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Abstract—Prediction of protein-ligand binding affinities is an 
important issue in molecular recognition and virtual 
screening. We have developed a scoring function, namely 
GemAffinity, to predict binding affinities by analyzing 88 
descriptors derived from 891 protein-ligand structures 
selected from the Protein Data Bank (PDB). Based on these 
88 descriptors, we derived GemAffinity using a stepwise 
regression method to identify five descriptors, including van 
der Waals contact; metal-ligand interactions; water effects; 
ligand deformation penalties; and highly conserved residues 
interacting to a bound ligand with hydrogen bonds. 
GemAffinity was evaluated on an independent set, and the 
correlation between predicted and experimental values is 
0.572. GemAffinity is the best among 13 methods on this set. 
Our GemAffinity was then applied to virtual screening for 
thymidine kinase (TK), human carbonic anhydrase II 
(HCAII), estrogen receptor of antagonists (ER) and agonists 
(ERA). Experimental results indicate that GemAffinity is 
able to reduce the disadvantages (i.e. preferring highly polar 
or high molecular weight compounds) of energy-based 
scoring functions. In addition, GemAffinity easily combined 
with other scoring functions to enrich screening accuracies. 
We believe that GemAffinity is useful to predict binding 
affinity and virtual screening. 

Keywords-component; binding affinity prediction, scoring 
functions, protein-ligand interactions, structure-based drug 
design, virtual screening 

I.  INTRODUCTION  
An important issue in computer-aided drug discovery 

is to predict binding affinities of compounds for target 
proteins. The compounds with high binding affinities for a 
target protein is often considered potential inhibitors that 
slow or block physiological, chemical, or enzymatic 
actions of the target protein. Binding affinities can be 
divided into computational and experimental methods. 
Experimental methods are often labor-intensive, time-
consuming, and expensive. Therefore, many computational 
methods have been developed to identify lead compounds 
by predicting binding affinities of compounds for a target 
protein. 

Virtual screening (VS) is effective for identifying lead 
compounds of a specific receptor from thousands of 
compounds [1]. Scoring methods of VS should be able to 
discriminate between correct binding states and non-native 
docked states during molecular docking phase, and 
differentiate a small number of active compounds from 
hundreds of thousands non-active compounds during post-

docking analysis. Potential compounds identified by 
scoring methods will be selected for biological assays. 

A scoring function performance is limited by an 
incomplete understanding of the complex issues involved 
in chemical interactions. The inaccuracy of scoring 
methods, i.e., inadequately in predicting the actual binding 
affinity of a ligand for a receptor, is the primary weakness 
for identifying lead compounds in virtual screening. For 
instance, most scoring functions use simple models to 
handle metal-ligand and water-ligand interactions and do 
not highlight essential hydrogen-bonding interactions. In 
addition, scoring functions favor the selection of highly 
polar compounds because they measure binding affinities 
through summing up hydrogen-bonding interactions that 
are easily formed between polar atoms of compounds and 
residues [2]. 

Here, we addressed these issues by deriving 88 
descriptors from 891 protein-ligand complexes. Based on 
these 88 descriptors, we derived GemAffinity using a 
stepwise regression method to identify five descriptors, 
including van der Waals contact; metal-ligand interactions; 
water effects; ligand deformation penalties; and highly 
conserved residues interacting to a bound ligand with 
hydrogen bonds. Experimental results show that 
GemAffinity is comparative to 12 methods on a test set. 
For virtual screening, GemAffinity is able to increase 
prediction accuracies of GEMDOCK [3] and GOLD [4] by 
reducing the ill effects (i.e. prefer highly polar and high 
molecular weight compounds) of energy-based scoring 
functions. 

II. METHODS AND MATERIALS 
Fig. 1 presents the overview of GemAffinity for 

predicting binding affinities. 

A. Protein-ligand complex dataset 
We collected 989 protein-ligand complexes with 

experimental binding affinities from the PDBbind [5]. 
These complexes were randomly divided into a training set 
(891 complexes) and a testing set (98 complexes). For 
each complex, we used the negative logarithm of Kd or Ki 
as the binding affinity. 
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Figure 1.  An overview of GemAffinity. 

B. Descriptors 
We derived 88 descriptors from 891 protein-ligand 

complexes using the following five dimensions: protein-
ligand interactions; protein binding-site conserved 
properties; quantitative structure activity relationship 
(QSAR)-based compound properties; water effects; and 
metal-ligand interactions. 

