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Translationally invariant polarons in conjugated conducting polymers
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A simple effective Hamiltonian for the electron-phonon coupling in the conjugated polymers is derived from
the Su-Schrieffer-Heeger model with quantized lattice motions. Phonons correspond to lattice quantum fluc-
tuations around the dimerized positions. Both acoustic and optical modes are considered. The energy-
momentum relation for the polaron is calculated variationally, with the aid of Lee-Low-Pines transformation.
The discrete translational invariance of an ideal conjugated polymer is explicitly enforced. Analytical expres-
sion for the polaron effective mase* is obtained.m* turns out to be, in general, much larger than the
conduction-band effective mag$0163-182807)05920-]

I. INTRODUCTION the optically and dopant-induced absorption spectra, the SSH
model is not likely to be as ideal for the study of the charge
Since the pioneering works of Lee, Low, and Pinesd  transport properties for some fundamental reasons discussed
Feynman the problem of polarons in a coupled electron- below. The SSH Hamiltonian itself has the usual discrete
phonon system has attracted constant atterft@anvention-  translational symmetry of a one-dimensional crystal. How-
ally, the term “polaron” refers to a conduction electron ever, all the nonlinear excitations are not translationally in-
coupled to the optical phonons in polar crystals described byariant. In fact, the lattice positions are treated as configura-
the Frdnlich Hamiltonian? Conjugated polymers, as an im- tion parameters, and the local deviations from perfect
portant class of coupled electron-phonon system, are onalimerization accompanied with all the excitations can hap-
dimensional covalent chains, in which the electron-phonorpen around any one of the unit cells with equal total ener-
coupling has more of a deformation than a polar origin. Congies. In other words, the translational invariance of the sys-
sequently, for conjugated polymers the Flioh Hamiltonian  tem is broken and the ground state becomes infinitely
is not a suitable model, and the results of the conventionalegenerate, which implies a constant energy-momentum re-
polaron theory do not apply. Furthermore, in the'lich  lation and infinite effective mass. In such a case, the crystal
Hamiltonian phonons are quantum fluctuations around thenomentum is no longer a good quantum number to label
equilibrium positions of the lattice by itself, regardless of thethose excitations, as it should be for a full quantum theory.
electron-lattice coupling. On the other hand, the equilibriumThe notion of polarons in such a context is quite different
position of the lattice is dimerized in conjugated polymersfrom the conventional sense as defined for thehkch
due to Peierls instability caused by theelectron delocal- Hamiltonian mentioned above:* In particular, the polaron
ization. Phonons, therefore, correspond to the quantum laenergy-momentum relation cannot even be defined for a
tice fluctuations around the dimerized positions determinedheory without translational symmetry. However, the curva-
by the electron-lattice couplirtyElectron-phonon coupling ture of the energy-momentum relation is fundamental to the
and polarons in a dimerized chain are a theoretical problerdetermination of the polaron effective mass, which in turn
not yet fully explored. The importance of the theory of po- determines the polaron mobility. Even though the polaron
larons in conjugated polymers, especially the calculation o&ffective mass is given based on purely classical kinetic en-
their effective mass, is closely related to the potential appliergy consideration§® it is not clear how it can be identified
cation of polymer-based electro-optical devices. The effecwith the effective mass appearing in the mobility for a quan-
tive mass, combined with the mean free time, determines theim theory* After all, the classical mass obtained by Camp-
polaron mobility* Mobility and other transport properties of bell etal. is not the same quantity as the quantum-
polarons, which are believed to be the principal charge carmechanical mass we are considering, even if both models
riers, are crucial to the performance of those devices. Fotan be solved exactly. Consider the limit where the carbon
example, in light-emitting diodes, the electrons and holesatom mass goes to infinity. The classical mass, determined
have to be transported through the material after injection iy the carbon atom motion, would go to infinity as well. On
order to meet each other and recombine. the other hand, the quantum-mechanical mass will go to the
Solitons are first identified as one of the “nonlinear exci- band masgno renormalization The reason for the latter is
tations” in the Su-Schrieffer-Heegéd65SH model for con- that at such a limit, the lattice does not respond to the elec-
jugated polymer§. Polarons and bipolarons in the SSH tron, and it becomes rigid as experienced by the moving
model were studied by Campbell, Bishop, and Fesser witkelectrons. This feature is built in for our effective Hamil-
the frozen valence-band approximatioand later with the tonian. Further discussions on the difference between these
fully relaxed valence bantiWhile successful in explaining two masses are postponed to the final section.
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In this paper, we develop a fully quantum-mechanical and
translationally invariant theory for the polaron problem in He= a2 (Un+1=0n)(Chy1CnstChCniio),
conjugated polymers. Starting with the SSH Hamiltonian s
with quantized lattice positions and momenta, we derive an K
effectlve Hamiltonian for a conductlpn electron interacting H|:§2 [(Ups1=Up)2+2(Ups 1= Up) (Vps1—Un)
with phonons. It turns out that, unlike the polar coupling n
case, both the optical and acoustic phonon couplings are +( —0.)?]
present and important. The total crystal momentum is con- Unt17Un) ]
served in such a Hamiltonian. A generalized Lee-Low-PineNote thatv,’s are operators while,,’s arec numbers. Due
transformatioh is used to reduce the Hamiltonian to a sub-tg dimerization, terms linear in the lattice fluctuations
space with particular total momentum. A variational methodappear in bottH, andH,. This linear dependence is only
based on phonon coherent states is used to calculate the g@rmal, and will soon disappear when we project our prob-
laron energy spectrum. We obtain an analytical expressiofem to the subspace of one conduction electron below.
for the polaron effective mass. Numerical values are calcu- |t js well known that, if the lattice positions,, are treated
lated for parameters suitable for polyacetylene. asc-number configuration parameters without dynamics, the
In Sec. I, we derive the effective Hamiltonian. The po- ground-state lattice configuration is a perfectly dimerized
laron energy spectrum and the effective mass are calculatethain. The configuration can be shown to be of the form
in Sec. lll. We conclude with some critical remarks in the u§=w+(—1)”u,9 wherew and u can be explicitly calcu-
final section. lated. The superscript¢” indicates classical. In a full quan-
tum theory whereu,, together withp,, are operators, the
Il. EFFECTIVE HAMILTONIAN ground-state expectation valug is not simply equal ta$
in general? In fact, there is no way to calculate, exactly
eforehand, and then proceed our development afterwards.
herefore, we need to determing self-consistently by the
requirement that, after making the projection into the sub-
space of one conduction electron, no linear terms jrare
Hssi= = 2 thr1n(Chi16CnstCl Cnits) left in the lattice part of the effective Hamiltonian. We re-
ns mark that theu,, thus determined is not the exact bond posi-

