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Translationally invariant polarons in conjugated conducting polymers

Hsin-Fei Meng
Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

Chih-Ming Lai
Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan

~Received 30 October 1996; revised manuscript received 30 January 1997!

A simple effective Hamiltonian for the electron-phonon coupling in the conjugated polymers is derived from
the Su-Schrieffer-Heeger model with quantized lattice motions. Phonons correspond to lattice quantum fluc-
tuations around the dimerized positions. Both acoustic and optical modes are considered. The energy-
momentum relation for the polaron is calculated variationally, with the aid of Lee-Low-Pines transformation.
The discrete translational invariance of an ideal conjugated polymer is explicitly enforced. Analytical expres-
sion for the polaron effective massm* is obtained.m* turns out to be, in general, much larger than the
conduction-band effective mass.@S0163-1829~97!05920-1#
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I. INTRODUCTION

Since the pioneering works of Lee, Low, and Pines1 and
Feynman2 the problem of polarons in a coupled electro
phonon system has attracted constant attention.3 Convention-
ally, the term ‘‘polaron’’ refers to a conduction electro
coupled to the optical phonons in polar crystals described
the Fröhlich Hamiltonian.4 Conjugated polymers, as an im
portant class of coupled electron-phonon system, are o
dimensional covalent chains, in which the electron-phon
coupling has more of a deformation than a polar origin. C
sequently, for conjugated polymers the Fro¨hlich Hamiltonian
is not a suitable model, and the results of the conventio
polaron theory do not apply. Furthermore, in the Fro¨hlich
Hamiltonian phonons are quantum fluctuations around
equilibrium positions of the lattice by itself, regardless of t
electron-lattice coupling. On the other hand, the equilibri
position of the lattice is dimerized in conjugated polyme
due to Peierls instability caused by thep-electron delocal-
ization. Phonons, therefore, correspond to the quantum
tice fluctuations around the dimerized positions determi
by the electron-lattice coupling.5 Electron-phonon coupling
and polarons in a dimerized chain are a theoretical prob
not yet fully explored. The importance of the theory of p
larons in conjugated polymers, especially the calculation
their effective mass, is closely related to the potential ap
cation of polymer-based electro-optical devices. The eff
tive mass, combined with the mean free time, determines
polaron mobility.4 Mobility and other transport properties o
polarons, which are believed to be the principal charge c
riers, are crucial to the performance of those devices.
example, in light-emitting diodes, the electrons and ho
have to be transported through the material after injection
order to meet each other and recombine.

