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Abstract. A general analysis for the first-order design of a three-lens
afocal zoom system with one lens fixed is presented. The reasonable
solution areas in the focal length diagrams with positive or negative mag-
nification are derived and shown graphically. The relation between the
two separations of the three lenses in zooming is found to be a hyper-
bola. According to the different locations of hyperbola centers, four cases
are analyzed. From the four hyperbolic graphs, we get five different

types of zoom systems. For each zoom type, we find the maximum
range of magnification and the position where the maximum or minimum
system length occurs during zooming. The zoom loci for the first or sec-
ond lens fixed are also discussed. © 1997 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(97)02204-6]
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1 Introduction graphs, we can get five types of zoom systems and find the
maximum range of magnification for each zoom type. The
zoom position where the system has the maximum or mini-
mum length is described. We discuss the zoom loci with

the first or central lens fixed.

A zoom system is generally considered to consist of three
parts: the focusing, zooming and fixed parts. The focusing
part is placed in front of the zooming part to adjust the
object distance. The zooming part is literally used for
zooming and the fixed rear part serves to control the focal
length or magnification and reduce the aberrations of the
whole system. Several of the published papemncerning
zoom have concentrated on the first-order zoom design. We2.1  Basic Formulas
also proposed a two-optical-component method for design-
ing zoom system and a first-order analysis for the two-
conjugate zoom systeft

2 Theory

The afocal zoom system, consisting of three lenses with
one lens fixed and the others moving, has been analyzed
with the two-optical-component methddn which the first

An afocal zoom system is one in which the entrance and g5 is considered as one component and lenses 2 and 3 are
exit marginal rays are parallel to the optical axis. For a .gmpined as the second component. For an infinite-

ty.pical afocal zoom system, at least three Iensgs are negde onjugate system, as shown in Fig. 1, the second focal
with one lens fixed and the other lenses moving. The first hoint of lens 1 coincides with the first focal point of the
lens is referred to as the focusing part and the others are the;ompined unit. The related equations are then given by
zooming part. Although different types of afocal zoom sys-
tems have been designed and widely used in many optical
systems, such as telescopes, viewing finders, optical scanpl: Fi+Fa=di+9, @)
ning systems, etc., few of the related publicatfor$dis-

cuss their solution distribution. Chuang et-hldiscussed Fas

the solution areas of a three-lens afocal zoom system ac-0= F—dz, )
cording to the combinations of focal length values of the

three lenses. They described the relation between magnifi-

cation and either of the two separations of lenses in zoom- K23=Kz+K3—K;K3d,, 3
ing.
In this paper, we use the graphoanalytical methad F, hy
solve the first-order layout of the three-lens afocal zoom M= — - "hy (4)
23 3

system. The possible solution areas in the focal length dia-
gram are shown graphically for positive and negative mag-
nifications. We find the relation between the two separa- WhereK andF are the equivalent power and focal length of
tions of lenses in zooming, which can be described with a a lens, respectively. The combined component has the focal
hyperbola. We obtain four hyperbolas corresponding to the length F,; and powerK,3; d; andd, are the separations
different positions of hyperbola centers in the interlens between lenses 1 and 2 and between lenses 2 and 3, respec-
separation coordinate system. From the four hyperbolic tively; M is the magnification of systend is the distance
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Fig. 1 Gaussian diagram of three-lens afocal zoom system: §(&’) is
the distance from the first (second) lens to the first (second) princi-
pal plane H(H') of the combined unit.

from the first lens to the first principal plam¢ of the com-
bined unit of lenses 2 and 3; ahds the height of marginal
ray at lens.

Solving the preceding equations, we have

oy 2 o
1 1 2 F3M '
~ F,FsM
dy=Fp+ Fat—— ®
1

In zooming, we chang® and then obtair; andd,. The
results are suitable for the case in which any one of the

three lenses is fixed during zooming. Because the afocal

system with the front lens fixed is the reverse case with the ) . " .
Y greas with negativé! for positived; andd,, respectively.

rear lens fixed, the analyses for these two cases are th
same. Thus we discuss only the system with the first or
second lens fixed in zooming.

