The ratio of determinants, Eq. (24), is equivalent to the deter-
minant of the effective four-dimensional operator,

D4d(m) = 1

2
(1 + m) + 1

2
(1 − m)γ5 f

(
Hkernel(−m0)

)
, (52)

where the function f (x) is polar or a rational function which ap-
proximates the sign function. The form of the function f is deter-
mined by ω. The operator Hkernel is defined as,

Hkernel(−m0) = γ5
DW (−m0)

2 − (1 − c)DW (−m0)
. (53)

By using the Schur decomposition, the one-flavor pseud-
ofermion action is written as
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Table 1
Comparison of HMC efficiency for the 2-flavor and (1 + 1)-flavor QCD with optimal domain-wall quarks. The step size for the gauge field �τGauge is 0.007(0.010) for
m = 0.019(0.038). While the step size �τPF for (1 + 1)-flavor pseudofermions is 0.14(0.20) for m = 0.019(0.038), which is 4 times larger than that for the 2-flavor case.
Here, N(HB)

Iter , N(MD)
Iter , and N(Total)

Iter are the average CG iterations for one trajectory (for generating initial pseudofermion fields, molecular dynamics, and their sum respectively).

m Nf N(HB)
Iter /103 N(MD)

Iter /103 N(Total)
Iter /103 Acceptance Acceptance/N(Total)

Iter

0.019 1 + 1 75(1) 260(1) 345(1) 0.88(3) 2.6(1) × 10−6

2 0.6(1) 239(2) 240(2) 0.90(3) 3.8(2) × 10−6

0.038 1 + 1 54(1) 125(1) 179(1) 0.90(3) 5.0(2) × 10−6

2 0.6(1) 112(1) 113(1) 0.91(3) 8.0(3) × 10−6
Φ
†
1 P ′−

1

D4d(m)
P ′†

−Φ1 + Φ
†
2

1

P ′+D4d(m)P ′†
+

Φ2. (54)

Examining two cases, c = 0 and c = 1, we show that the five-
dimensional expression Eq. (31) reproduces Eq. (54). This equiv-
alence is not only of theoretical value, but aids in practical sim-
ulations. When one generates φ1 and φ2, from Eq. (31), one has
to know the eigenvalue spectrum of A and B, a priori, in order
to apply the rational approximation for the square root function.
However, in the four-dimensional case, the spectrum is already
known.

Case 1: c = 0
In this case, the propagator of the five-dimensional fermion

at the boundary s = 1 or Ns yields the propagator of the four-
dimension fermion [14],

Dch + m
def= (1 − m)D4d

1 − D4d
= 1 + γ5 f (Hkernel(−m0))

1 − γ5 f (Hkernel(−m0))
+ m, (55)

1

Dch + m
= B

1

Ddwf(m)
R5 B†. (56)

Here, B is defined as

Bs = P−δ1,s + P+δNs,s. (57)

This relation holds only for c = 0. Note that this operator satisfies
chiral symmetry Dchγ5 +γ5 Dch = 0 in the limit Ns → ∞, in which
f (x) becomes the sign function. From Eqs. (55) and (56),

P−
(

1

D4d(m)

)
P− = P− + (1 − m)P−

[
1

Ddwf(m)

]
s=1,s′=Ns

P−.

(58)

After incorporating the pseudofermion field, the left-hand side be-
comes the first term of Eq. (54). The right-hand side equals to
the A term of Eq. (31) by substituting g′ = (1 − m) and v† =
(0, . . . ,0,1).

Next, consider the B term. By using Eq. (35), one obtains,

1 + (1 − m)v† 1

W H (1) − �+(m)
v

=
[

1 − (1 − m)v† 1

W H (1)
v

]−1

=
[

1 − (1 − m)P ′+
1

Dch + 1
P ′†

+
]−1

= [
P ′+D4d P ′†

+
]−1

(59)

where we used the relation D4d(m) = (Dch + m)/(Dch + 1).
Case 2: c = 1
In this case, there are relations for D4d and five-dimensional

operators [15],[
B Ddwf(m)−1 Ddwf(1)B†] = D4d(m)−1, (60)[
B Ddwf(1)−1 Ddwf(m)B†] = D4d(m). (61)

By using the relations,
B
(
1 + cL(m)

)−1 =
√

λc

1 + c4m

(
P+v† + P−v† R5

)
, (62)

�(m)
(
1 + cL(m)

)
B† = g(m,1, c)

√
λc(P+v + P−R5 v), (63)

one can show that Eq. (60), Eq. (61) and projector P+/− reproduce
the operators in Eq. (30).