Solitons are first identified as one of the ‘‘nonlinear ex
tations’’ in the Su-Schrieffer-Heeger~SSH! model for con-
jugated polymers.6 Polarons and bipolarons in the SS
model were studied by Campbell, Bishop, and Fesser w
the frozen valence-band approximation,7 and later with the
fully relaxed valence band.8 While successful in explaining
550163-1829/97/55~20!/13611~7!/$10.00
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the optically and dopant-induced absorption spectra, the S
model is not likely to be as ideal for the study of the char
transport properties for some fundamental reasons discu
below. The SSH Hamiltonian itself has the usual discr
translational symmetry of a one-dimensional crystal. Ho
ever, all the nonlinear excitations are not translationally
variant. In fact, the lattice positions are treated as configu
tion parameters, and the local deviations from perf
dimerization accompanied with all the excitations can h
pen around any one of the unit cells with equal total en
gies. In other words, the translational invariance of the s
tem is broken and the ground state becomes infinit
degenerate, which implies a constant energy-momentum
lation and infinite effective mass. In such a case, the cry
momentum is no longer a good quantum number to la
those excitations, as it should be for a full quantum theo
The notion of polarons in such a context is quite differe
from the conventional sense as defined for the Fro¨hlich
Hamiltonian mentioned above.1,2,4 In particular, the polaron
energy-momentum relation cannot even be defined fo
theory without translational symmetry. However, the curv
ture of the energy-momentum relation is fundamental to
determination of the polaron effective mass, which in tu
determines the polaron mobility. Even though the polar
effective mass is given based on purely classical kinetic
ergy considerations,7,8 it is not clear how it can be identified
with the effective mass appearing in the mobility for a qua
tum theory.4 After all, the classical mass obtained by Cam
bell et al. is not the same quantity as the quantu
mechanical mass we are considering, even if both mod
can be solved exactly. Consider the limit where the carb
atom mass goes to infinity. The classical mass, determ
by the carbon atom motion, would go to infinity as well. O
the other hand, the quantum-mechanical mass will go to
band mass~no renormalization!. The reason for the latter is
that at such a limit, the lattice does not respond to the e
tron, and it becomes rigid as experienced by the mov
electrons. This feature is built in for our effective Ham
tonian. Further discussions on the difference between th
two masses are postponed to the final section.
13 611 © 1997 The American Physical Society
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In this paper, we develop a fully quantum-mechanical a
translationally invariant theory for the polaron problem
conjugated polymers. Starting with the SSH Hamiltoni
with quantized lattice positions and momenta, we derive
effective Hamiltonian for a conduction electron interacti
with phonons. It turns out that, unlike the polar coupli
case, both the optical and acoustic phonon couplings
present and important. The total crystal momentum is c
served in such a Hamiltonian. A generalized Lee-Low-Pin
transformation1 is used to reduce the Hamiltonian to a su
space with particular total momentum. A variational meth
based on phonon coherent states is used to calculate th
laron energy spectrum. We obtain an analytical express
for the polaron effective mass. Numerical values are ca
lated for parameters suitable for polyacetylene.

In Sec. II, we derive the effective Hamiltonian. The p
laron energy spectrum and the effective mass are calcul
in Sec. III. We conclude with some critical remarks in t
final section.

II. EFFECTIVE HAMILTONIAN

In order to derive the effective Hamiltonian for the p
laron in conjugated polymers, we take cis-polyacetylene
an example, and start with the SSH Hamiltonian:6

HSSH52(
n,s

tn11,n~Cn11,s
† Cn,s1Cn,s

† Cn11,s!

1
K

2(n ~un112un!
21

\2

2M(
n

pn
2 . ~1!

Cn,s is the annihilation operator ofp electrons with spins at
site n, un is the displacement of the carbon atom at siten,
and pn is the conjugate momentum ofun . K is the spring
constant for thes bonds,M is the mass of the carbon ato
plus side group~monomer!. tn11,n is the hopping integra
and is given by

tn11,n5t02t1~21!n2a~un112un!. ~2!

a is the electron-lattice coupling constant.un andpn satisfy
the canonical commutation relation

@un ,pn#5 i\.

In the ground state, the polymer chain is dimerized,6 and the
ground-state expectation valuesūn of the lattice displace-
mentsun are not zero. In order to cast this Hamiltonian in
a more standard ‘‘electron plus phonon plus interactio
form, we rewriteHSSHin terms ofvn , the shifts of the lattice
positions un around their ground-state expectation valu
ūn . After substituting the equationun[ūn1vn into HSSH,
the Hamiltonian can be divided into three parts:

HSSH5He1Hel1Hl , ~3!

with

He52(
n,s

@ t02t1~21!n2a~ ūn112ūn!#

3~Cn11,s
† Cn,s1Cn,s

† Cn11,s!,
d

n

re
-
s
-
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-

ed

s

’

s

Hel5a(
n,s

~vn112vn!~Cn11,s
† Cn,s1Cn,s

† Cn11,s!,

Hl5
K

2(n @~ ūn112ūn!
212~ ūn112ūn!~vn112vn!

1~vn112vn!
2#.

Note thatvn’s are operators whileūn’s arec numbers. Due
to dimerization, terms linear in the lattice fluctuationsvn
appear in bothHel andHl . This linear dependence is onl
formal, and will soon disappear when we project our pro
lem to the subspace of one conduction electron below.