Protein-ligand interactions: We considered three 
protein-ligand interaction types frequently used in energy-
based scoring functions—van der Waals (vdW) 
interactions, electrostatic interactions, and hydrogen-
bonding interactions. Piecewise linear potentials (PLP) of 
GEMDOCK and potential functions (Lennard-Jones and 
hydrogen-bond potentials) of AutoDock [6] were used to 
generated descriptors. Furthermore, we also considered the 
numbers of protein-ligand interactions within different 
cutoff distances for each force type. For vdW force, the 
distance of an atom pair between a protein and its ligand 
was divided into 10 cutoff distances—2.5, 3.0, 3.5, 4.0, 
4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 Å. The distance was divided 
into 10 cutoff distances (2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 
3.3, and 3.4 Å) for hydrogen-bonding and electrostatic 
interactions, respectively. In total, 35 descriptors are 
extracted for measuring protein-ligand interactions. 

Protein binding-site evolutionary property: 
Conserved residues interacting with bound compounds 
often play important roles for biological functions. In 
general, the catalytic residues (e.g., HIS94, HIS96, HIS119, 
and THR199 in Fig. 2) which polarize substrates and 
thereby stabilize transition states [7], are conserved. If a 
conserved residue mutates, the protein may lose its 
functions or execute different biological functions. Here, 
we used the number of highly conserved residues forming 
hydrogen bonds with ligands as a descriptor. 

We developed a method, derived from our previous 
work on protein-protein interactions [8], to measure 
conversation of residues (Fig. 2) by using PSI-BLAST [9]. 
The E-value cutoff of PSI-BLAST searching on UniRef90 
[10] was set to 10-5 and the iteration number was 3. Based 
on the multiple sequence alignment (Fig. 2a) and the 

position-specific scoring matrix (PSSM) generated by PSI-
BLAST, the conserved score of each residue is defined as 

Ci = Mir − Krr                                 (1) 
where Mir is the value in the PSSM for residue type r at 
position i, and Krr is the diagonal value of BLOSUM62 
[11] for residue type r. The descriptor (NconHB) is defined as 

∑
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where Ri is 1 when Ci >0 and at least one hydrogen bond is 
formed at residue i between the protein and its bound 
ligand; and NconHB is the number of highly conserved 
residues with hydrogen bonds (Fig. 2b). 
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Figure 2.  The metal-ligand bonds and highly conserved residues 
forming hydrogen bonds. (a) The multiple sequence alignment of 
HCAII. The conserved scores of part residues are given in the bottom. 
(b) The highly conserved residues form hydrogen bonds (PDB code 
1cil). In this example, the number of key interactions is 5. Additionally, 
the ligand also forms a metal-ligand bond (red line) with Zinc (bond 
length is 1.96 Å). 

QSAR-based compound properties: The QSAR 
methods [12] showed that physiochemical properties of 
compounds are useful for predicting the binding affinities. 
This study used the QSAR module in Cerius2 to generate 
23 compound descriptors, such as spatial, conformational, 
electronic, structural, and thermodynamic terms. 

Water effects: Water effects play a crucial role in that 
they mediate interactions between proteins and their bound 
ligands [13]. Here, we used the numbers of structural water 
molecules within specific distance cutoffs around a ligand 
as descriptors (Nwater) to measure the water effects. The 
distance bins were classified into 16 cutoff distances—2.5, 
2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 
3.9, and 4.0 Å. 

Metal-ligand interactions: Metal atoms in active sites 
often play a key role of stabilizing ligands and reaction 
catalysis. For example, in HCAII, the ligand forms a 
metal-ligand bond that is one of the primary binding 
interactions [14] with Zinc and the bond length is 1.96 Å 
(Fig. 2b). However, in most scoring functions, metal-
ligand interactions were modeled as hydrogen-bonding 
interactions.  We separated metal-ligand interactions from 
hydrogen-bonding interactions. This work considered a 
metal-ligand interaction (VMetal) when the distance between 
any atoms of a ligand and metal ion is less than a specific 
cutoff, and different types of metal ions were treated as 
identical. Here, we considered 13 cutoffs—2.2, 2.3, 2.4, 
2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, and 3.4 Å. 
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C. Stepwise regression analysis 
Stepwise regression [15] was applied to select 

descriptors for developing GemAffinity. This method is 
simple and is able to avoid the adverse effects, such as 
over fitting and loss of biological/physical meanings of 
machine-learning approaches (e.g., support vector 
machines, genetic algorithms, and neural networks). 
Stepwise regression first selects the descriptor with the 
highest Pearson correlation coefficient into the prediction 
model. Next, it sequentially adds other descriptors that 
increase the correlation between predicted binding 
affinities and experimental binding affinities. To reduce 
the adverse effects of overfitting data, the process was 
stopped when the increased correlation of the selected 
descriptor was <0.005. 