7. Numerical tests

We compare the efficiency of the HMC simulation for two-
flavor and (1 + 1)-flavor QCD with domain-wall type fermion
with c = 1 and ωs = 1, on a 123 × 24 × 16(Ns) lattice. For the
gluon action, we use Iwasaki gauge action at β = 2.30. In the
molecular dynamics, we use the Omelyan integrator [16], and the
Sexton–Weingarten method [17]. The pseudofermion action for the
two-flavor simulation is the one with even–odd preconditioning
which is described in Ref. [18]. The time step for the gauge field,
(�τGauge), is the same for both two-flavor and (1 + 1)-flavor cases,
while the time step (�τPF) for the pseudofermion fields in the
(1 + 1)-flavor case is four times larger than that for the two-flavor
case. The acceptance rate is roughly the same for both cases. We
use conjugate gradient (CG) with mixed precision for the inversion
of the quark matrix (with even–odd preconditioning). The length
of each trajectory is set to two. After discarding 300 trajectories
for thermalization, we accumulate 100 trajectories for the compar-
ison of efficiency. Our results are given in Table 1. We see that the
acceptance rate is almost the same for (1+1)-flavor and two-flavor
simulations. If the auto-correlation time is the same, then the ef-
ficiency of HMC can be estimated by the total acceptance divided
by the CG iteration number, and the efficiency ratio for two-flavor
and (1 + 1)-flavor is about 3 : 2.

From this study, one can speculate the performance of (2 + 1)-
flavor simulations with two degenerate light flavors with bare
mass m = 0.019 and a single heavy flavor with bare mass m =
0.038. Assume that one set the step size of light flavor as 0.025
and the step size of heavy flavor as 0.125 which is about two third
of the value used in the study above to compensate the increase of
total force due to the increase of flavors, while keeping the same
trajectory length. Then, the total number of CG iterations in the
molecular dynamics steps become 340 and 200 for light and heavy
flavor, respectively. By including CG iterations in the heatbath part,
it takes about 600 CG iterations in total for one sweep. Thus, the
(2 + 1)-flavor simulation take 2.5 times more CG iterations than
two-flavor simulations.

8. Concluding remarks

In this work, we presented one-flavor method for HMC. The
largest difference of the method presented here from polynomial
and rational HMC is that the pseudofermion action yields the one-
flavor determinant without any approximations. Then the extra
accept/reject step with noisy estimator, which is commonly used
in polynomial or rational HMC to make the algorithm exact, is not
needed. For the overlap fermion, the difference from the method
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in Ref [13] is that this can be used even if GWR is not exact.
For the lattice fermions with γ5 symmetry, it is always possible
to construct real (hermitian) pseudofermion action, but one has
to careful about the positive-definiteness, since it depends on the
type of lattice fermions used. For chirally symmetric fermions like
domain-wall/overlap fermions, positive-definiteness is assured in
the entire mass parameter region which can be used in two-flavor
simulations. On the other hand, for Wilson fermions, there exist a
bound for the smallest mass where the positive-definiteness is as-
sured. If the bound is larger than the mass value which is intended
to use, one has to add Hasenbusch mass preconditioner then one
can push the mass smaller. Comparison between two-flavor and
(1 + 1)-flavor using domain-wall type fermion HMC simulation
shows that one can increase the step size of (1 + 1)-flavor sim-
ulation while keeping same acceptance ratio. The reason might be
that for (1 + 1)-simulation it is effectively the same as using four-
dimensional operator and the force from the bulk mode is com-
pletely cancelled between the light fermion and Pauli–Villars field,
while for the two-flavor pseudofermion action used in the com-
parison in this work, the cancellation was done only partly. The
bottle neck of this method is generating pseudofermion field from
Gaussian noise and it should be tuned and improved. Not only
HMC itself, one can use these pseudofermion action for reweight-
ing method, for example, to adjust the strange quark mass or to
see the effects due to the difference of up down sea quark mass by
using existing configurations. This approach for one-flavor simula-
tion should be investigated further numerically and theoretically.
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Appendix A. The eigenvalue relation

We prove a relation between “eigenvalues of the real part” and
“the real part of the eigenvalues” for a general matrix M .