It is well known that, if the lattice positionsun are treated
asc-number configuration parameters without dynamics,
ground-state lattice configuration is a perfectly dimeriz
chain. The configuration can be shown to be of the fo
un
c5w1(21)nu,9 wherew and u can be explicitly calcu-
lated. The superscript ‘‘c’’ indicates classical. In a full quan-
tum theory whereun , together withpn , are operators, the
ground-state expectation valueūn is not simply equal toun

c

in general.10 In fact, there is no way to calculateun exactly
beforehand, and then proceed our development afterwa
Therefore, we need to determineūn self-consistently by the
requirement that, after making the projection into the su
space of one conduction electron, no linear terms invn are
left in the lattice part of the effective Hamiltonian. We re
mark that theūn thus determined is not the exact bond po
tion, but a part of our approximations. The expansion ofvn
in terms the usual phonon operators makes sense only if
requirement is fulfilled. It turns out that the correct choice
ūn is exactly equal toun

c in such a self-consistency schem

ūn5w1~21!nu. ~4!

Therefore, the electronic part of the HamiltonianHe be-
comes

He52(
n,s

@~ t02aw!2~ t12au!~21!n#

3~Cn11,s
† Cn,s1Cn,s

† Cn11,s!

5(
k,s

«ckcks,c
† cks,c1«vkcks,v

† cks,v . ~5!

Here«c,vk are the dispersion of the conduction and valen
bands, respectively.cks,c and cks,v are the annihilation op-
erators of the conduction and valence electrons, respectiv
The energy dispersions of the bands are11

«ck52«vk5uzku, ~6!

with

zk5t1dt1~ t2dt !e2ika, t[t02aw, d[t12au.
~7!

a is the lattice constant before dimerization. For later use,
also define another quantity,zk[(zk /2uzku)1/2.

In order to make a tractable theory, we truncate the e
tronic sector of the Hilbert space by keeping only the lo
lying states. The error introduced is believed to be ve
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small, as explained below. We choose the basis as the e
states of the electronic HamiltonianHe without interaction
with the lattice. Then we compute the matrix elements of
interaction HamiltonianHel among these eigenstates. Wit
out interaction, the electron part of the Hamiltonian is that
a perfect rigid chain with two bands. In the polaron proble
we are concerned with the one extra conduction electron
jected from outside. In other words, the total number of el
trons is equal to the total number of carbon atoms plus o
Equivalently, the number of electrons in the conduction ba
is one more than the number of holes in the valence ba
Therefore, the eigenstates ofHe fall into groups: one~con-
duction! electron, no hole group, two electrons, one ho
group, and three electrons, two holes group, etc. Th
groups all together form a complete set of the system, and
approximation is made so far. We truncate the Hilbert sp
by keeping only the first group. This is expected to be a v
good approximation since we are interested in the gro
state~zero momentum! and lowest excited states~small mo-
mentum!. The states in the other groups are higher in ene
than the first group by a multiple of the band gap, and a
therefore, not likely to contribute significantly to the exa
th
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low-energy spectrum. This truncated Hilbert space
spanned by the basis vectorsuk,s&[cks,c

† u0&, where the
ground state ofHe is denoted byu0&, in which all the
valence-band states are filled, and all the conduction-b
states are empty. In the following, we derive the represe
tion of the total Hamiltonian in this subspace by calculati
the matrix elementŝk8s8uHSSHuks&, which can be simply
written in the form^k8uHSSHuk&ds8s . The spin part is omitted
in the following.

The representation of the electronic part of the Ham
tonian is

^kuHeuk8&5«ckdk8,k . ~8!

In order to calculate the matrix elements ofHel , we need the
matrix elements ofCn11,s

† Cn,s1Cn,s
† Cn11,s , which turn out

to be

^k8uCn11,s
† Cn,s1Cn,s

† Cn11,suk&

5^0uCn11,s
† Cn,s1Cn,s

† Cn11,su0&1gn
k8k , ~9!

where
gn
k8k[H ~2/N!ei ~k82k!na~zk8

* zk*1zk8zk!, n even

~2/N!ei ~k82k!na~e2 i ~k81k!azk8
* zk*1ei ~k81k!azk8zk!, n odd.