2.2 Solution Areas in the Focal Length Diagram
Rewrite Egs.(5) and(6) as

1
di=art 37, ™

d2:a2+ sz, (8)

where

FiFs>

a1=F1+F2, F3 y

b]_:

a2=F2+ F3,

and

FaFs

2 Fl.
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The separationsl; and d, must be positive in zooming.
This provides some constraints on the solutions d@r
a,, by, by, andM in the focal length diagram. From Eq.
(5), we have

1
In the F; versus F, coordinate graph, the curve

Fi+F,+F.F,/(F3M)=0 is a hyperbola with its center at
(=F3M,—=F3M). The solution distribution in the graph is
divided into several areas by the hyperbolic curves. Each
solution area has different solution ranges fbrandd;.

Similarly, we have the following inequality equation
from Eq. (6).

M
Fpo+tFat F—)F2F3>0. (10)
1

In the F, versus F; coordinate graph, the curve
F,+F3;+(M/F;)F,F3=0 is also a hyperbola with its cen-
ter at (—F{/M,—F;/M). The solution distribution in the
graph is also divided into several areas by the hyperbolic
curves. Each solution area has different solution ranges for
M andd,.

From the preceding analysis, we can illustrate the pos-
sible solution areas in the focal length diagrams according
to the different combinations &, F,, F3 and the sign of
M. Figs. 2 and 3 show the solution areas with positite
under the conditions of positivd,; and d,, respectively.
The signs of three lens powers in each area are shown in
parentheses a$(,F,,F3). The signs ofa;(=F;+F,) in
Fig. 2 anda,(=F,+F3) in Fig. 3 are positive in the upper-
right section and negative in the lower-left section of coor-
dinate graph. Similarly, Figs. 4 and 5 show the solution

2.3 Relation Between M and the Interlens
Separation d, or d,

The relation betweeM and one of the two interlens sepa-
rations can be drawn with Eq5) or Eqg. (6). Chuang

et all! described the results in their paper. The relations are
hyperbolic betweerM andd; and linear betweeM and

2.4 Relation Between the Two Interlens
Separations d, and d,

From Egs.(5) and(6), we have

[di—(F1+Fy)][dy— (Fo+Fa)]=F3, (12
or
(dy—ay)(dy—a,) =F3. (12

The preceding equation describes a hyperbola with its cen-
ter at the coordinatesag,a,) in the d; to d, coordinate

graph. Because the center of hyperbola can be located in
any quadrant, we obtain four cases of hyperbolas shown in
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Fig. 2 Solution areas (shadowed) for different combinations of lens
types with positive M, and (a) F;>0 and (b) F3<0 under the con-
dition of positive d;.

Figs. 6a) to 6(d) depending on the signs @; and a,.
From Egs.(7) and (8), we can solve the magnification for
each point on the hyperbola in Fig. 6, given by

by

|v|=d1_a1, (13
or
d,—a
M=—2_"2 (14)
b,
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Fig. 3 Solution areas for different combinations of lens types with
positive M, and (a) F,>0 and (b) ;<0 under the condition of posi-
tive d,.

In Eq. (13), if d; approaches the infinity, the magnification
M approaches zero. t, in Eq. (14) approaches the infin-
ity, the magnificationM approaches the infinity and the
sign of M is determined by the sign ofl,/b,. If
b,(=F,F3/F{)>0, the magnifications for points on the
upper-right hyperbolic curve are positive and on the lower-
left hyperbolic curve are negative. On the other hand, if
b,<0, the magnifications for points on the upper-right and
lower-left hyperbolic curves are negative and positive, re-
spectively.
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Fig. 4 Solution areas for different combinations of lens types with

negative M, and (a) F3>0 and (b) F;3<0 under the condition of

positive d;.
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Fig. 5 Solution areas for different combinations of lens types with
negative M, and (a) F;>0 and (b) F;<0 under the condition of

positive d,.

In Fig. 6, the intersections of hyperbola and the two axes Similarly, the magnificatioM,, and the value ofl, at point
y are obtained withd;=0 in Eq. (13). We have

arex andy corresponding ta,=0 andd; =0, respectively.

