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ABSTRACT

The motion of comic characters includes different types of movements, such as walking or running. In a comic, a movement
may be described by a series of non-continuous poses in a sequence of contiguous frames. Each pose exists in a frame.
We synthesize an animation according to still comic frames. In this paper, we propose a model to analyze time series of a
character’s motion using the non-parametric Bayesian approach. Then we can automatically generate a sequence of motions
by using the estimated time series. Experimental results show that the built time series model best matches the given frames.
Furthermore, unnatural distortions of the results are minimized. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper presents a method for synthesizing the animation
of characters in a comic. In a comic, no apparent continuous
motions of characters exist in every two consecutive frames.
While these two consecutive frames represent two time-
slice poses in a continuous movement only, they cannot
represent the movement completely. Generating a natural-
looking animation is still a major challenge in computer
graphics. Basically, a motion is an essential 3D transforma-
tion problem which consists of a 2D spatial displacement
and a 1D shift in time. So we construct a time series model
to synthesize a character’s motion. The proposed method
involves a Bayesian approach for building the time series
model, which is adopted to fit the motion trajectories of a
character.

An approach of human motion synthesis is the constraint-
based motion synthesis [1]. It is formulated in a maximum-
a-posterior (MAP) framework. The statistical framework is
approximated by only using the likelihood and prior terms,
which is equivalent to the minimization of an error function.
However, the framework only correlates with the training
data. It does not necessarily give a small error with respect
to new data.

We also adopt a statistical method to synthesize motions.
First, we simulate key-motions of a character between two
contiguous frames in a comic by using kernel regression

with elliptic radial basis functions (ERBFs). A key-motion
is defined as the contour of an in-between pose between the
poses of a character in two contiguous frames of a comic.
Note that ERBF kernel is suitable to perform scattered-
data interpolation and is applicable to fit the human-like
shape. ERBF kernel was proposed for nonlinear approx-
imation of functions in certain general spaces (referred
to as elliptic basis function networks [2]). Moreover, a
volumetric approximation and visualization system was
developed with ellipsoidal Gaussian functions for a 3D
volume (referred to as ellipsoidal basis functions [3]).

Besides, we obtain the regression parameters suitable for
the current motion of a character by using Bayesian infer-
ence, which is based on the reversible jump Markov chains
Monte Carlo (RJMCMC) method [4]. RJMCMC has advan-
tages for this task. Note that RJMCMC generates a sequence
or a chain of samples. Apart from the initial sample, each
sample is derived from the previous sample, which allows
the algorithm to find parameters that satisfy the situation of
current regression model. We do not use least-square error
to find the parameters because the least-square method leads
to local minimization.

However, these simulated key-motions are described dis-
cretely in the temporal domain. For generating a smooth
and continuous character animation, we synthesize the
contours of a character’s motion following the motion tra-
jectory that is obtained by the proposed time series model
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called by the Bayesian version of autoregressive mov-
ing average (BARMA). BARMA integrates autoregressive
moving average (ARMA) with a non-parametric Bayesian
approach that is based on kernel regression with ERBFs and
RJMCMC-based model estimation. Note that the model is
trained from the key-motions.

After generating a sequence of motion, a local-fitting
methodology is applied to preserve important features
within contours (that is filling in the color and texture infor-
mation obtained from the original character in the given
frame). Locally weighted regression (LOESS) is a way
of estimating the regression surface through a multivariate
smoothing procedure by fitting a function of independent
variables locally, which maintains features invariant during
deformations without unnatural distortion. The Bayesian
version of LOESS (BLOESS) is proposed to improve mean-
ingful regressions by using Bayesian inference to infer
regression coefficients in LOESS.

In summary, this paper makes the following contribu-
tions:

• Given two contiguous frames in a comic, the con-
tours of a character’s key-motions are synthesized
by using a Bayesian estimation of kernel regression,
which combines ERBF kernel with RJMCMC. This
approach is suitable to fit the natural shape of a charac-
ter, such as a human body or an essentially human-like
subject.

• BARMA is proposed to analyze the motion trajec-
tory of a character’s motion through a non-parametric
Bayesian approach. The Bayesian approach is con-
structed for adding the smooth variety of the time series
data by using ERBF kernel and RJMCMC described
above.

• BARMA is applied to synthesize the contours of the
whole character’s motion. Furthermore, BLOESS is
applied to preserve the details or features of char-
acters. The Bayesian approach improves meaningful
regressions even with fewer data points than regression
coefficients.

The rest of this paper is organized as follows. The Related
Work section reviews related literatures about character ani-
mation. The Overview section then gives an overview of
the character animation process. Next, the Bayesian-based
Character Animation section describes the proposed time
series model through a non-parametric Bayesian approach
for character animation. Implementation results are shown
in the Results section. Finally, the detailed conclusions are
drawn in the Conclusion section, along with recommenda-
tions for future research.

2. RELATED WORK

Various techniques have been applied to animate characters
by using image morphing, motion capture, shape deforma-
tion, or time series.