In order to derive the effective Hamiltonian for the po-
laron in conjugated polymers, we take cis-polyacetylene a;
an example, and start with the SSH Hamiltonfan:

K #2 tion, but a part of our approximations. The expansiow of
+ 52 (Un+1— Un)z+m2 pa- (1) in terms the usual phonon operators makes sense only if this
" " requirement is fulfilled. It turns out that the correct choice of

Cy s is the annihilation operator af electrons with spisat U is exactly equal tai; in such a self-consistency scheme:
site n, u, is the displacement of the carbon atom at site —
and p, is the conjugate momentum of,. K is the spring Un=w+(=1)"u. (4)
constant for ther bonds,M is the mass of the carbon atom Therefore, the electronic part of the Hamiltoniah, be-
plus side group(monomey. t,.1, is the hopping integral omes
and is given by

the1n=to—t1(—=1)"—a(Uys1—Up). 2 He= —nES [(to— aw)—(ty—au)(—1)"]
« is the electron-lattice coupling constant, and p,, satisfy + +
the canonical commutation relation X(Cnt15CnstCnsCniis)
[Un,Pn]=if. =% €ckChis cCks.c T EukChsoChso - (5)

In the ground state, the polymer chain is dimeri2emd the

ground-state expectation valueg of the lattice displace- Hereec,x are the dispersion of the conduction and valence
mentsu, are not zero. In order to cast this Hamiltonian into Pands, respectivelycys . and cs, are the annihilation op-

a more standard “electron plus phonon plus interaction”€rators of the conduction and valence electrons, respectively.
form, we rewriteH s in terms ofv,,, the shifts of the lattice  The energy dispersions of the bands'are

positions u, around their ground-state expectation values

u,. After substituting the equation,=u,+v, into Hsgy, gok=~&uk=|2, ®)
the Hamiltonian can be divided into three parts: with

HSSH:HB+H6|+H|! (3) Zk:t+6t+(t_6t)62ika, tEto_aW, 5Et1—au.
with (7)

a is the lattice constant before dimerization. For later use, we
also define another quantitj,=(z,/2|z,/)>.