From Eq.(14) with d,=0, the magnification at point is

(15

Substituting Eq(15) into Eq. (13) at pointx, we have

b,b,
d1=a1— a_2

(16)

1252 Optical Engineering, Vol. 36 No. 4, April 1997

by
My: - a—l,
b,b,
d2:a2_ a_

1

7

(18)

In fact, the separationd; andd, must be positive in

zooming simultaneously. Thus only the segments of hyper-
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Fig. 6 Diagrams d; versus d, for the centers of hyperbolas located in the four quadrants, respectively;
V; and V, are the vertexes of hyperbola. The magnification M; is the plus infinity if (F,F3/F1)>0 and

the minus infinity if (F,F53/F;)<0. The intersection coordinates of hyperbola and two axes are x and
y, respectively.

bola in the first quadrant of thd; versusd, coordinate characteristics of a zoom system, including the constraints
graph are acceptable and are shown with solid lines in Fig.ona; anda, (i.e., onF,, F,, F3) and the solution ranges

6. Five possible segments are found and marked by “Seg-of d;, d,, andM in zooming. Therefore, we can have five
ment” followed by a number. Each segment represents thetypes of zoom systems.

Optical Engineering, Vol. 36 No. 4, April 1997 1253
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From the property of hyperbola, the valuedyf+d, has
the minimum at the vertex/; with d;=a;+|F,| and

d,=a,+|F,| for segments 1, 3, 4, and 5 and has the maxi-

mum at the vertex V, with d;=a;—|F,] and

d,=a,—|F,| for segment 2. Thus the system length, which %
is the distance from lens 1 to lens 3, has an extreme valueliVely:
(maximum or minimurh at some position of zooming, i.e.,

by I, I, lll, and 1V, respectively. The maximum ranges of

M and the related ranges di andd, are also described.
For the third and sixth combinations in Table 1, segment

2 in Fig. 6a) is used and the vertex of related hyperbolic

h curve is located in the fourth and second quadrants, respec-

In those two cases, we havd,<0 (or
F,F3/F{<0), so the magnifications of points on the

not necessarily at the one end of zooming, if the vertex of lower-left hyperbolic curve in Fig. @) are positive. The
hyperbolic curve falls in the first quadrant. In this case, the solution exists only if segment 2 exists; in this cabg,

magnificationM is calculated as follows.
Substitutingd, =a,+|F,| ord,=a,+|F,| into Eq.(13)
or (14) for segments 1, 3, 4, and 5, we have

Fi
Fs
Fio
M=——% if F,<0. (20)
Fs

Similarly, substitutingd;=a;—|F,| or d,=a,—|F,| into
Eq. (13) or (14) for segment 2, we have

Foo

M=—— if F,>0, (21)
Fs
Foo

M=— if F,<O. (22)
Fa

On the other hand, if the vertex of hyperbolic curve is
outside the first quadrant, the maximum and minimum sys-

tem lengths occur at the two ends of zooming.
For the lower-left hyperbolic curve in Fig.(® or the
upper-right hyperbolic curve in Fig(6), the vertex can be

< M, is a necessary condition. Similar cases occur in the
second, fifth, tenth and twelfth combinations in Table 1.
For the tenth and eleventh combinations in Table 2, no
solution exists because the vertex of related hyperbolic
curve always falls in the third quadrant.

2.6 Five Types of Zoom Systems

As has been mentioned, each of the five segments in Fig. 6
represents the characteristics of a zoom system. Five differ-
ent types of zoom systems are thus discussed as follows.

26.1 Typel

For segment 1 in Fig. (&), the range of system magnifica-
tion can be from plus or minus infinity to zero depending
on the sign oth,. Because the vertex of related hyperbolic
curve is located in the first quadrant, the system length
always passes through a minimum value during zooming.
In this case, we choose the second common solution area in
Table 2 as an example. According to the constraints on
F4, F,, andF3 in the solution areas marked witlva) in

Fig. 4@ and (IVa) in Fig. 5a, we give F;=1,
F,=—0.5, andF;=1.1. The maximum range of magnifi-
cation can be from minus infinity to zero. Here we choose
the range ofM from —10 to —0.1 with a zoom ratio of
100:1. When the system length has the minimum value, we

located in any quadrant. If the vertex falls in the third quad- haved;=1.000,d,=1.100, andV = —0.909. The lens loci
rant, the whole hyperbolic curve is outside the first quad- in zooming with the first lens fixed are shown in Fig. 7,
rant. Hence segment 2 or segment 4 disappears and ndVith the natural logarithm of the magpnification as ordinate.

solution exits. If the vertex falls in the second or fourth

If the system with the second lens fixed is used, the zoom

quadrant, then the solution range of zooming is determinedloci are as shown in Fig. 8.

by the part that is in the first quadrant. So it is possible that

no solution exits if the hyperbolic curve is outside the first 2:6-2  Type Il

quadrant.