2.1. Image morphing approaches

Several methods [5] have extracted properties of given key-
poses, and used it to generate characters’ motions in image
morphing community. Chuang et al. [6] adopted a wavelet
curve descriptor combined with Lagrangian dynamics to
implement the animation and the morphing. The wavelet
coefficients can represent the shapes of images in different
resolutions. Lagrangian dynamic equation can be applied
to simulate periodic motions. They utilized a non-self-
intersecting contour morphing to produce the motion of a
similar nature by generating in-betweens. Shutler and Nixon
[7] derived Zernike velocity moments from the video about
a character’s locomotion. Then they used the Zernike veloc-
ity moments to reconstruct the silhouette of an occluded
character’s locomotion which preserves a smooth transi-
tion. Our method only employs the correspondence of a
character in consecutive frames of a comic to synthesize
the character’s motion.

Besides, several studies [8,9] referred to character
motions synthesis have been conducted using radial basis
functions (RBFs). DeJuan and Bodenheimer [10] synthe-
sized in-between contours and textures by given two key
frames in an animation. Contour points and corresponding
normals of a character in a key frame were used in RBF
method to interpolate an implicit surface. Then a 3D mesh
describing the surface was generated. The mesh was sliced
in the middle to create in-between contours. In-between tex-
tures were synthesized by using an elastic registration. Our
approach fits contours with ERBF kernel in image space
directly. ERBF has the advantage of RBF-like smoothness
and is applicable to more general shapes than RBF. Besides,
in-between textures they created would be distorted in com-
plex patterns made up of a few solid colors. We use BLOESS
to preserve the details without undesired distortion.

2.2. Motion capture approaches

Conversely, motion capture technology has enabled users
to accumulate large database of a human motion which
makes the construction of empirical models of a motion
feasible. Hornung et al. [11] accomplished the motion of
photographed persons by projecting them to 3D motion
data. However, their method stipulated extra 3D informa-
tion, including 3D model construction or a 3D motion
database, thus increasing the overloads which do not belong
to image reanimation. Although the approach of Hornung et
al. can be applied to animate 2D images of arbitrary char-
acters, their system does not work for motions where the
character changes its moving direction, or where it turns
its head. The time series model based on a non-parametric
Bayesian approach does not have this limitation.

2.3. Shape deformation approaches

Researches on image-based animation [12,13] have recently
been carried out based on the shape deformation of a single
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image. Schaefer et al. [14] proposed a rigid transformation
approach with moving least squares. The study of Schae-
fer et al. concentrated on specifying deformation by using
user-specified handles. To generate animation, users needed
to set the next pose by manipulating the control vertices.
Unnatural distortions would be generated when the range
of controlling handles were exceeded because the locally
influencing extent using moving least squares is limited.

2.4. Time series approaches

Time series has been popularly applied in statistics to fore-
cast the trends in finance and marketing [15,16]. They have
also been used in control system, pattern recognition, and
artificial intelligence [17,18]. In computer graphics, they are
adopted for aging trajectories prediction or character motion
synthesis. For example, Scherbaum et al. [19] applied aging
prediction to images of faces with 3D model reconstruc-
tion and support vector regression based on RBF kernel.
Cai and Hodgins [1] generated an animation from various
user-defined constraints. Their system learned a state space
model from motion capture data. This state space model was
based on the deformed time series model, and was con-
structed from the concept of autoregressive model. They
transferred constraint-based motion synthesis to the MAP
problem, and developed an optimization framework which
generated a natural motion.

Furthermore, variants of hidden Markov models (HMMs)
[20,21] have been widely used to create the time series
data of motion trajectories representing a character’s
motion. HMMs learned from human motion data have been

employed to interpolate key frames, and to synthesize a new
style of motion. However, these statistical schemes require
full information about the character motion to train the ini-
tial statistical model. For example, a large motion capture
database of human body, or a large amount of user inter-
vention for constraints, is necessary. In a general comic, the
information in any two time-sliced poses cannot completely
convey the movement. Therefore, our proposed approach
learns a statistical dynamic model based on time series.
Moreover, the dynamic behavior of our proposed model is
predicted by time series. More significantly, in contrast to
previous methods, the proposed model allows the user to
animate characters smoothly without additional 3D infor-
mation.

3. OVERVIEW

The proposed approach for generating character animation
consists of the following four components: shape structure,
Bayesian regression, time series, and details preservation.

3.1. Shape structure

A hard character matte is obtained by using level-set-based
GrabCut, as shown in Figure 1(b). The foreground and
background are adequately separated. The moving com-
ponents are defined simultaneously. Note that a moving
component denotes the basic unit of a character’s motion.
To create convincing animations of a 2D character, its shape
needs to be deformed plausibly, while maintaining the effort

Figure 1. The overview of our approach for generating characters animation. (a) Considering two poses in consecutive frames of the
source comic, (b) the character is extracted by level-set-based GrabCut. (c) We construct the shape structure and refine it (here: the
same color represents as the same level in the shape structure). (d) The key-motion is synthesized by Bayesian regression. (e) Then
the time series is estimated to synthesize the whole motion. (f) The intermediate color is overlaid on the morphed contour by BLOESS.

(g) The character animation in a comic is generated by using our method.
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for generating animations on three generic body layers.
These body layers denote topological changes of a char-
acter model for different camera viewpoints, as shown in
Figure 1(c). We abstract the character in order to construct
the shape structure by using toon shading. The skeleton of
a character is specified manually by using a predefined 2D
skeleton structure.