In order to make a tractable theory, we truncate the elec-
tronic sector of the Hilbert space by keeping only the low-
X(Cli1sCnstCh Cnr1s): lying states. The error introduced is believed to be very

He=—n25 [to—ti(—1)"— a(Up 1—Up)]
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small, as explained below. We choose the basis as the eigelow-energy spectrum. This truncated Hilbert space is
states of the electronic Hamiltoniat, without interaction spanned by the basis vectolk,s)=c/.|0), where the
with the lattice. Then we compute the matrix elements of theyround state ofH, is denoted by|0), in which all the
interaction HamiltoniarH among these eigenstates. With- valence-band states are filled, and all the conduction-band
out interaction, the electron part of the Hamiltonian is that ofstates are empty. In the following, we derive the representa-
a perfect rigid chain with two bands. In the polaron problem.tion of the total Hamiltonian in this subspace by calculating
we are concerned with the one extra conduction electron inthe matrix elementgk’s’|Hsgks), which can be simply
jected from outside. In other words, the total number of elecwritten in the form(k’|HgsK) 85's. The spin part is omitted
trons is equal to the total number of carbon atoms plus ondn the following.

Equivalently, the number of electrons in the conduction band The representation of the electronic part of the Hamil-
is one more than the number of holes in the valence bandonian is

Therefore, the eigenstates if, fall into groups: one(con-

duction electron, no hole group, two electrons, one hole (kIHe[K") =&ckdir k- (8
group, and three electrons, wo holes group, etc. Thes% order to calculate the matrix elementstdf;, we need the
groups all together form a complete set of the system, and NQ _trix elements ofsf .. C. .+Ct C which turn out
approximation is made so far. We truncate the Hilbert spac b n+lsns’ Znsentls:

by keeping only the first group. This is expected to be a ver 0 be
good approximation since we are interested in the ground
state(zero momentumand lowest excited statésmall mo-
mentum). The states in the other groups are higher in energy _ t t K'k

than the first group by a multiple of the band gap, and are, (O1Cn+ 16Cns CnCrsal O} 70 ™ ®
therefore, not likely to contribute significantly to the exactwhere

<k, | CE+ 1,an,s+ C;rLan-*— 1,s| k>

K'k_ (2/N)e' & Rma gk gk + 11 ), n even

Yn T (2/N)ei(k,_k)na(e_i<k,+k)a§:,§z+ei(k,+k)a§kré’k), n odd. (10)

N is the total number carbon atoms in the chain. Using theétnd rewrite the Hamiltonian in the standard “electron plus

relatiort? phonon plus interaction” form. Here the integer is the
o . index for unit cells, which now contain two carbon atoms
a(0|Cl, 1 Cn s+ Cl Chi1sl0) +K(Upy1—Un) =0, due to dimerizationi=1,2 is the index for the two atoms
(D within a unit cell. More explicitly, v =vm,02=0oms1.

the terms linear in,,.1—v, in H, andH,, are all canceled \=1,2 corresponds to acoustic and optical phonons, respec-

with each other as expected. In fact, the above relation igively. el (k) is the phonon polarization vectors,, and
exactly the condition that the total energy is minimized byaf are the phonon annihilation and creation operators.

thg (classical lattice configurati(.)nun.12 Collecting every- . (k) is equal to\/W[ltlcoska)H”z, respectively. In

Lhmg together, the representation of the total Hamlltonlaqerms ofay, andab . we find that the interaction part of Eq.
ecomes (12) becomes

2
Tk h
Kik— _ M am 2
Hep a)\Zl NMw)\(k_k/)[Bkk/)\+Bkkr)\]

X (B n+ 3l i) (13)

G K p2
H¥ k= (k' |HssK) = & ckSirk+ = (Un+1_vn)2+2 —=
2 n n 2M

_a§n: (vn+l_vn)7|r(1,k- (12

The three lines on the right-hand side of EtR) are referred

to asHX'k, H_,k)'k, and H_gpk respectively.e and p denote
electron and phonon, respectively. The next step is to expandlith
v, andp, in terms of the standard phonon creation and an-

nihilation operators:

Blor=[€2(k—k')— e(k—k)](Zidi +c.c),
U= \/ékz V mi (B taln)a e
A )y

2 [iMa)(K) Biarn=Ler(k—k)e? 12— (k—k')]
i : i i
D :—|\ﬁ2 e @ —al ) €l (k) ekam e
m N{x 2 x el (K —harelk+har 7 +c.cl.
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For smallk andk’, the above electron-phonon interaction lll. POLARON ENERGY SPECTRUM, EFFECTIVE MASS

part of the Hamiltonian reduces to a simple form: We make the Lee-Low-Pines unitary transformation

our effective HamiltoniarH:

! 3 R JE—
HEpk=—A[ZI(k’—k)all’2(akkf,1+alrk,l) H—S HS=H,
1 1/4- k' —k ‘ . ) .
+ 5 |m(akkf'2+ak,_k’2)}, SEGXD{I P/ﬁ_Ek (akylakll—kakzak'z)k X]. (18

P is the total crystal momentum of the polaron. The trans-

with formed HamiltoniarH becomes

1/2

242
N

f

VKM

H=> #w,k)al .a, +%w,(k)al ,a
19 Ek w1(K)af a1+ hoa(k)af Hay

) ) ) N +2 Vk(ak’1+ atk’1)+Uk(ak’2+ atkyz)
Finally, in the representation of the position operataand k
momentum operatgp of the conduction electron, the effec-

1 2
tive total Hamiltonian becomes + Z_mJP_zk fik(al @ tal a0 | - (19
— p? The polaron energy spectru(P) is the ground-state en-
H:H+E hwl(q)ag‘laq’ﬁﬁwz(q)agvzaqyz ergy of H for given P. In the following, we make a varia-
B 4

tional calculation of the ground-state energy based on coher-
‘ ) . : ent phonon wave functions
+ % V&' (ag1tasq ) +Uqe@ag2taly ),

15 |\If)=exp{§k: al (k) +a] g(k)+H.c.|[¥), (20

where| W) is the state without any phonofitk) andg(k)

with are adjusted such that the energy expectation value
(W|H|W¥) is minimized. In terms of the trial functionf(k)
3 1\ ga and g(k), the ground-state energy expectation value
VqE—AZ|qa|1’2, Ug=- (2) || ; (16)  (W|H| W) is given by
P2
and (UIHIW) = S 2 Vi F() + 7 (=)
2 +Udg(K)+g*(—k)]
2
Mg=—5—7A, A=4tge” ™oK/e" (17 Pik #2K2
(2atp) 2 .
2 [T o) - 5+ 5%
Here A is the Peierls half band gadp.mg=7%2A/(2aty)? is ) P h2k?
the conduction-band effective massand p satisfy the ca- +2k |9(K)[%| rwa(k) — o

nonical commutation relatiopx,p]=i#%. Note that theg de-
pendence of the optical phonon coupling constants quite 1 2
different from the one in the Ehich Hamiltoniatr?,@in which + ﬁ' ; AKL|f(k)|>+ |9(k)|2]] - (2D
Uqy~1/q|. This is anticipated because, as stressed in the In-

troduction, the origin of the electron-phonon coupling in aperforming the variation

conjugated polymer is of deformation origin, instead of the

polar origin as in the Fidich Hamiltonian. Even though the SYIH|Y) S(VIH|Y)

acoustic coupling constant, vanishes as the momentum 5F(K) = 5g9(K) =Y,

transferq goes to zero, there is no reason for us to ignore the

acoustic coupling altogether, since finifs contribute to the  we obtain bothf(k) and g(k), and the variational ground-
polaron state as well. In fact, we find in the following calcu- state energf(P). The result is

lations that the contribution from the acoustic phonons to the

polaron effective mass is about the same order as the optical P2 ) V]2 U2
phonons in some cases. Note tgtV,, andU, all go to E(P)= 2_mB(1_ 7 )_; D((k) + Dy(K)|’ (22)
zero as the monomer mabk goes to infinity. Electrons and

phonons are then decoupled, as claimed in the Introductionwhere
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Di(k)=hw,(k)— ! Phk+ —ﬁ2k2
(k) 1(K) mg 2mg’
D,(k)=# k ! PAk S
g( )_ wz( )__B +2_B_

The parameter, is determined by the implicit equation

13615

m* is, by definition, the effective mass of the polarons. We
express our final results in terms of two dimensionless quan-
tities 7 and u, defined as

_a2\/m _asz\/?
TEAKVK AT Ta Nwe

The constant part of the energy is given by

(26)

22

E E 1
9 2 WF(M)JF T’M} (27)

hwn0) #2KIM |

Note that the denominatdry2K/M on the left-hand side of
Eq. (25) is the optical phonon energy at zero wave number.
The functionF(u) is defined by the integral

7P =20 kL[ f()]*+|g(k)]], (23
with

f(k)=— Vi k)=— Vi 24

After some algebra, we obtain

PZ
E(P)=Eq+ 5t (25
|

F(,u)=f:d,\

Finally, the polaron effective mase* is given by

m* 3 1
Mg 1— 5~ (1— 7o)’ 8/m?+ (L) 2% 4ut?]’