2.5 Common Solution Areas for Positive d, and d,

For segment 2 in Fig. (@), the range of system magnifica-
tion is from M, to M, . Here we choose the second com-
mon solution area in Table 1 as an example. Under the
constraints orf 4, F,, andF3 in the solution areas marked

From Sec. 2.2 and Sec. 2.4, we find that the solution rangeswith (IV) in Fig. 2@ and (IV) in Fig. 3@, we give
of M andd, (or d,) for each solution area in Figs. 2 and 4 F;=1, F,=—0.3, andF;=1.2. So we have\,=2.500 at
(or Figs. 3 and bare always a part of hyperbola in Fig. 6, d;=0.600 and d,=0, and M,=0.357 at d;=0 and

whered; (or d,) is positive. So we can combine the solu-

d,=0.771. The system has the maximum length with

tion areas in Figs. 2 and 3 to obtain 12 common solution d,;=0.400,d,=0.600, andM =0.833. The zoom loci with

areas with positive magnificatioM. Each of them repre-
sents an overlapped solution area wha¢ye@ndd, are both

the first lens fixed are shown in Fig. 9. If the system with
the central lens fixed is used, the lens loci in zooming are as

positive. Similarly, we can obtain 11 common solution ar- shown in Fig. 10.

eas with negative magnificatiol from Figs. 4 and 5. The
results are shown in Tables 1 and 2.

2.6.3 Type lll

Tables 1 and 2 also show the constraints on the signs ofFor segment 3 in Fig.(6), the range of system magnifica-

a, anda,, the used segment of hyperbola in theversus

tion is from M, to 0. In this type, the vertex of hyperbolic

d, coordinate graph, and the possible vertex locations of curve can be located in the first or second quadrant. Here
related hyperbolic curve in the four quadrants for each we use the ninth common solution area in Table 1 as an
common solution area. The various quadrants are denotecexample. Referring to the solution areas marked i)

1254 Optical Engineering, Vol. 36 No. 4, April 1997
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Table 1 Solutions for three-lens afocal zoom system with positive magnification.