~10!
us

s
s

pec-

rs.

.

N is the total number carbon atoms in the chain. Using
relation12

a^0uCn11,s
† Cn,s1Cn,s

† Cn11,su0&1K~ ūn112ūn!50,
~11!

the terms linear invn112vn in Hl andHel are all canceled
with each other as expected. In fact, the above relatio
exactly the condition that the total energy is minimized
the ~classical! lattice configurationūn .

12 Collecting every-
thing together, the representation of the total Hamilton
becomes

H̄k8k[^k8uHSSHuk&5«ckdk8k1
K

2(n ~vn112vn!
21(

n

pn
2

2M

2a(
n

~vn112vn!gn
k8k . ~12!

The three lines on the right-hand side of Eq.~12! are referred

to as H̄e
k8k , H̄p

k8k , and H̄ep
k8k , respectively.e and p denote

electron and phonon, respectively. The next step is to exp
vn andpn in terms of the standard phonon creation and
nihilation operators:

vm
i 5A2

N(
kl
A \

2Mvl~k!
~akl1a2kl

† !el
i ~k!eik2am,

pm
i 52 iA2

N(
kl
A\Mvl~k!

2
~akl2a2kl

† !el
i ~k!eik2am,
e

is

n

nd
-

and rewrite the Hamiltonian in the standard ‘‘electron pl
phonon plus interaction’’ form. Here the integerm is the
index for unit cells, which now contain two carbon atom
due to dimerization.i51,2 is the index for the two atom
within a unit cell. More explicitly,vm

1 5v2m ,vm
2 5v2m11.

l51,2 corresponds to acoustic and optical phonons, res
tively. el

i (k) is the phonon polarization vectors.akl and
akl
† are the phonon annihilation and creation operato

v1,2(k) is equal toA2K/M @16ucos(ka)u#1/2, respectively. In
terms ofakl andakl

† , we find that the interaction part of Eq
~12! becomes

H̄ep
k8k52a (

l51

2 A \

NMvl~k2k8!
@bkk8l

~1!
1bkk8l

~2!
#

3~ak2k8,l1ak82k,l
†

!, ~13!

with

bkk8l
~1! [@el

2~k2k8!2el
1~k2k8!#~zkzk81c.c.!,

bkk8l
~2! [@el

1~k2k8!ei2~k2k8!a2el
2~k2k8!#

3ei ~k82k!a@ei ~k81k!azkzk81c.c.#.
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For small k and k8, the above electron-phonon interactio
part of the Hamiltonian reduces to a simple form:

H̄ep
k8k52AF34 u~k82k!au1/2~ak2k8,11ak82k,1

†
!

1S 12D
1/4

i
k82k

uk82ku ~ak2k8,21ak82k,2
†

!G ,
with

A[a
2A2
AN S \

AKM D 1/2. ~14!

Finally, in the representation of the position operatorx and
momentum operatorp of the conduction electron, the effec
tive total Hamiltonian becomes

H̄5
p2

2mB
1(

q
\v1~q!aq,1

† aq,11\v2~q!aq,2
† aq,2

1(
q

Vqe
iqx~aq,11a2q,1

† !1Uqe
iqx~aq,21a2q,2

† !,

~15!

with

Vq[2A
3

4
uqau1/2, Uq[2AS 12D

1/4

i
qa

uqau
, ~16!

and

mB5
\2

~2at0!
2D, D54t0e

2pt0K/a
2
. ~17!