(28)

wheremg is the band mass for a rigid lattice ang is the
limit of »(P) asP goes to zero, which is equal to

(9w 1+ (w1928
0T T (/) ] 1+ (719) 25,172 29

The numerical values of the dimensionless quantitiesd
u depend on the parametast,, t1, a, K, andM suitable

2{1+co(x) —[1/2/cog x/2)|][ 1+ cog x) + cog 2X) + cog 3x) |}
IXI{[ 1~ |cogx)[ 1M+ (1/2y2) X%} '

carbon atom mass is used fdr. The results are=30.7 and
w=9.53x10 3. After substitutingr and x into Egs.(27)

and (28, we obtain m*/mg=66.7, and Ey/fw,(0)
=—1.65. The absolute magnitudes of the effective mass
m* and the constari, arem* =11.7m,, andE;=0.45 eV.

me is the free-electron masm* is about four times larger
than the classical mass obtained by Campbell and
co-workers® Note that we use the renormalized value of the
force constanK (21 eV/A?), instead of the bare valu@é
eV/A?) 2 because we did not explicitly consider the Cou-
lomb interactions. Howevem* turns out to be an exponen-
tially decreasing function oK, and is very sensitive to the
degree of renormalization by the Coulomb interaction. A
comment on thél — limit seems appropriate at this point.

for the particular conjugated polymers under considerationd=rom Egs.(14), (15), and(16), we can easily see that there

For smallr, we plot the behavior of the ratias*/mg and
Eq/fiw,. In Fig. 1(a), the effect of the coupling constaatis

should be no mass renormalizaion at such a limit. In fact, we
find that if P is held constant wheiM goes to infinity,

shown. Asa increasess~ a2, while x remains constant. E(P,M) in Eq. (22 approache$?/2mg exactly. However,

m*/mg are therefore plotted as a function effor various

the resultingm*/mg in Eq. (28) does not approach one. It

fixed u’s. In Fig. 1(b), we examine the effect of the mono- turns out that this is only a rather subtle artifact. More de-

mer massM. As M increases;~ M, while 7u remains

tailed analysis shows that the series expansida(éf,M) in

fixed. The behavior of the two ratios for various values of EQ. (25) is convergent only wheR is smaller than a critical

T are plotted as a function of?(~M). When u<1 and

1, the expression fam*/mg can be further simplified to

m* 81

mg 1878

(30

value P,(M). For P>P.(M) there is a range oP where
Lee-Low-Pines variational scheme seems to break down
since there is no solution for the self-consistency equation
(23). For even greateP, E(P,M) quickly recovers to
P2/2mg. Most importantly, P.(M) approaches zero as
M—ow. We expect thatE(P,M) crosses over from
P2/2m* to P?/2mg aroundP (M), if the calculation could

For polyacetylene, we use the following values of the parambe carried out exactly. In such a case, as long as the momen-

eters:a=1.22 A t;=2.5 eV, a=4.1 eV/A, andK=21
eV/A? 8 For such valuesA =0.86 eV andng=0.18m,. The

tum of the electron is much larger thah.(M) (which is
always true forM — =), the mass is the same as if it were
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their polaron effective mass by the relatiom*/mg

3.5 T T T _ . .
3hicl|< solid - = 05 ~ 7~ a®MY2K 732 which is true foru<1. In words, the
3 ©=0.01 m*/mp . polaron mass becomes larger for stronger coupling constant
a, heavier ion mas$/, or softer spring constar, as ex-

2y Lo pected physically. The condition qnis true for the physical

2+ o . range of the parameters. Even though some measurements on
the polaron mobility do exist! our assertion on the magni-

—~ tude of the effective mass is difficult to judge experimentally

1 = n . at this moment, since the bulk mobility is strongly influenced

ISR EERE by the interchain hopping which is not considered in our

model for an ideal infinite chain. Moreover, to our knowl-

15+ |

e
o
T
1

I ! ' ' . ' : . ! edge, no reliable data on the carrier mean free time exist due
to poor material quality.