3.2. Bayesian regression

Anchor points are first sampled along the contours of a char-
acter in a frame. The shape deformation function between
these samples and correspondences in another frame is
trained by using Bayesian regression, which is a Bayesian
inference of kernel regression. Note that the ERBF kernel
is adopted for regression analysis, and RJMCMC is applied
to infer the optimized regression parameters. The defor-
mation function is used to fit the morphed contours for
interpolating key-motions. For instance, Figure 1(d) shows
the key-motion obtained by using the deformation function.
The function is trained from two poses of a character shown
in Figure 1(c). Key-motions are applied to construct the time
series model further.

3.3. Time series

ARMA is a useful time series model for human motion
or stable time series data. Given the key-motions, the
entire motion is synthesized by using BARMA, which
integrates Bayesian regression [22] estimated above with
ARMA. BARMA is applied to predict the motion trajecto-
ries between the key-motions.

3.4. Details preservation

The trajectories are applied to fit contours for synthesiz-
ing a series of motions, as shown in Figure 1(e). Then the
details of character are preserved by using BLOESS. In
other words, BLOESS is employed to fill in the color and
texture information obtained from the original character in
the given frame, as shown in Figure 1(f). The motions are
synthesized in accordance with the previously fitted con-
tours and details, as shown in Figure 1(g).

4. BAYESIAN-BASED CHARACTER
ANIMATION

In this section, we explain our method in detail. The shape
structure is constructed first. Then Bayesian regression
with ERBF kernel and RJMCMC is applied for key-
motions generations. Next, the time series model BARMA
is constructed and used to estimate the motion trajectory.
Finally, the animation of a character is synthesized by using
BARMA and BLOESS.

4.1. Shape structure

In this stage, similar regions are extracted by approximating
the dynamics of moving curves. This method is known as
the level set method [23,24] proposed by Osher and Sethian.
Chan [25] developed the level set method to detect objects in
a given image. After abstracting the character by using toon
shading, we apply his method to segment regions with the
similar color distribution. Note that we choose HSV color
space, it is not only close to the people understanding of col-
ors, but also is regarded as the best option in judgment on
the color changes. We introduce the concept of color gradi-
ent information of images, instead of using gray gradient to
update the curve evolution function of the level set method.
Next, the bounding box of these regions is applied for Grab-
Cut [26] to separate the foreground and background. Note
that the extracted regions correspond to the regions of a char-
acter matte with the similar color distribution. The pixels
inside the contours of regions are considered the foreground
distribution replacing users’ refinement in GrabCut. Sub-
sequently, the entire energy minimization process would be
performed again with the updated foreground distribution.
After the iterative process is completed, the boundaries of
a character matte are extracted automatically. Furthermore,
the moving components of a character are found simulta-
neously. Besides, the skeleton of each moving component
is obtained by using morphology-based operations [27].
Given a predefined human skeleton structure, the skele-
ton of a character is specified by moving the bones of that
predefined skeleton to align to the bones of the obtained
skeletons of moving components. Furthermore, we can
refine the skeletal bones and joints in occluded regions
manually.

These moving components are further partitioned into
three layers manually when animating characters from a
side view. For instance, an animation might involve one
layer for the foremost arm, one for the body and the foremost
leg, and one for the remaining arm and leg. Moreover, these
layers cannot move independently. They should be stitched
together to convey the impression of a connected body when
animating the character. Hence, every layer is composed of
moving components, skeletal bones, and joints. Different
layers are linked by the shared skeletal joints.

4.2. Bayesian regression with ERBF kernel

Basically, a shape deformation of a character is constructed
for motion synthesis. Before defining the deformation,
the point-to-point correspondences of anchor points are
obtained. Figure 2 illustrates how to construct point-to-point
correspondences. We can construct the point-to-point corre-
spondences from these bones (blue lines) and joints (purple
dots). The anchor points are sampled along the contours
of the character randomly. For example, there is a point ui

sampled along the contour of a right arm randomly. ui is
called an anchor point. First, we find the projection Jm of
the anchor point ui on the line segment J1J2 or the extended
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Figure 2. Point-to-point correspondences. (a) An arm of a comic
character in a frame. (b) The same arm of that character in another

frame.

line of J1J2. Based on the predefined skeleton structure, the
skeleton correspondence between two frames is obtained.
Note that the corresponding joints J1

′ and J2
′ of J1 and J2

are known. According to the ratio of J1Jm

J1J2
, we can find the

point Jm
′ which satisfies the constraint that J1

′Jm
′

J1
′J2

′ = J1Jm

J1J2
.

Then we compute the normal vector on the point Jm
′ and

find the intersection of the normal vector and the contour
of the right arm. The intersection point ui

′ is the corre-
spondence of the anchor point ui. Thus, we can obtain n
anchor points sampled along the contours in a frame and
their correspondences in another frame.

Then we define the deformation based on the mapping of
n anchor points sampled along the contour of a character and
the relative correspondences. We formulate this problem as
regression analysis. In general, the response �r = (

r�x, r�y

)
is the displacement of an anchor point, and the predictor
�u = (

ux, uy

)
is the coordinate vector of the anchor point.