HereD is the Peierls half band gap.12 mB5\2D/(2at0)
2 is

the conduction-band effective mass.x andp satisfy the ca-
nonical commutation relation@x,p#5 i\. Note that theq de-
pendence of the optical phonon coupling constantUq is quite
different from the one in the Fro¨hlich Hamiltonian, in which
Uq;1/uqu. This is anticipated because, as stressed in the
troduction, the origin of the electron-phonon coupling in
conjugated polymer is of deformation origin, instead of t
polar origin as in the Fro¨hlich Hamiltonian. Even though the
acoustic coupling constantVq vanishes as the momentu
transferq goes to zero, there is no reason for us to ignore
acoustic coupling altogether, since finiteq’s contribute to the
polaron state as well. In fact, we find in the following calc
lations that the contribution from the acoustic phonons to
polaron effective mass is about the same order as the op
phonons in some cases. Note thatA, Vq , andUq all go to
zero as the monomer massM goes to infinity. Electrons and
phonons are then decoupled, as claimed in the Introduc
n-

e

e
cal

n.

III. POLARON ENERGY SPECTRUM, EFFECTIVE MASS

We make the Lee-Low-Pines unitary transformation1 on
our effective HamiltonianH̄:

H̄→S21H̄S[H,

S[expH i FP/\2(
k

~ak,1
† ak,11ak,2

† ak,2!kGxJ . ~18!

P is the total crystal momentum of the polaron. The tran
formed HamiltonianH becomes

H5(
k

\v1~k!ak,1
† ak,11\v2~k!ak,2

† ak,2

1(
k
Vk~ak,11a2k,1

† !1Uk~ak,21a2k,2
† !

1
1

2mB
FP2(

k
\k~ak,1

† ak,11ak,2
† ak,2!G2. ~19!

The polaron energy spectrumE(P) is the ground-state en
ergy ofH for given P. In the following, we make a varia
tional calculation of the ground-state energy based on co
ent phonon wave functions

uC&5expF(
k
ak,1
† f ~k!1ak,2

† g~k!1H.c.G uC0&, ~20!

whereuC0& is the state without any phonon.f (k) andg(k)
are adjusted such that the energy expectation va
^CuHuC& is minimized. In terms of the trial functionsf (k)
and g(k), the ground-state energy expectation val
^CuHuC& is given by

^CuHuC&5
P2

2m*
1(

k
Vk@ f ~k!1 f * ~2k!#

1Uk@g~k!1g* ~2k!#

1(
k

u f ~k!u2F\v1~k!2
P\k

m*
1

\2k2

2m* G
1(

k
ug~k!u2F\v2~k!2

P\k

m*
1

\2k2

2m* G
1

1

2m* H(
k

\k@ u f ~k!u21ug~k!u2#J 2. ~21!

Performing the variation

d^CuHuC&
d f ~k!

5
d^CuHuC&

dg~k!
50,

we obtain bothf (k) and g(k), and the variational ground
state energyE(P). The result is

E~P!5
P2

2mB
~12h2!2(

k
F uVku2

Df~k!
1

uUku2

Dg~k!G , ~22!

where
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Df~k![\v1~k!2
12h

mB
P\k1

\2k2

2mB
,

Dg~k![\v2~k!2
12h

mB
P\k1

\2k2

2mB
.

The parameterh is determined by the implicit equation

hP5(
k

\k@ u f ~k!u21ug~k!u2#, ~23!

with

f ~k!52
Vk*

Df~k!
, g~k!52

Uk*

Dg~k!
. ~24!

After some algebra, we obtain

E~P!5E01
P2

2m*
1•••. ~25!
n

.

-

o

m

m* is, by definition, the effective mass of the polarons. W
express our final results in terms of two dimensionless qu
tities t andm, defined as

t[
a2

\K
AM

K
, m[

a2mB

\
AK

M
. ~26!

The constant part of the energy is given by

E0

\v2~0!
5

E0

\A2K/M
52tF 1

2p2F~m!1
2A2
p

mG . ~27!