Used Segment and
Possible Location of
Vertex of Related
Hyperbolic Curve

Common Solution Areas
Types of Lenses

for Positive d, and d,

Solution Ranges of M, dy, and d,

F1>0, F,>0, F;3>0 1 (1), Fig. 2(a) (1), Fig. 3(a) Segment 1
(+1++) 2 8 (a;>0, a,>0)  Quad.| 0<M<» ay<d;<« a,<dp<»
i i b.b b.b
F1>0, F,<0, F3>0 2 (IV), Fig. 2(a) (IV), Fig. 3(a) Segment 2 _ If My,<M,, then <g.<gq 1Pz <do<aq,_ 21P2
(+=+) (@;>0, a,>0) Quad-1-IV M, <M<M, Osdi=a, ==~ Osd=a-
F1>0, F,>0, F;<0 3 (), Fig. 2(b)  (Il), Fig. 3(a) Segment 2 If M, < M, then byby b1b,
(++-) (a;>0, a,>0) Quad. IV M};i M; M, Os<di<a;— a, Osdys<a;— a;
F,>0. F,<0, Fa<0 4  (Va), Fig. 2() (I, Fig. 3(a) Segment 5 _ bubo
(i,,) 2 3 (a,>0, a,<0) Quad. IV M,=M<x a,<d<a; a 0=<d,<w
5 (IVb), Fig. 2(b)  (lll), Fig. 3(a) Segment 4 IfM,< M, , then byb, byb,
(a1<0, a,<0) Quad. IV MXgMgMy Oédlial—a—z Oidziaz—a—l
F1<0, F,>0, F3>0 6 (1), Fig. 2(a) (1), Fig. 3(b) Segment 2 If My < M, , then byb, byb,
(—++) (a;>0, a,>0)  Quad. Il My<M=M, O<d;<a;— a O<d,<a,— a
< > < 7 lla), Fig. 2(b lla), Fig. 3(b Segment 1
fj+95F2 0, F3<0 (1), Fig. 2(b)  (lla), Fig. 3(b) (a1>%’ 2,o0)  Quad. | 0<M<e ay<dy<o a,<dp<
8  (lla), Fig. 2(b)  (IIb), Fig. 3(b) Segment 5 _ bib,
(a,>0, a,<0) Quad. |, IV M= M<x a;<d;<a, a 0<d,<w
9  (lb), Fig. 2(b)  (lla), Fig. 3(b) Segment 3 b1b,
(a,<0, a,>0) Quad. I, 1l 0<M=M, 0<d;<x a,<d,<a,— a
10  (lb), Fig. 2(b)  (llb), Fig. 3(b) Segment 4 IfM, < M, , then b.b b.b
F1<0, F,<0, F3>0 11 (i), Fig. 2(a)  (IVa), Fig. 3(b) Segment 3 b, b,
(——+) (a1<0, a,>0) Quad. Il 0<M=M, 0<d,<» a,<d,<a,— a
12 (), Fig. 2(a)  (Ivb), Fig. 3(b) Segment 4 If My, < M, , then bybsy by b,
(a1<0, a,<0) Quad. Il M, <M<M, 0<d;<a;— 2 0<dr,<a,— 2
2 1
Table 2 Solutions for three-lens afocal zoom system with negative magnification.
Used Segment and
Possible Location of
Common Solution Areas Vertex of Related
Types of Lenses for Positive d; and d, Hyperbolic Curve Solution Ranges of M, di, and d,
F,>0, F,>0, F3>0 1 (1), Fig. 4(a) (1), Fig. 5(a) Segment 2 byb, bib,
(+1++) : : (a1>0, a,>0) Quad. | M<M<M,  O0<di=a~—- O=dy=a,~ —
F1>0, F,<0, F3>0 2 (IVa), Fig. 4(a)  (IVa), Fig. 5(a) Segment 1 Quad. | —o<M<0 a;<d, <o a,<d, <o
(+—+) (a;>0, a,>0)
i i b, b
3 (IVa), Fig. 4(a)  (IVb), Fig. 5(a) (alsi%meanztjo) Quad. | Cw<M=M, a<dy<a,- ;22 O<d,<o
i i bib
4 (IVb), Fig. 4(a)  (IVa), Fig. 5(a) (asi%meantjo) Quad. | M,<M<0 0<d, <o ay<dy<a,— ; 2
1<0, a 1
i i b1b, b1b,
> (IVb), Fig. 4(@)  (IVb). Fig. 5(2) (alsi%me;:jo) Quad. | My<M<M, O<di<a;- r” 0<d,<a,— a,
F1>0, F,>0, F3<0 6 (1), Fig. 4(b) (I1a), Fig. 5(a) Segment 1 Quad. | —<M<0 a,<d; <= a,<d,<e
(++-) (a;>0, a,>0)
) ) b
! (. Fig. 4(b) (1lb). Fig. 5(a) (alsi%me;:jo) Quad. I, IV —w<M<M, a;<di<a;— ; - 0sd,<x
) 2
F1<0, F,>0, F3>0 8 (lla), Fig. 4(a) (1), Fig. 5(b) Segment 1 Quad. | —<M<0 a,<d;<o a,<d,<o»
(—++) (a;>0, a,>0)
9 (IIb), Fig. 4(a) (1), Fig. 5(b) Segment 3 bib,
(a;<0, a,>0) Quad. I, 1l M,<M<0 0<d;<x a,<d,<a,— a
Ejg) F2>0, F3<0 10 (1), Fig. 4() (). Fig. 5() (afs%r'ne;tjo) Quad. lIl No solution No solution No solution
F1<0, F><0, F3<0 un (1. Fig. 4(b) (1. Fig. 5(b) Segment 4 Quad. 11l No solution No solution No solution

=)

(a1<0, a,<0)
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Fig. 7 Loci of three-lens afocal zoom system with F;=1,
F, 0.5, F3=1.1, and zoom ratio=100. This system has
d,=1.000, d,=1.100, and M=—-0.909 at the position where the
system length is minimum.

in Fig. 2b) and (lla) in Fig. 3b), we give F;=-1,
F,=0.79, andF;=—0.75. We then haveM,=5.016 at
d;=0 andd,=3.012. In example, we choos& from 5.016

to 0.200. The system has the minimum length with
d,=0.580,d,=0.830, andM =1.333. The zoom loci with
the first lens fixed are shown in Fig. 11.