The relationship can be described as

�rd = f (�ud) + ε for d = 1, . . . , n (1)

where �rd denotes the displacement of the dth anchor
point �ud . Considering the above equation, f(.) denotes an
unknown and smooth surface indicating the true relation-
ship between �r and �u, commonly termed the regression
surface representing the shape deformation. Additionally,
the error ε is assumed to come from a Normal distribu-
tion N

(
0, τ2

)
in Equation (1), where τ2 denotes the noise

variance.
Previously, Gaussian function was chosen as the basic

function of RBF kernel for image morphing. It is suitable
to fit smooth functions for the form of f(.). However, RBF,
which is a circularly shaped basis function, has a limita-
tion in fitting long, high-gradient shapes such as characters’
shapes. The radius might reach the shortest boundary of the
area and might require numerous small RBFs to fit one long
shape, which would be matched to characters’ shape such
as the body or head of a human. Therefore, instead of a gen-
eral RBF kernel, the regression surface is estimated using
kernel regression with ERBFs. ERBF has the advantage of

Figure 3. Comparison of the number of basis functions using
Gaussians. (a) The original character. (b) Using the circular Gaus-
sians (RBFs) needs five kernels to fit the contour of the right
arm, and (c) using the arbitrary directional elliptic Gaussians
(ERBFs) can fit the right arm and left leg with the same number

of kernels.

RBF-like smoothness and is applicable to fit more general
shapes than RBF.

In contrast, elliptic Gaussian (ERBF) is an appropriate
choice to fit contours, which have non-circular structures,
as demonstrated in Figure 3. Using too many circular Gaus-
sians (RBFs) to fit contours takes more learning time.
Although ERBFs require more computation time than RBFs
in the optimization phase, they obtain better quality with
fewer basis functions. Furthermore, this paper develops
a Bayesian estimation of ERBFs, which has the merits
over the conventional ERBFs, to make an inference by
RJMCMC. Bayesian estimation frequently gives better pre-
dictions from the posterior mean of the generated samples
of ERBFs.

On the following, ERBF kernel is briefly summarized.
Let �v = (

µx, µy

)
be the center vector of elliptic Gaussian.

The regression model is developed as a linear combina-
tion of a set of basis functions and their corresponding
coefficients as follows:

f (�u) =
k∑

j=1

βjη
(�u, �vj

) + T (�u) (2)

where βj denotes the suitably chosen coefficient of the jth
elliptic Gaussian η(.), �vj is the related center vector, and
k is the number of basis functions in the model. In our
work, T(.) represents 2D affine transformation. The param-
eters related to basis functions are determined by the data.
According to the correspondences of anchor points between
two frames, controlling the affine component T(.) is carried
out by a least-squares approximation procedure, perhaps
using matrix pseudo-inverse techniques.

In this work, the contour of a character for motion syn-
thesis can be fitted by ERBF kernel. ERBFs predict well,
and are extremely interpretable, especially the arbitrary
directional ERBFs. Hence, this investigation develops a
generalization of the arbitrary directional ERBFs. More-
over, ERBF is derived from a hyper radial basis function
(HRBF) using the Mahalanobis distance [28]. For the arbi-
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Figure 4. Schematic diagram of an arbitrary directional elliptic
radial basis function (ERBF).

trary directional ERBF, η(.) is given in a matrix form by

η(�u, �v) = exp

{
− (�ux−�vx)TAθx,ax (�ux−�vx)

2σ2
x

− (�uy−�vy)T
Aθy,ay (�uy−�vy)
2σ2

y

}
,

�u = �ux + �uy = [ x 0 ]T + [ 0 y ]T,

�v = �vx + �vy = [ µx 0 ]T + [ 0 µy ]T

(3)

Aθi,ai
=

[
cosθi

/
ai sinθi

/
ai

−aisinθi aicosθi

]
, where i∈{x, y} (4)

where σi
2 for i∈{x, y} is the covariance of elliptic Gaus-

sians along i-axis. Note that we use k-means clustering to set
the center vector �vj for each k-means group of anchor points.
In addition, the covariance is computed for each group.
Besides, the orientation θi, which is the angle between the
major axis of ellipse and i-axis, and the aspect ratio ai

2

are applied to transfer to the arbitrary directional ERBFs,
as illustrated in Figure 4. Furthermore, the transformation
matrix Aθi,ai

, which contains a rotation and scaling com-
ponent, is added for alignment along the data distribution.
In our work, the major axis of ellipse is aligned along the
contour of a character. We would estimate the most suit-
able parameters to fit the contour of character by Bayesian
inference.

The central process of Bayesian inference is the calcula-
tion of probability distributions on the unknown parameter
vectors. First, let k, �vj, and σj

2 be variables and ai
2 term

be fixed. Note that k is the number of elliptic Gaussians.
�vj and σj

2 denote the mean and the covariance of the jth
elliptic Gaussian. θi and Aθi,ai

are set up according to the
principal component of anchor points sampled from con-
tours. Note that the parameter space � can be written as
� = {

βj, �vj, σj
2
}

for j = 1, ..., k. Taking D to represent
our training data, which are the anchor points and their
displacements, we are interested in inference about the pos-
terior probability of parameters � conditional on the data,
i.e. p(� |D ). Recalling Equation (1), given a new contour
point �unew (any point on the contour of character), the target
response �rnew (the displacement of that point) can be given
as an expectation.