λmin
(
Re[M]) � Re

[
λ(M)

]
� λmax

(
Re[M]), (A.1)

where λ(M) can be any one of the eigenvalues of M , Re[M] is the

real part of M , Re[M] def= (M + M†)/2, λmin(Re[M]) and λmin(Re[M])
are the smallest and the largest eigenvalue of Re[M], respectively.

Proof. The eigenvectors φi of Re[M] form an orthonormal basis,

Re[M]φi = hiφi, (φi, φ j) = δi, j. (A.2)

Here, ( , ) means the inner product.
The eigenvectors ψi of M can be expressed in terms of the φi ’s

as,

Mψi = λiψi, ψi =
∑

l

c(i)
l φl. (A.3)

Here, we set (ψi,ψi) = 1. This yields
∑

l |c(i)
l |2 = 1. The inner prod-

uct of ψi and Mψi gives the eigenvalue λi ,

λi = (ψi, Mψi). (A.4)

Then, we divide M into the real part Re[M] and the imaginary part

Im[M] def= (M − M†)/2, and substitute these into Eq. (A.4),

λi = (
ψi,Re[M]ψi

) + (
ψi, Im[M]ψi

)
. (A.5)
After taking the real part of this equation, only the first term re-
mains,

Re(λi) = (
ψi,Re[M]ψi

)
. (A.6)

By substituting Eq. (A.3) into the right-hand side of this equation,
one obtains(
ψi,Re[M]ψi

) =
∑
k,l

(
c(i)

k

)∗
c(i)

l

(
φk,Re[M]φl

) =
∑

l

∣∣c(i)
l

∣∣2
hl.

(A.7)

This is equal to or larger than smallest eigenvalue of Re[M],∑
l

∣∣c(i)
l

∣∣2
hl − λmin

(
Re[M]) =

∑
l

∣∣c(i)
l

∣∣2(
hl − λmin

(
Re[M])) � 0.

(A.8)

Thus, by using Eqs. (A.6)–(A.8), it is proven that Re[λ(M)] cannot
be smaller than λmin(Re[M]),

λmin
(
Re[M]) � Re

[
λ(M)

]
. (A.9)

The other inequality in Eq. (A.1), Re[λ(M)] < λmax(Re[M]), can be
proven in a similar way. �
Appendix B. Eigenvalues and eigenvectors of matrix �±(m)

Here, we derive the eigenvectors and the eigenvalues of �+(m)

defined in Eq. (27). We work explicitly on Ns = 4. After obtaining
the answers for Ns = 4, to convert the answers for general Ns is
straightforward.

Using the matrix M+(m, c), i.e.,

M+(m, c) = (1 − L+)(1 + cL+)−1 = 1 + 1
c

1 + cL+
− 1

c
, (B.1)

the matrix �+(m1,m2)
def= R5[M+(m2) − M−(m1)] is written as,

�+(m1,m2) = R5
1 + 1

c

1 + c4m2

⎛⎜⎝
1 c3m2 −c2m2 cm2

−c 1 c3m2 −c2m2
c2 −c 1 c3m2

−c3 c2 −c 1

⎞⎟⎠

− R5
1 + 1

c

1 + c4m1

⎛⎜⎝
1 c3m1 −c2m1 cm1

−c 1 c3m1 −c2m1
c2 −c 1 c3m1

−c3 c2 −c 1

⎞⎟⎠
= g(m1,m2, c)Q (c).