Note that the denominator\A2K/M on the left-hand side of
Eq. ~25! is the optical phonon energy at zero wave numb
The functionF(m) is defined by the integral13
F~m!5E
2`

`

dx
2$11cos2~x!2@1/2ucos~x/2!u#@11cos~x!1cos~2x!1cos~3x!#%

uxu$@12ucos~x!u#1/21~1/2A2m!x2%
.

ass

nd
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-

A
t.
e
we

It
e-

wn
tion

s

en-

re
Finally, the polaron effective massm* is given by

m*

mB
5

1

12h0
22~12h0!

2t@8/p21~1/p!25/4m1/2#
, ~28!

wheremB is the band mass for a rigid lattice andh0 is the
limit of h(P) asP goes to zero, which is equal to

h05
~9/p!t@11~p/9!213/4m1/2#

11~9/p!t@11~p/9!213/4m1/2#
. ~29!

The numerical values of the dimensionless quantitiest and
m depend on the parametersa, t0, t1, a, K, andM suitable
for the particular conjugated polymers under consideratio
For smallt, we plot the behavior of the ratiosm* /mB and
E0 /\v2. In Fig. 1~a!, the effect of the coupling constanta is
shown. Asa increases,t;a2, while m remains constant
m* /mB are therefore plotted as a function oft for various
fixed m ’s. In Fig. 1~b!, we examine the effect of the mono
mer massM . As M increases,t;AM , while tm remains
fixed. The behavior of the two ratios for various values
tm are plotted as a function oft2(;M ). Whenm!1 and
t@1, the expression form* /mB can be further simplified to

m*

mB
.

81

18p28
t. ~30!

For polyacetylene, we use the following values of the para
eters: a51.22 Å, t052.5 eV, a54.1 eV/Å, andK521
eV/Å2.8 For such values,D50.86 eV andmB50.18me . The
s.

f

-

carbon atom mass is used forM . The results aret530.7 and
m59.5331023. After substitutingt and m into Eqs. ~27!
and ~28!, we obtain m* /mB566.7, and E0 /\v2(0)
521.65. The absolute magnitudes of the effective m
m* and the constantE0 arem*511.7me , andE050.45 eV.
me is the free-electron mass.m* is about four times larger
than the classical mass obtained by Campbell a
co-workers.8 Note that we use the renormalized value of t
force constantK ~21 eV/Å2), instead of the bare value~46
eV/Å2),12 because we did not explicitly consider the Co
lomb interactions. However,m* turns out to be an exponen
tially decreasing function ofK, and is very sensitive to the
degree of renormalization by the Coulomb interaction.
comment on theM→` limit seems appropriate at this poin
From Eqs.~14!, ~15!, and~16!, we can easily see that ther
should be no mass renormalizaion at such a limit. In fact,
find that if P is held constant whenM goes to infinity,
E(P,M ) in Eq. ~22! approachesP2/2mB exactly. However,
the resultingm* /mB in Eq. ~28! does not approach one.
turns out that this is only a rather subtle artifact. More d
tailed analysis shows that the series expansion ofE(P,M ) in
Eq. ~25! is convergent only whenP is smaller than a critical
value Pc(M ). For P.Pc(M ) there is a range ofP where
Lee-Low-Pines variational scheme seems to break do
since there is no solution for the self-consistency equa
~23!. For even greaterP, E(P,M ) quickly recovers to
P2/2mB . Most importantly, Pc(M ) approaches zero a
M→`. We expect that E(P,M ) crosses over from
P2/2m* to P2/2mB aroundPc(M ), if the calculation could
be carried out exactly. In such a case, as long as the mom
tum of the electron is much larger thanPc(M ) ~which is
always true forM→`), the mass is the same as if it we
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13 616 55HSIN-FEI MENG AND CHIH-MING LAI
equal tomB . However, in the above formula, the mass
defined by smallP for which the expansion in Eq.~25! is
valid.