E
[�rnew |�unew, D

] =
∫

f̂ (�unew, �) p (� |D ) d� (5)

where f̂ (.) is the estimation of our ERBF model. How-
ever, the integral is intractable and untenable for asymptotic
methods. We propose a Bayesian estimation of ERBFs. The
proposed method imitates the ERBF procedure by RJM-
CMC which can approximate integrals of Equation (5),
as described in Appendix. RJMCMC proceeds by draw-
ing samples of � in direct proportion to p (� |D ) and then
approximates Equation (5) by

E
[�rnew |�unew, D

] ≈
N∑

t=n0+1

f̂ (�unew, �t)

N−n0
(6)

where N is the number of samples generated, called the
Markov chain length, and n0 is the burn-in period. �t

denotes the current parameter space while there are t sam-
ples. The burn-in stage discards the samples generated
by Markov chain with unstable distribution of interest
p (� |D ). If the number of states is greater than the
discarded portion, then compute f̂ (.) by the recorded
parameters of the current model, ERBF term, and affine
term. All the simulations are run with a burn-in period of
5000 iterations of RJMCMC followed by 10 000 samples.
Finally, we use Equation (6) to generalize the displacement
of the character’s contour. We can make predictions of the
displacement �rnew of new contour point �unew using Equation
(6). Furthermore, we use Catmull-Rom splines to connect
new positions of the contour points in in-betweens. So the
contours of key-motions are synthesized by the model. In
our implementation, we synthesize 10 key-motions between
two contiguous frames in a comic.

4.3. The time series model

As mentioned above, these key-motions are described dis-
cretely in the temporal domain. For generating a smooth and
continuous character animation, we synthesize the motion
following the motion trajectory that is obtained by time
series. We propose a non-parametric Bayesian approach to
analyze time series representing the motion trajectory. The
general form of a time series model considered in this work
is

dt = fTS

(
dt−1, ..., dt−p; αt−1, ..., αt−q

) + αt (7)

αt = Cνt (8)

where dt denotes a univariate time series and fTS(.) indi-
cates an unknown function of time series. p and q represent
non-negative integers. νt is a sequence of random variables
assumed to come from a Normal distribution with mean
zero and variance one. C is assumed to be a constant. Based
on this general form, ARMA is formulated as follows:

fTS

(
dt−1, ..., dt−p; αt−1, ..., αt−q

)
=

∑p

i=1
φidt−i−

∑q

i=1
κiαt−i (9)
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where φi and κi are the coefficients of parameters in this
model. It is similar to the time series model proposed by
Chen et al. [29], except that they assumed the functional
form of fTS(.) was a known linear function whereas we
assumes fTS(.) is estimated non-parametrically along with
the Bayesian estimation of ERBFs already described in
order to add smooth variety of the time series data. Equation
(9) can be re-written as follows:

fTS

(
dt−1, ..., dt−p; αt−1, ..., αt−q

)
=

∑p

i=1
φiη(dt−i)−

∑q

i=1
κiαt−i (10)

where η(.) defined in Equation (3) is applied to estimate
fTS(.).

This paper develops a Bayesian version of ARMA
(BARMA) by combining ERBF kernel with RJMCMC. In
our work, di denotes the corresponding displacements of
the contour points from the ith key-motion. αi is obtained
by drawing a random variable. Give n contour points
sampled from the character and the corresponding dis-
placements, we perform Bayesian inference to obtain the
optimal coefficients φi and κi. In our implementation, we
already synthesize 10 key-motions between two contiguous
frames in a comic using Bayesian regression. We find that
an appropriate number of frames is about 10 in our experi-
ments (Note that p = 10 and q = 10). These key-motions are
sufficient to predict the motion trajectory of key-motions
effectively. Then we use BARMA to obtain the motion tra-
jectories. Note that the entire movement of a character is
synthesized by fitting contours through the trajectories. For
each frame in the temporal domain, we use Equation (7) to
find the displacements of contour points in that frame.

4.4. Details preservation

In addition to contour fitting for the whole animation pro-
cess, the details from the character interiors have to be
preserved by filling in the color and texture information
obtained from the original character in the given frame.
The filled color and texture information would be con-
trolled by a local-fitting methodology called LOESS [30].
In this work, let xi = (

xi,x, xi,y

)
be the ith sampled contour

point of the character in the given frame. yi = (
yi,x, yi,y

)
denotes the measurement of the dependent variable repre-
senting the new location of xi in a synthesized frame in the
temporal domain. Suppose that the target coordinate ŷi is
generated using an estimated local multivariate polynomial
for transformation.

ŷi = ζ1t1(xi) + ζ2t2(xi) (11)

We have t1(xi) = 1 for a translation coefficient ζ1 and
t2(xi) = xi for a rotation coefficient ζ2. Equation (11) can
be rewritten in matrix form, as follows:

ŷi = ζTt(xi) (12)

where ζ is the matrix form of the coefficients vector (ζ1, ζ2),
and t(.) is the matrix form of the vector (t1(.), t2(.)).