The guestion of whether our quantum-mechanical mass or
thlié(li( dots™: T 3:' 1T ' ' ' T the classical mass obtained by Campbell and co-wofRéss
Fosohd:7pu=Vo et -

thin dots : Tp =0.03

(=2

0 005 01 015 02 025 03 035 04 045 05

—_
()

~
-

more relevant to the mobility still remains. We think that as
long as the translational symmetry is not broken, our result is
more reliable. However, when the symmetry is broken and
the electron becomes localized, the classical picture seems
closer to the real situation. Translational symmetry breaking
can be caused by any form of disorder. Even for ideal sys-
tems without disorder, for strong, “self-trapping” accom-
panied by a spontaneous breaking of translational invariance
cannot be ruled out for infinite systerfisSuch symmetry
-2 ! ' ! ! ' ' ' . ! breaking would imply the divergence of*, as mentioned in

0 01 02 03 04 05 06 07 08 09 I the Introduction. The variational calculation based on coher-

4 ent states is not expected to be applicable near the regime of

“self-trapping.”

The Coulomb interaction among electrons is only par-
tially included by using the renormalized parameters, and not
aéxplicitly considered. This is justified because there is no
hole in the valence band. The Coulomb interaction should be
?mportant in the case of the “exciton polaron,” where one
electron-hole pair is interacting with the phonons.

We conclude with a brief remark on the validity of the
Lee-Low-Pines variational schenfeLP). We confess that,
without data from more reliable variational calculations, any
quantitative estimate of the validity of LLP in our model is
very difficult. However, some estimates on the LLP validity
for the rather similar Holstein model do exiStThe only
major difference between these two models is the type of
IV. SUMMARY AND DISCUSSIONS electron-lattice coupling. We can only rely on the analogy

. A . . and make identifications of the parameters between our
Starting from the SSH Hamiltonian with fully quantized model and the Holstein model, and hope that their result

electron and lattice degrees of freedom, we derive an effec- " °. . . )
tive Hamiltonian for the electron-phonon coupling in the E;Omvé?;z aarre:aaszggglebgwd'\iafor:atis.a'lryvo cir;zﬁlonallizs pa
one-conduction-electron subspace. Unlike the hich = v2/2% 0] whereo is)t/he o %ical hc;no)rll fre ue’ncy i
Hamiltonian for polar crystals, coupling to both acoustic and X ' P P q '

optical phonons is present for conjugated polymers. We pert-he electron hopping integral, andis the coupling constant.

form the Lee-Low-Pines transformation and make a varia-We make the following identifications: \/NA_W’

tional calculation on the polaron energy spectrum. AnalyticaFO_"]'“’2(O)_’“" It s out_that for_ polyacetylenesee
results are obtained for the polaron effective mags For ~ aPove for parameter valugsy=0.22) =0.18. Fortunately,

polyacetylene, the ratio between* and the electron band these valugs fall well inside the range of validity for LLP in
mass turns out to be quite large. In other words, the phono € H_OISte'n modefA <0.75 for y=0.22 (Ref: 15]. If the
cloud accompanying the conduction electron overwhelms th&PUP!ING type does not cause too much difference on the
effective mass of the electron itself. However, the absolut&Ner9y scale, our result should be valid.

value ofm* is only slightly larger than the effective mass of
conduction electrons in conventional inorganic semiconduc-
tors such as GaAs. Such effective mass implies that the po- This work was supported by the National Science Council
larons are quite mobile in polymer samples with high qualityof Taiwan under Contract No. NSC86-2112-M-009-001. The
and reasonable mean free time. For polymers other thaauthors thank M.C. Chang and B.Y. Jin for useful discus-
polyacetylene, we can easily get the approximate values dfions.

O =N W s Ot Oy =1 e

FIG. 1. (a) The effects of the increase of the coupling constant
on the polaron masé&upper three curvegsare shown in(a). The
ground-state energy is not shown because it is simply proportion
to 7. The auxiliary parameter; is shown insteadlower three
curves. (b) The effects of the increase of the monomer mass on th
polaron masgupper three curvgsand ground-state energy renor-
malization(lower three curvesare showr{see Eqs(27) and(28)].

equal tomg. However, in the above formula, the mass is

defined by smallP for which the expansion in Eq25) is
valid.
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