D. Applications for virtual screening 
A reliable scoring function can both reflect binding 

affinities and identify active compounds in virtual 
screening. In virtual screening, a scoring function should 
identify a small number of active compounds from 
hundreds of thousands of non-active compounds during 
post-docking analysis. This study used two docking 
programs, GEMDOCK (for GEMDOCK-PLP and 
GemAffinity) and GOLD (for GoldScore), generate 
docked poses for assessing the accuracies of three scoring 
functions for four protein targets. These four target 
proteins are thymidine kinase (TK, PDB code 1kim), 
estrogen-receptor antagonist (ER, PDB code 3ert), 
estrogen-receptor agonist (ERA, PDB code 1gwr), and 
human carbonic anhydrase II (HCAII, PDB code 1cil). The 
receptors for these screens cover different receptor types 
and, therefore, provide a reasonable test for measuring 
efficacy of scoring functions. The screening data sets and 
the table of analysis features are available at 
http://gemdock.life.nctu.edu.tw/dock/download.php. 

TABLE I.  THE SELECTED DESCRIPTORS IN GEMAFFINITY 

Order Descriptors ra Description 

1 fvdw 0.497 Sum of Lennard-Jones potential 

2 VMetal 0.544 The distance between metal irons 
and a ligand is less than 2.2 Å 

3 NrotBon 0.579 Number of rotatable bonds of a 
ligand 

4 Nwater 0.594 Number of structural waters which 
are near to a ligand within 3.6 Å 

5 NconHB 0.600 Number of highly conserved 
residues forming hydrogen bonds 

a. the correlation between predicted binding affinities and experimental binding affinities 

III. RESULTS AND DISCUSSION 

A. GemAffinity 
Five descriptors of GemAffinity selected from stepwise 

regression  are the sum of Lennard-Jones potential (fvdw), 
metal-ligand interaction (VMetal), number of rotatable bonds 
of a ligand (NrotBond), number of structural waters that are 
within 3.6 Å of a ligand (Nwater), and number of highly 
conserved residues forming hydrogen bonds between 

ligands and proteins (NconHB) (TABLE I). The coefficient 
of each descriptor of GemAffinity is given as 

 −log(Kd,pred)= −0.081fvdw+ 1.329VMetal − 0.0585NrotBond 
−0.1056Nwater + 0.0847NconHB +3.331 
fvdw is negative and its coefficient (−0.081) is negative; 
therefore, the value −0.081fvdw is positive. Both VMetal and 
NconHB are positive and their respective coefficients are 
also positive values and positively enhance binding 
affinities. Conversely, Nwater and NrotBond are positive but 
their respective coefficients are negative. These two terms 
adversely affect binding affinities. 

B. Selected descriptors 
The Lennard-Jones 12-6 potential is the first selected 

descriptor which yields the Pearson correlation coefficient 
is 0.497 (TABLE I). This result indicates that 
complementary shape between proteins and their ligands is 
critical for predicting binding affinities. The descriptor of 
metal-ligand interactions is the second selected term. In 
this study, a metal-ligand interaction is considered to be 
formed when an interaction distance is within a cutoff 
distance of ≦2.2 Å. Most metal-ligand interaction 
distances are less than 2.8 Å (Fig. 3); that is, the metal-
ligand bonding distances are often shorter than the normal 
hydrogen-bonding distance. Therefore, considering metal-
ligand interactions as hydrogen interactions may cause 
energy dramatic decreases in predicting binding affinities. 
Additionally, Fig. 3b shows the average affinity 
distribution of complexes in different distances of metal-
ligand interactions. The average affinity of complexes that 
have metal-ligand interactions ≦ 2.2 Å is 7.43, and the 
average affinity of complexes that have metal-ligand 
interactions between 2.2 and 3.6 Å is 5.42. The statistic 
results also indicate that the metal-ligand interactions 
strongly related binding affinities are often ≦ 2.2 Å. As a 
result, GemAffinity highlights metal-ligand interactions as 
a special force instead of treating them as hydrogen-
bonding interactions. For example, the binding affinity of 
the complex (PDB code 1ctu) with a metal-ligand 
interaction between zinc2+ and the bound ligand is 11.92. 
The binding affinity is 4.52 (Fig. 4) if the complex (PDB 
code 1ctt) lost this metal-ligand interaction. 