Here, g(m1,m2, c) and Q (c) are defined as,

g(m1,m2, c) = (1 + c)(m2 − m1)

(1 + c4m1)(1 + c4m2)
,

Q =
⎛⎜⎝

c6 −c5 c4 −c3

−c5 c4 −c3 c2

c4 −c3 c2 −c
−c3 c2 −c 1

⎞⎟⎠ . (B.2)

The matrix �+(m) in Eq. (27) is given by �+(m) = �+(m,1).
Eigenvalues and eigenvectors of Q are,

Q ui = 0 (i = 1,2,3),

Q v = λc v with λc = c6 + c4 + c2 + 1, (B.3)

u1 =
⎛⎜⎝

1
c
0

⎞⎟⎠ , u2 =
⎛⎜⎝

0
1
c

⎞⎟⎠ , u3 =
⎛⎜⎝

0
0
1

⎞⎟⎠ ,
0 0 c
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v = 1√
c6 + c4 + c2 + 1

⎛⎜⎝
−c3

c2

−c
1

⎞⎟⎠ . (B.4)

Define unitary matrix S as

S = ( u′
1 u′

2 u′
3 v ) . (B.5)

Here, u′
1, u′

2 and u′
3 are the vectors made by orthonormalization of

u1, u2 and u3. Then, �+(m1,m2) is written as,

�+(m1,m2) = g(m1,m2, c)S diag(0,0,0, λc)S†

= g′(m1,m2, c)S diag(0,0,0,1)S†, (B.6)

with g′(m1,m2, c) = λc g(m1,m2, c).
The similar relation for �−(m1,m2) = R5[M−(m2) − M−(m1)]

is given by multiplying R5 from left and right to this equation.

Appendix C. Exactness — Point of view with eigenvalues

Consider the eigenvalues and eigenvectors of the operator W H

W Hψi = hiψi . (C.1)

The Gaussian noise field Ξ , and pseudo fermion field φ, are ex-
pressed as linear combination of the eigenvectors ψi

Ξ =
∑

i

biψi, φ =
∑

i

ciψi . (C.2)

The path integral of φ is written as the product of integral w.r.t
the coefficient ci∫

dφ†dφe
−φ† 1

W H
φ =

∫ ∏
i

dc∗
i dcie

−∑
i c∗

i
1
hi

ci
. (C.3)

When bi has a distribution e−b∗
i bi , one can make the distribution

proportional to e
−c∗

i
1
hi

ci by multiplying by
√

hi , ci = √
hibi .

On the other hand, constructing ci = fapp(hi)bi , the distribution

become e
−c∗

i
1

fapp(hi )
2 ci

.
The difference can be adjusted by accept/reject step with the

probability

e
−c∗

i ( 1
hi

− 1
fapp(hi )

2 )ci
. (C.4)

To take this factor as a probability, this must be less than one, i.e.,

fapp(hi) �
√

hi . This condition is understood that e
−c∗

i
1

fapp(hi )
2 ci

has

a slightly broader distribution than e
−c∗

i
1√
hi

ci
, and the accept/reject

step makes the distribution narrow by suppressing larger ci .

Appendix D. Linear algebra

Here, we remind the readers some relations of linear algebra.
• Schur Decomposition(
A B
C D

)
=

(
1 0

C A−1 1

)(
A 0
0 D − C A−1 B

)(
1 A−1 B
0 1

)
=

(
1 B D−1

0 1

)(
A − B D−1C 0

0 D

)(
1 0

D−1C 1

)
.

(D.1)

• The Inversion of an Schur Complement(
0
y

)
=

(
A B
C D

)(
w
x

)
⇒ y = (

D − C A−1 B
)
x. (D.2)

• Project-and-reduce Operator P ′± in General γ -matrix Repre-
sentations with Eigenvector φ± of P±

P±φ± = φ±, (D.3)

P±φ∓ = 0, (D.4)

P ′±V = (φ±, V ), V is a general vector. (D.5)

• The Determinant of an Operator with Projector P±

det P ′+M P ′†
+ = det(P+M + P−) = det(M P+ + P−), (D.6)

det(M P+ + P−) = det
(
M

(
P+ + M−1 P−

))
= det(M)det

(
P+ + M−1 P−

)
= det(M)det

(
P ′−M−1 P ′†

−
)
. (D.7)
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