During a LOESS prediction, the specific location x0

within the morphed contour, which would be filled in color
and texture information, is supplied. LOESS performs a
linear regression on the sampled contour points weighted
by a kernel centered at x0. The regression is strongly
influenced by the sampled points that lie close to x0

according to some scaled Euclidean distance metric. This
is achieved by weighting each sampled point according to
its distance to x0: a point very close to it is given a weight of
one and a point far away is given a weight of zero. Given m
pairs of the sampled contour points and the corresponding
new locations of these points, the weight of the ith sampled
contour point xi is defined by Gaussian, as shown in
Figure 5.

wi(x0) = w(xi−x0) = exp
(−s ‖(xi−x0)‖2

)
(13)

where 1 ≤ i ≤ m, s = 1
2k2 , and m = ∑

i
wi(x0). s is a

smoothing parameter that determines how fast weights
decline in value as one moves away from x0. k is the kernel
width or bandwidth which controls the amount of localness
in the regression. Recalling Equation (12), ζ̂ is chosen by
minimizing locally weighted sum of squared residuals:

ζ̂ = argmin
ζ

m∑
i=1

wi(x0)2
(
yi−ζTti

)2
(14)

where ti = t(xi). Actually, we use a special form of LOESS
called BLOESS [31] to build a model from the data.
BLOESS allows meaningful regressions even with fewer
data points than regression coefficients.

Note that we assume a wide Gaussian prior on the coef-

ficient vector ζ ∼ N

(
0, τ2

p

)
of the regression model in

Equation (12) and a Gamma prior on the inverse of the noise
variance 1

τ2 ∼ Gamma(0.1, 0.1) in common with RJM-
CMC sampler described in Appendix. p is the precision
of the coefficient prior. Let X be the polynomial terms
of data samples in the matrix form, such as ti in Equa-
tion (14). Y denotes the response representing the matrix
form of the corresponding new locations. P represents the
matrix form of the precision p. W represents the diag-
onal matrix form of wi(x0) for 1 ≤ i ≤ m. ζ̂ is obtained
from the marginal posterior distribution with posterior mean

ζ̄ = (
XTW2X + P

)−1
XTW2Y and modified standard devi-

ation. Note that the initial standard deviation is drawn from
the noise variance τ2 and modified to be the upper triangle

of posterior variance matrix
(
XTW2X + P

)−1
obtained by

using Cholesky decomposition. According to the estimated
regression coefficient vector ζ̂, we can use Equation (12) to
find the new location of x0 and obtain the pixel values for
filling in the color and texture information. In practice, we
approximate the character with a uniform grid, as shown
in Figure 5(a). We find the new location of each vertex
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Figure 5. LOESS analysis. (a) The original character with a uniform grid (50 × 50). (b) The zoom-in view of the image. LOESS with
Gaussian kernel is applied to estimate the weights.

in the grid. Then we fill the resulting quad using bilinear
interpolation.

4.5. Animation generation

In summary, the complete animation generation process
consists of the following phases. The shape structure of
the character is built first. Each level of the shape struc-
ture of characters consists of several moving components,
for instance, head, body, arm, and leg. The indications of
moving components are then refined manually by the pre-
defined 2D skeleton structure. The morphed contour of each
moving component is synthesized through Bayesian regres-
sion. Key-motions are synthesized by combining all moving
components using the painter’s algorithm and connective
constraints formed from shape structures. As mentioned
before, we actually create 10 key-motions between two
contiguous frames in a comic using ERBFs with the param-
eters estimated by RJMCMC. Then we construct the time
series model BARMA to track the motion trajectory, which
best matches key-motions and generates the entire charac-
ter motion in contours. Bayesian regression and time series
simulation are both constrained to the connection topology
in the shape structure. Furthermore, BLOESS is applied to
reconstruct the details within the morphed contours fitted

from Bayesian regression and BARMA. The entire charac-
ter animation is synthesized after contour fitting and detail
preserving. Actually, we forecast 300 frames to generate
the 10 seconds character animation between two contiguous
frames in a comic.

Besides simulating the motion between several key-
poses, we propose an additional module to make a more
natural appearance of an animated character. Given other
frames of a subject which focuses on a special motion
of some moving component, we can simulate this motion
which cannot find any prior information in those input key-
poses by applying the motion trajectory of that subject.

5. RESULTS

Our approach could generate a smooth and natural-looking
character animation by using the time series estimated from
Bayesian inference with ERBF kernel. Moreover, the time
series model is applied to represent the trajectory of a char-
acter’s motion. It should be noted that, the motion trajectory
could be further used to predict a character’s movement
by nonlinearly extrapolating reasonable deformations with-
out the restriction of a purely interpolation method. The
proposed time series model with non-parametric Bayesian
inference is implemented on an Intel Pentium M 1.5 GHz

Table 1. Running times for figures

Cat Old Person Ball Man Flowers Tree

Figure no. 6 7 9 10 10 11
Resolution 156 × 101 311×278 100 × 75 368 × 583 120 × 213 467 × 599
Shape structure (second) 10 38 5 32 8 0
Bayesian regression (second) 2889 4898 113 5213 143 87
Time series (second) 167 244 58 274 97 32
UI (minute) 1 1 0 1 1 1
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Figure 6. (a) Given two frames in the comic, (b) motion synthesis is carried out using the estimated time series for character animation.

processor, which enables smooth animations of the comic.
A user specification exists by which the shape structure
construction is made.

Table 1 lists the resolution and execution time for the
figure shown. Execution time was measured in each step.
Shape Structure consists of the time of segmentation and

the whole shape structure generation. Bayesian Regression
comprises the time of ERBF kernel training and RJM-
CMC sampling. RJMCMC sampling takes a lot longer.
All the simulations are run with a burn-in period of 5000
iterations of RJMCMC followed by 10 000 samples. Time
Series indicates the time to construct the time series model.

Figure 7. (a) In this example, the inputs are two consecutive frames in the source comic. (b) Motion synthesis is carried out using the
estimated time series for character animation.
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Figure 8. Two major diagrams of a motion trajectory: (a) spatio-
temporal and (b) spatial.