IV. SUMMARY AND DISCUSSIONS

Starting from the SSH Hamiltonian with fully quantize
electron and lattice degrees of freedom, we derive an ef
tive Hamiltonian for the electron-phonon coupling in th
one-conduction-electron subspace. Unlike the Fro¨hlich
Hamiltonian for polar crystals, coupling to both acoustic a
optical phonons is present for conjugated polymers. We p
form the Lee-Low-Pines transformation and make a va
tional calculation on the polaron energy spectrum. Analyti
results are obtained for the polaron effective massm* . For
polyacetylene, the ratio betweenm* and the electron band
mass turns out to be quite large. In other words, the pho
cloud accompanying the conduction electron overwhelms
effective mass of the electron itself. However, the abso
value ofm* is only slightly larger than the effective mass
conduction electrons in conventional inorganic semicond
tors such as GaAs. Such effective mass implies that the
larons are quite mobile in polymer samples with high qua
and reasonable mean free time. For polymers other t
polyacetylene, we can easily get the approximate value

FIG. 1. ~a! The effects of the increase of the coupling const
on the polaron mass~upper three curves! are shown in~a!. The
ground-state energy is not shown because it is simply proporti
to t. The auxiliary parameterh is shown instead~lower three
curves!. ~b! The effects of the increase of the monomer mass on
polaron mass~upper three curves! and ground-state energy reno
malization~lower three curves! are shown@see Eqs.~27! and~28!#.
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their polaron effective mass by the relationm* /mB
;t;a2M1/2K23/2, which is true form!1. In words, the
polaron mass becomes larger for stronger coupling cons
a, heavier ion massM , or softer spring constantK, as ex-
pected physically. The condition onm is true for the physical
range of the parameters. Even though some measuremen
the polaron mobility do exist,14 our assertion on the magn
tude of the effective mass is difficult to judge experimenta
at this moment, since the bulk mobility is strongly influenc
by the interchain hopping which is not considered in o
model for an ideal infinite chain. Moreover, to our know
edge, no reliable data on the carrier mean free time exist
to poor material quality.

The question of whether our quantum-mechanical mas
the classical mass obtained by Campbell and co-workers7,8 is
more relevant to the mobility still remains. We think that
long as the translational symmetry is not broken, our resu
more reliable. However, when the symmetry is broken a
the electron becomes localized, the classical picture se
closer to the real situation. Translational symmetry break
can be caused by any form of disorder. Even for ideal s
tems without disorder, for stronga, ‘‘self-trapping’’ accom-
panied by a spontaneous breaking of translational invaria
cannot be ruled out for infinite systems.15 Such symmetry
breaking would imply the divergence ofm* , as mentioned in
the Introduction. The variational calculation based on coh
ent states is not expected to be applicable near the regim
‘‘self-trapping.’’

The Coulomb interaction among electrons is only p
tially included by using the renormalized parameters, and
explicitly considered. This is justified because there is
hole in the valence band. The Coulomb interaction should
important in the case of the ‘‘exciton polaron,’’ where on
electron-hole pair is interacting with the phonons.

We conclude with a brief remark on the validity of th
Lee-Low-Pines variational scheme~LLP!. We confess that,
without data from more reliable variational calculations, a
quantitative estimate of the validity of LLP in our model
very difficult. However, some estimates on the LLP valid
for the rather similar Holstein model do exist.15 The only
major difference between these two models is the type
electron-lattice coupling. We can only rely on the analo
and make identifications of the parameters between
model and the Holstein model, and hope that their res
provides a reasonable guide for us. Two dimensionless
rameters are used by Magnaet al.: g5\v/J, and
l5x2/2\vJ, wherev is the optical phonon frequency,J is
the electron hopping integral, andx is the coupling constant
We make the following identifications: ANA→x,
t0→J,v2(0)→v. It turns out that for polyacetylene~see
above for parameter values!, g50.22,l50.18. Fortunately,
these values fall well inside the range of validity for LLP
the Holstein model@l,0.75 for g50.22 ~Ref. 15!#. If the
coupling type does not cause too much difference on
energy scale, our result should be valid.
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