2.6.4 TypelV

For segment 4 in Fig.(6), the range of system magnifica-
tion is from M to M,. Here we use the tenth common
solution area in Table 1 as an example. According to the
solution areas marked wittilb) in Fig. 2(b) and (llb) in

Fig. 3(b), we giveF,;=—-1,F,=0.75, and~;=—1. So we
haveM,=0.333 atd; =2.000 andd,=0, andM,=3.000 at
d;=0 andd,=2.000. The system has the minimum length
with d,=0.500, d,=0.500, andM =1.0. The zoom loci
with the first lens fixed are shown in Fig. 12.

lens1/ lepns2 lens N

| -

Magnification (In|M)

_3||.l.||||l.l.|||

5 -4 3 -2 -4 0 1 2 3 4 5 6 7
Distance from second lens

Fig. 8 Loci of three-lens afocal zoom system with the second lens
fixed. The system parameters are the same as in Fig. 7.
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Fig. 9 Loci of three-lens afocal zoom system with F;=1,
Fs 0.3, F3;=12, and zoom ratio=7. This system has
d,=0.400, d,=0.600, and M=0.833 at the position where the sys-
tem length is maximum.

26,5 TypeV

For segment 5 in Fig. (@), the range of system magnifica-
tion is from plus or minus infinity toM, depending on the
sign of b,. In this type, the vertex of hyperbolic curve can
be located in the first or fourth quadrant. We choose the
third common solution area in Table 2 as an example. Re-
ferring to the solution areas marked wiiva) in Fig. 4(a)

and (IVb) in Fig. 5a), we give F;=1, F,=—0.66, and
F;=0.52. We then havéVl,= —0.408 atd;=3.451 and
d,=0. In example, we choose the range Bf from
—10.200 to—0.408 with a zoom ratio of 25:1. When the
system has the minimum length during zooming, we get
d,;=1.000, d,=0.520, andM=—1.923. The zoom loci
with the first lens fixed are shown in Fig. 13.

3 Discussion

In this analysis, the graphoanalytical metfodvas used
because of its convenience to show the connection between
the solution space and the variable space used by the lens
designer. For designing a zoom system, the size of system
and the slope of lens loci are taken into account. In types |

05F .

lens1 len lens3

0.0 '

0.5 T

\ ]

0.6 0.8

Magnification (/nlM1)

1 1 " 1 i
06 04 02 0.0 0.2 0.4
Distance from second lens

Fig. 10 Loci of three-lens afocal zoom system with the second lens
fixed. The system parameters are the same as in Fig. 9.
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Fig. 11 Loci of three-lens afocal zoom system with F;=—1, Fig. 13 Loci of three-lens afocal zoom system with F =1,
F,=079, F;=-075, and zoom ratio=25. This system has F,=—0.66, F;=052, and zoom ratio=25. This system has
d,=0.580, d,=0.830, and M=1.333 at the position where the sys- d,=1.000, d,=0.520, and M=—1.923 at the position where the
tem length is minimum. system length is minimum.

Sec. 2. In this case, the center of hyperbola in @§) is

and ”, two different results for the zoom loci with the first located on the axis in thdl Versusdz coordinate graph_
or second lens fixed are shown. Comparing Fig. 7 with Fig.

8 or comparing Fig. 9 with Fig. 10, we find that the system
with the first lens fixed is more compact than that with the 4 Conclusion
second lens fixed. This result is also true for types Il to V
since the relation between the two interlens separations is
similar to that in type I. From the five types of systems, we
find that only type Il has the result that the maximum sys-

As we know, a proper first-order layout will often give a
satisfactory lens design. For the first-order design of three-
lens afocal zoom system, we have analyzed the possible
tem length occurs inside the process of zooming. In someSOIUtions areas in the focal length d@agram, the re_lation be-
examples, we have the interlens separation equal to zero a{weenM, dy, andd,, and the propemes of lens !QC' during
one end of zooming. Usually, it is not useful to work in the 200mMing. The common solution areas for positdgeand
neighborhood of the end in practical design. Note that we d2 and their solution ranges of system parameters with
use the natural logarithm of the magnification as ordinate in POsitive or negative magnification have been presented.
Figs. 7 to 13. If the second lens is fixed during zooming, The analysis of five system types, corresponding to five
the third lens moves linearly according to E). In this ~ segments in thel; versusd, coordinate graph, is helpful
paper, we have not discussed the special condition in whichfor designers to select the positive and negative types of
a;=0 (F;+F,=0) ora,=0 (F,+F3;=0) or both. The three lenses, preview the shape of lens loci, and determine
solution is easily obtained by the same way as described inthe ranges oM, d;, andd,.
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