Note RJMCMC sampling is carried out once to obtain the
regression coefficients during Time Series step because
the number of ERBFs is known (recalling p = 10 and
q = 10 in Equation (10)). UI represents as the time of
users’ intervention to refine shape structure further. Besides,

Figure 9. (a) Given two consecutive frames of a bouncing ball
and (b) the synthesized frames of animation are shown with the

motion trajectory.

Details Preservation is not demonstrated since it takes
less than 20 milliseconds for each frame and is quite fast.
The time of animation generation is not shown because
it varies significantly due to different numbers of frames
generated.

Figure 10. (a) Given two frames in the comic and (b) the motion trajectory obtained from the motion of the simple pendulum (� > 5),
(c) motion synthesis is carried out using the estimated time series for character animation.
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The results which are selected frames of character ani-
mations generated by our method are presented in Figures
6 and 7. Figure 6(a) shows the original digitized frames of
a comic. There are 7 moving components representing the
cat, such as torso including head, right foreleg, right hind
leg, left foreleg, left hind leg, tail, and shadow. The cat con-
sists of three layers in the proposed shape structure. One
layer consists of left foreleg and left hind leg. Another layer
consists of right foreleg and right hind leg. Note that shadow
belongs to the same layer with torso and tail. Three motion
trajectories are computed by BARMA from these three lay-
ers respectively and used to simulate the motion of the cat. In
Figure 7(a), there are 14 moving components representing
the old person, such as head, eyebrows, eyes, nose, mouth,
right arm, right hand, right long sleeve, torso, left arm, left
hand, and left long sleeve. Two layers are constructed in the
proposed shape structure. One layer consists of right arm,
right hand, right long sleeve, left arm, left hand, and left
long sleeve. Another layer consists of the other 8 moving
components. The motion trajectories are also computed by

BARMA for synthesizing character animation. The results
reveal the strength of our method as the possibility of con-
vincingly animating or posing any kind of comic character,
as shown in Figure 6(b) and Figure 7(b) respectively.

The motion trajectory obtained by the proposed time
series model is described in Figure 8. The spatio-temporal
diagram, which is illustrated in Figure 8(a), captures the
movement of a character in time. Then it can be mathe-
matically represented as a curve (x, y, t) in 3D space or
equivalently as a parametric curve (x(t), y(t)) in 2D space.
The spatial diagram can be mathematically represented as a
1D function y = f(x). As illustrated in Figure 8(b), the spa-
tial diagram is a projection of the spatio-temporal trajectory
onto the image plane.

Figure 9(a) shows two consecutive key-poses of a bounc-
ing ball. There is one moving component only. The motion
of the bouncing ball is synthesized with its motion trajec-
tory, as shown in Figure 9(b). The trajectory is described by
the movement of the ball’s barycenter. The ball is animated
along with the trajectory.

Figure 11. The input is the original painting of Vincent van Gogh’s “Country Road in Provence by Night”. (b) Motion synthesis is carried
out using the motion trajectory obtained from the simple pendulum shown in Figure 10 (b) (� < 5).
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As mentioned previously, we provide an additional retar-
geting module to make a natural appearance of an animated
character efficiently by retargeting the motion trajectory to
other characters. For example, the motion trajectory of a
simple pendulum shown in Figure 10(b) can be applied
to estimate the motions of those flowers, as shown in
Figure 10(a). We only need to compute the motion trajec-
tories about the character. The motions of flowers could be
simulated directly from the motion trajectory of a simple
pendulum.

Furthermore, Figure 10(a) shows two digitized frames
of a comic. There are 12 moving components representing
the scene, such as head, right arm, right hand, torso, left
arm, left hand, right leg, right foot, left leg, left foot, and
flowers. Moreover, three motion trajectories of the man are
obtained by BARMA. Two motion trajectories of the flow-
ers can be approximated by using the motion trajectory of
that simple pendulum shown in Figure 10(b) respectively.
According to the different degree of moving orientation
θ, the different motion trajectory of the simple pendulum
can be estimated by BARMA. Note that the motion of a
simple pendulum is simple harmonic motion. The motion
trajectory of the simple pendulum that we estimate is also
periodic and sinusoidal-like in time. The extracted frames
of the animation synthesized by using these motion trajec-
tories are shown in Figure 10(c). The locomotion of the
man is smooth. The motion of the flower is similar to har-
monic oscillation driven by the wind.Moreover, Figure 11
provides another example for retargeting the motion tra-
jectory to other characters. We would apply the harmonic
oscillation of the same simple pendulum to make a tree
sway. However, we estimate the motion trajectory of the
simple pendulum with θ < 5 by BARMA. Note that the orig-
inal circular motion of the pendulum can be considered as
the horizontal motion since the orientation of the motion
θ shown in Figure 10(b) is smaller enough. Figure 11(a)
shows the original painting of Vincent van Gogh’s “Coun-
try Road in Provence by Night”. Then the motion trajectory
of that simple pendulum is applied to synthesize the motion
of the tree. The results for motion synthesis of the tree are
shown in Figure 11 (b). Furthermore, the pattern of the tree
is preserved by using BLOESS.