The third selected descriptor is the number of rotatable 
bonds of a ligand. The number of rotatable bonds is 
measure of the effect of unfavorable torsional entropy loss 
on protein-ligand binding affinities. The fourth selected 
descriptor (the number of structural water molecules 
within a 3.6 Å distance from the bound ligand) is water 
effects. A large amount of water molecules around a ligand 
implies that a large volume of the ligand is exposed to the 
solvent. A ligand buried deeply within a protein usually 
has higher binding affinities than those bounded on the 
protein surface. 

The final selected term selected for GemAffinity is the 
number of highly conserved residues interacting to ligands 
with hydrogen bond(s). A hydrogen bond formed between 
a highly conserved residue and a ligand often influences 
binding affinity markedly. In addition, this description is 
able to reduce the ill effects of (i.e., prefer highly polar 
compounds) energy-based scoring functions. For example, 
the binding affinity of the beta-glucosidase protein (PDB 
code 1uz1 and 2j77) declines from 6.89 to 4.89 because of 
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the loss of a hydrogen bond between the ligand and a 
highly conserved residue (GLU166) (Fig. 5). Conversely, 
the binding affinity of the oligo-peptide binding protein 
(PDB codes 1b58 and 1b3h) reduced slightly from 6.58 
(1b58) to 6.21 (1b3h) even though two hydrogen bonds 
lose between the ligand and non-conserved residues 
(ASN436 and TYR269) (Fig. 6). 
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Figure 3.  Metal-ligand interactions. (a) The distribution of metal-ligand 
interaction distances derived from 891 complexes in the training set. (b) 
Average binding affinity distribution of 891 complexes in different 
distances of metal-ligand interactions.  
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Figure 4.  The effect of metal-ligand interactions. In the cytidine 
deaminase protein (PDB codes: 1ctu and 1ctt), the binding affinities of 
the complexes with a metal-ligand interaction (1ctu) and without a 
metal-ligand interaction (1ctt) are 11.92 and 4.52, respectively. The 
decrease in binding affinities of these two complexes is due to loss of the 
metal-ligand interaction.  
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Figure 5.  An example of a hydrogen bond lost in a highly conserved 
residue. The binding affinities of beta-glucosidase protein (PDB codes: 
1uz1 and 2j77) are 6.89 and 4.89, respectively. For these two complexes, 
the bound-ligand structures and protein-ligand interactions are extremely 
similar; the only difference is the position of the nitrogen atom in the 
ligand. For the complex 1uz1, the nitrogen forms a hydrogen bond with 
GLU166; conversely, the nitrogen cannot form any hydrogen bond on 
complex 2j77. The conserved score of GLU166 is 2.  
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Figure 6.  An example of hydrogen bonds lost in the low conserved 
residues. For the oligo-peptide binding protein (PDB code: 1b58 and 
1b3h), the binding affinities of the complexes with hydrogen bonds 
(1b58) and without hydrogen bonds (1b3h) between bound ligands and 
residues (i.e., ASN436 and TYR269) are 6.58 and 6.21, respectively. 
The conserved scores of ASN436 and TYR269 are −3 and −6. 

C. Binding affinity prediction 
The accuracy of GemAffinity was evaluated for the 

independent test set, and its performance was compared 
with those of other 12 methods. Pearson correlation 
coefficients yielded by GemAffinity for the training set 
and independent test set are 0.600 and 0.572, respectively 
(Fig. 7). Based on this data set, GemAffinity is the best 
among these 12 scoring functions summarized from Wang 
et al. [16] (Fig. 8). 

Most scoring functions consist of common types of 
protein-ligand interactions, such as vdW, hydrogen 
bonding, and electrostatic interactions. These 12 scoring 
functions are typically useful in predicting the affinities of 
most protein-ligand complexes. However, when some 
unusual factors (e.g., metal-ligand interactions) are 
necessary to the binding process, these scoring functions 
may fail to predict binding affinities. Conversely, 
GemAffinity is much better than these comparable 
functions when complexes have metal-ligand interactions 
or key interactions between conserved residues and their 
ligands (e.g., PDB codes 456c, 1r1j, 4tmn, 1ghy, 1ork, 
1ttm, 1pyn, 1d4s, and 1o9d). 

 
Figure 7.  Correlations between experimental binding affinities and 
predicted binding affinities using GemAffinity on the training set (●) 
and testing set (●). 
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Figure 8.  Comparisons of GemAffinity with 12 other scoring functions 
on 98 complexes in the independent set.  

D. Virtual screening enrichment. 
GemAffinity was evaluated and compared with other 

scoring functions on virtual screening. This study used two 
docking programs, GEMDOCK and GOLD, to assess the 
accuracies of three scoring functions (GEMDOCK-PLP, 
GoldScore, and GemAffinity) for four protein targets (TK, 
ER, ERA, and HCAII) based on the receiver operating 
characteristic (ROC) curve (Fig. 9). Note that during the 
docking process, docked protein-ligand complexes are not 
immersed in water by any programs for saving time; thus, 
Nwater is 0 when GemAffinity calculates binding affinities. 
Pearson correlation coefficients for the training set and 
independent test set are 0.583 and 0.514, respectively, 
when GemAffinity ignores the water effect descriptor. 
Among these scoring methods, experimental results 
indicate that GemAffinity (red) is the best for targets ERA 
and HCAII, and is very comparable to other scoring 
methods for targets TK and ER. 

For the target HCAII  (Fig. 2), three metal binding 
residues (HIS94, HIS96 and HIS119), and three catalytic 
residues (HIS64, GLU106, and THR199) are highly 
conserved residues [17]. For the targets ER and ERA, the 
highly conserved residues are GLU353, ARG394, and 
HIS524. For the target TK, the highly conserved residues 
are GLU83, GLN125, ARG1635, ARG222, and GLU22. 
Most active compounds of the four targets have 
consistently hydrogen-bonding interactions with these 
highly conserved residues. For the target ER, GEMDOCK-
PLP was slightly better than GemAffinity and GoldScore 
because two compounds (4-hydroxy tamoxifene and 
nafoxidene) of the ten ER inhibitors lack hydrogen bonds 
formed with the conserved residue (HIS524) on target ER. 

In the target HCAII, GemAffinity outperforms 
GEMDOCK-PLP and GoldScore. GemAffinity treats 
metal-ligand interactions (VMetal) as individual terms and 
divides the hydrogen bonds into conserved (NconHB) and 
non-conserved interactions. Conversely, the scoring 
functions of GEMDOCK and GOLD consider metal-
ligand interactions as one kind of hydrogen interactions 
and consider all hydrogen bonds the same. 

GemAffinity can reduce the deleterious effects of 
screening ligand structures that are rich in charged or polar 
atoms. In general, energy-based scoring (e.g., 
GEMDOCK-PLP and GoldScore) functions favor the 
selection of polar compounds that produce hydrogen-
bonding and/or electrostatic potentials. GemAffinity uses 
NconHB and VMetal to measure essential interactions instead 
of other potential functions of hydrogen bonds that 
consider that all interactions contribute equally. The 

average polar atom numbers of the top-ranking 50 
compounds of the four targets selected from GemAffinity 
and GEMDOCK are 6.5 and 8.5, respectively (Fig. 10). 
These experimental results demonstrate that GemAffinity 
is able to increase the hit rate for virtual screening. 
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Figure 9.  Comparisons of GemAffinity with GoldScore and 
GEMDOCK-PLP for virtual screening on four targets: (a) ER, (b) ERA, 
(c) TK, and (d) HCAII based on ROC curves. The curve (dashed line) of 
random selection is also plotted. 
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Figure 10. Distributions of polar atom number of the top-ranking 50 
compounds of the four targets selected from GemAffinity and 
GEMDOCK-PLP. 

IV. CONCLUSIONS 
We used a simple stepwise regression to develop 

GemAffinity for predicting binding affinities and virtual 
screening. GemAffinity is able to reflect the experimental 
binding affinities and physicochemical meanings.  
Additionally, our GemAffinity reduces the deleterious 
effects of screening ligand structures that are rich in 
charged or polar atoms. Different from other scoring 
functions, GemAffinity highlights metal-ligand 
interactions and highly conserved residues with hydrogen 
bonds. For virtual screening, GemAffinity is very 
comparable to the GEMDOCK and GOLD scoring 
functions for four target proteins. These experimental 
results demonstrate that GemAffinity is useful for 
predicting binding affinities and can be combined with 
other scoring functions to improve prediction accuracy. 
We believe that the GemAffinity is useful for molecular 
recognition and virtual screening. 
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