6. CONCLUSION

In this paper, we present a time series model to animate
comic characters with non-parametric Bayesian estimation.
The time series model BARMA can overcome character
animation generation problems in a comic. The Bayesian
estimation is formed using ERBF kernel and RJMCMC.
The extension to ERBFs decreases fitting time involved
in alleviating the motion synthesis problems that are com-
monly observed for characters in non-circular structures,
and RJMCMC can be applied to choose the suitable param-
eters for Bayesian inference. As shown before, the proposed
model BARMA is flexible and appropriate for any data
distribution for data prediction in the temporal domain.

The prediction performance of the proposed algorithm is
considered strongly by correspondences of the input frames.
The proposed algorithm will not produce a reasonable result
for the lower degree of similarity between the input frames.
For example, one is the back-face view, and the other is the
front-face view. It may be solved through the extra infor-
mation needed to handle the motion of rotation with users’
interaction. In the future, we focus on enhancing the per-
formance and quality of Bayesian inference with ERBF
kernel and RJMCMC. This would enable prediction of the
movement of any character in real images to a succeeding
frame. Furthermore, this work could be extended to include
an interactive system. We are interested in extending our
Bayesian estimation to facial expression synthesis. Several
facial effects are observed in character animations, such as
eye, nose, or mouth movements. Given a suitable motion
trajectory of facial component designed from users, the
expressive facial animation synchronized with input speech
could be simulated.
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7. APPENDIX: REVERSIBLE JUMP
MARKOV CHAIN MONTE CARLO
(RJMCMC) SAMPLER

RJMCMC sampler is applied to estimate the optimized
Bayesian regression parameters. This method consists of
three steps as follows:

7.1. Set up proper priors

Recalling Equation (2), we begin with a fairly flat Gaussian

prior on the basis coefficients βj ∼ N

(
0, τ2

p

)
, where p is

the precision of the coefficient prior. τ2 is the noise variance,
and 1

τ2 ∼ Gamma (0.1, 0.1). A vague but proper Gamma
prior distribution represents ignorance of the noise process
and avoids inverting large matrices within each iteration of
RJMCMC. We set p = 0.01 and τ2 = 1 initially and they
would be updated during RJMCMC process.

7.2. Determine initial parameter value

Set the initial dimension k of model equal to 3, that is
intercept term plus the number of predictors. Then we use k-
means clustering to set the starting center vector �vj for each
k-means group of anchor points. In addition, the covariance
σj

2 is computed for each group in Equation (3). Besides,
calculate βj in Equation (2) using a least-squares fitting.
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7.3. Iterate RJMCMC sampler until
sufficient samples

In the RJMCMC algorithm, we first propose the next state
of chain representing a new basis function according to the
following criteria. First, draw a uniform random variable
u ∼ U(0, 1). If u < 0.33, then perform the Birth step. In
the Birth step, we would add a basis function (ERBF) in the
model. Then the corresponding parameters � are updated
by k-means clustering simultaneously. Recalling Figure 4,
for each k-means group, the transformation matrix Aθi,ai

is
computed to add this basis function. If 0.33 ≤ u ≤ 0.66,
then perform the Death step. In the Death step, we would
lose a basis function. We just select one basis at random
and remove it. If u > 0.66, then perform the Move step. In
the Move step, we choose a basis function from the model
at random and reset its position vector to another random
point. Then the corresponding parameters are updated.

Then we would compute the marginal log-likelihood of
the model and draw k new coefficients βj . Given n pairs of
anchor points �ud and corresponding responses �rd , which are
the displacements of anchor points, we would compute the
marginal log-likelihood for the creditable change of state as
follows:

L (�r |� ) = −nlogτ− 1

2τ2

n∑
d=1

{�rd−f̂ (�ud)
}2

(15)

where �r is a general representation for the response of
regression.

Let X be the responses of basis functions in the matrix
form. Y denotes the corresponding responses of the regres-
sion model in the matrix form. P represents the matrix form
of prior precision p. β represents the matrix form of k coeffi-
cients βj defined in Equation (2). Furthermore, β is obtained
from the marginal posterior distribution with posterior mean

β̄ = (
XTX + P

)−1
XTY and modified standard deviation.

Note that the initial standard deviation is drawn from the
noise variance τ2 and modified to be the upper triangle of

posterior variance matrix
(
XTX + P

)−1
obtained by using

Cholesky decomposition.
Next, consider to accept the proposed change of next

state. First, draw a uniform random variable u ∼ U(0, 1). If
u is less than the ratio of the marginal likelihood of proposed
next state to the marginal likelihood of original one, then
accept the proposed change to the model and update the
state of the Markov chain. Otherwise set the next state to be
the current state. Then update prior precision p by drawing a
random variable from a Gamma distribution and is modified
by the sum of squares of βj every 10 iterations. Recalculate
the coefficients βj from the marginal posterior distribution
with the updated prior precision p. Furthermore, draw a
random variable τ2 from a Gamma distribution for a new
noise variance. Given response �r defined in Equation (15),
τ2 is modified by posterior sum of squares error for the next
iteration.

Repeat RJMCMC process and record the number of
states. An initial portion of the chain is discarded to ensure
stability. If the number of states is greater than the discarded
portion, then compute f̂ (.) defined in Equation (2) by the
recorded parameters of the current model, ERBF term, and
affine term. All the simulations are run with a burn-in period
of 5000 iterations of RJMCMC followed by 10 000 samples.
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